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Foreword 

Welcome  to  Beijing,  and  the  4th  Workshop  on Adaptive  and  Reconfigurable  Embedded 
Systems (APRES 2012). The purpose of this workshop is to provide an open forum to discuss 
new and on-going research that is centered on the idea of adaptability as first class citizen and 
that considers the tradeoffs between flexibility and complexity. 

The APRES program includes  a keynote presentation on “Network Challenges in  Cyber-
Physical Systems“, regular paper sessions with 7 peer-reviewed papers and 1 invited paper, 
and  a  short  paper  session  with  3  peer-reviewed  extended  abstracts,  covering  new  and 
important issues such as adaptive resource managements for GPU-based embedded systems 
and virtualized real-time systems, configurable fault-tolerance and energy-optimization for 
automotive systems, and adaptive automata -- just to name a few. In addition, we also have a 
best paper award for the first time.

The APRES 2012 would  not  occur  without  tremendous  efforts  of  many individuals.  We 
would like to take this opportunity to thank all the people involved. Thank you to the authors 
who submitted their work and the program committee for their work in reviewing the papers 
and helping to make the workshop a success. Special thanks to Luis Almeida, for accepting 
our invitation to be keynote speaker for the event, and to the Steering Committee members 
Luis  Almeida,  Karl-Erik  Årzén,  Sebastian  Fischmeister,  Insup  Lee  and  Julián  Proenza  for  their 
support and assistance in organizing the workshop.

We hope you enjoy APRES 2012, and find the technical program interesting and stimulating. 
We wish you a wonderful stay in the amazing city of Beijing, and look forward to seeing you 
again in 2013. 

Paulo Pedreiras and Insik Shin 
Co-chairs 
4th Workshop on Adaptive and Reconfigurable Embedded Systems (APRES 2012)
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Keynote Talk

Network Challenges in Cyber-Physical Systems

Luis Almeida, University of Porto, Portugal

Talk Abstract

Cyber-Physical  Systems  (CPS)  rely,  up  to  a  large  extent,  on  networking  infrastructures, 
frequently large ones. These necessarily play a central role in supporting the needed system-
wide properties, being timeliness a particularly important one as dictated by the dynamics of 
the associated physical processes.

We  claim  that  emerging  CPS  applications,  such  as  Smart-Grids,  Remote  Interaction, 
Collaborative Robotics, etc, require openness together with tighter timeliness guarantees. We 
postulate  that  such  guarantees  can  only  be  achieved  with  an  adequate  communication 
abstraction supported on adequate protocols. To this end, we have been proposing channel 
reservation-based  communication  as  a  means  to  provide  scalable  and  open  latency-
constrained communication and thus enable a more efficient design of CPS.

This presentation will provide a brief tour of our recent work on flexible and composable 
approaches  to  real-time  communication  for  distributed  embedded  systems.  This  work 
provides a basis  to  address the network access problem. We developed solutions  for two 
typical scenarios, one in which we can exercise effective control over the network, typically 
based on wired media, and another one in which such control is loose and more adaptation to 
dynamic conditions is needed as in wireless cases.

We will  end with our recent  efforts  towards  scaling some of  the previous approaches  to 
provide  end-to-end  guarantees,  highlighting  some  open  challenges  towards  adequate 
networking infrastructures for effective CPS.

Speaker Biography

Luis Almeida is currently an associate professor at the Electrical and Computer Engineering 
Department of the University of Porto and a member of the Institute of Telecommunications 
in Porto where he coordinates the Distributed Real-Time and Embedded Systems Lab. He is 
also a member of the IEEE, Computer Society, and particularly of its Technical Committee on 
Real-Time Systems, member of the IFIP Tecnical Committee on Embedded Systems, member 
of the Strategic Management Board of the EU/ICT NoE ArtistDesign, leading the Real-Time 
Networks activity in that NoE, Vice-President of the RoboCup Federation and President of 
the Portuguese RoboCup National Committee.

His current interests are real-time communication protocols for Cyber-Physical Systems with 
an  emphasis  on  mechanisms  to  support  predictable  operational  flexibility  as  needed  for 
dynamic QoS management, graceful degradation and open distributed real-time systems in 
general. He co-authored over 200 refereed publications, 3 patents and 8 book chapters. He 
regularly participates in the organization and program committees of scientific events in the 
Real-Time Systems, Industrial Systems and Robotics communities, including RTSS, ECRTS, 
DATE, SIES, WFCS, ETFA and RoboCup.
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for Embedded Real-Time Systems
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Abstract

In this paper, we present two conceptual frameworks for
GPU applications to adjust their task execution times based
on total workload. These frameworks enable smart GPU
resource management when many applications share GPU
resources while the workloads of those applications vary.
Application developers can explicitly adjust the number of
GPU cores depending on their needs. An implicit adjust-
ment will be supported by a run-time framwork, which dy-
namically allocates the number of cores to tasks based on
the total workload. The runtime support of the proposed
system can be realized using functions which measure the
execution times of the tasks on GPU and change the number
of GPU cores. We motivate the necessity of this framework
in the context of self-driving technologies, and we believe
that our frameworks for GPU programming are useful con-
tributions given the increasing emphasis on parallel hetero-
geneous computing.

1 Introduction

Graphics processing units (GPUs) are becoming more
and more commonplace in many application domains
widely ranging from high-performance computing to em-
bedded mobile computing. For example, three of the top
five supercomputers on the TOP500 list [12], announced
as of March 2012, use GPUs to accelerate computations,
while recent tablets, such as ASUS Eee Pad Transformer
Prime, also leverage embedded GPUs, like Tegra 3 [9], to
enhance performance under power constraints. This trend
is expected to continue.

One notable application domain of GPUs is automotive
engineering. Modern automobiles employ several tens of
processing units. Further advances in safe-driving features,
such as adaptive cruise control, stop-and-go cruise con-
trol, lane keeping, and assisted lane change, would require
even larger computing capabilities. For vehicles to become
fully or semi-autonomous, a multitude of computer vision,

sensor fusion, signal processing, and graphics sub-systems
must operate and communicate in real-time. Given their
highly data-parallel and compute-intensive workloads, par-
allel computing is a useful solution. As technology stands
today, the GPU is the most well-suited platform. In fact,
NVIDIA GPUs will be used for infotainment systems plat-
forms in future product lines of BMW vehicles [10].

Automatic safety features require smart planning and in-
telligent processing of data obtained from many sensors
equiped in the vehicle, including LIDAR (LIght Detection
And Ranging), radar, camera, and ultrasonic sensors. One
common characteristic in these types of processing is that
GPUs can accelerate their processing speeds significantly.
For example, autonomous driving should ideally follow the
best path among many potential paths, whose calculations
can happen in parallel. Calculating as many potential paths
to follow as possible will yield better quality of driving. As
a matter of fact, CMU’s autonomous vehicle team showed
that their motion planning algorithm was sped up by 40
times [6], using an NVIDIA GTX 260 GPU that integrates
192 compute cores on a chip.

In addition to motion planning, a perception algorithm
as well as sensor data processing can benefit from the GPU.
The perception system of a self-driving car should be able
to detect, classify and track the obstacles around itself. Var-
ious types of sensors will generate voluminous amount of
information that must be processed in order to understand
the vehicle’s surroundings. For example, a self-driving car
at CMU manages 1536 objects from LIDAR sensors before
they are fused with other types of sensor data. There has
been on-going research using GPU to build a perception
system [1], and their GPU implementation yielded 30,000-
times-faster performance compared to the case of using
only one CPU.

As described above, there has been research on apply-
ing GPU to different applications on self-driving cars, and
it is clear that GPU can provide great benefits on realiz-
ing safer or self-driving car technologies. However, not
much research has been done when those technologies are
deployed together on self-driving cars, where the loads of



each application dynamically vary depending on the envi-
ronment. The period and the computation time of the plan-
ning algorithms for autonomous driving highly depend on
the vehicle speed, so the planning algorithms can be heav-
ily loaded when the car is (say) on a highway. The load of
the perception algorithms mainly depends on the number of
obstacles around the car. Hence, the perception system re-
quires more computing resources when the car is driving in
an urban area. Therefore, an intelligent method of sharing
many cores on GPU would be essential when we use GPUs
on self-driving cars. For example, if a self-driving car has
a 96-core GPU, the planning algorithm of the car can use
72 cores on the highway and use 12 cores in the urban envi-
ronment. A self-driving car [13] requires tens of tasks, and
the dynamic core management should be fulfilled across all
tasks if those tasks utilize GPU.

In this paper, we present two conceptual frameworks
for GPU applications to adjust their task execution times
given current workload conditions. These frameworks en-
able smart GPU resource management when many appli-
cations share GPU resources while the workloads of those
applications vary. These frameworks support both explicit
and implicit adjustment. With support for explicit adjust-
ment, application developers can adjust the number of GPU
cores depending on their needs. A run-time framwork will
dynamically allocate the number of cores to tasks based on
current workloads. The runtime support of our proposed
system can be realized using functions which measure the
execution times of the tasks on GPU and change the number
of cores.

The rest of paper is organized as follows. Section 2 de-
scribes how our proposed system is modeled. Section 3
presents the methods for adaptively managing GPU re-
sources, and we conclude our paper in Section 4.

2 System Model

We assume real-time embedded systems that contain
CPU and one or more GPUs as compute devices. An ap-
plication task starts execution on the CPU, and offloads
its data-parallel compute-intensive workload onto the GPU
when needed. Once offloaded onto the GPU, the task be-
comes non-preemptive due to many reasons. In fact, it
is technically possible to preempt the running task on the
GPU by loading and restoring its context, but it requires
additional firmware, runtime, and OS support, and the pre-
emption cost would be non-trivial due to a very large set
of GPU registers and states. We, hence, restrict our atten-
tion to a non-preemptive execution model for GPU comput-
ing. GPUs may also pose some constraints in multi-tasking.
Even the NVIDIA Fermi architecture [8], one of the most
popular GPU product lines, allows only one context to use
GPU resources at once, though this context may spawn mul-

tiple GPU kernels (jobs) simultaneously. In other words,
if task-level parallelism is required, the entire system must
run in the same context. We, however, believe that this con-
straint will not limit the concepts we describe in this paper.
The same GPU context can be used to exploit concurrent
parallel job executions, to serve at least as a proof of con-
cept. We also expect that future product lines will remove
this concern.

We consider real-time applications where each task runs
in a periodic or sporadic manner under deadline constraints.
Such a task set may include motion planning and vision-
based perception in state-of-the-art autonomous driving ve-
hicles, where the periods often correspond to frame-rates,
and the deadlines occur at the end of the period. We
also presume that the computing demand of each task is
highly variable. For example, the performance of planning
and perception tasks is usually governed by the number of
objects, the size of data, and the desired quality of out-
put. These workloads are also very parallelizable using the
GPU. The contributions of this paper are not limited to au-
tonomous driving tasks but are also generally applicable to
highly variable workloads running on the GPU.

3 Adaptive GPU Resource Management

In this section, we describe adaptivity support for GPU
applications. We particularly focus on solving resource al-
location problems. The goal is to support embedded real-
time systems that exhibit highly variable workloads. Since
GPUs integrate a large number of cores on a chip, we aim
to enable the execution of highly variable workloads in a
timely manner by adjusting allocated cores at runtime.

Several approaches have been studied for adaptive GPU
resource management. Some work [3, 4, 5] took time-
driven approach that controls timings and the duration of
time allowed to access GPU resources,i.e., scheduling and
reservation. In these time-driven approaches, application
tasks need not to be aware of what is happening in GPU
resource management, because it is handled by the OS or
runtime scheduler. However, they can not manage task ex-
ecution times. They also limit the number of contexts that
can access the GPU simultaneously to remove performance
interference. Therefore, GPU resources could be wasted if
a running context does not fully use compute cores.

We consider a different approach than previous work
that enables GPU applications to adjust their task execution
times. The number of cores used in the program is a major
factor that affects the execution time. Hence, we explore
how to adjust the core allocation at runtime. It is important
to note that the programmer is typically responsible for al-
locating the number of cores (or threads mapped to cores) in
GPU programming. In order to adjust the number of cores
at runtime, it is essential to provide the programmer with an



Figure 1. The proposed conceptual architec-
ture for GPU resource management.

interface to obtain the information on the number of cores
available or allocated for the program at runtime. The pro-
grammer is then responsible for making the program adap-
tive to the number of cores.

In the following, we present two frameworks that could
be used to implement the proposed approach. We plan to
implement a real system as a proof-of-concept, leveraging
open-source software [2]. The proposed architecture is also
illustrated in Figure 1.

3.1 Explicit Adjustment

In our explicit adjustment framework, the programmer
is responsible for adjusting the number of cores to relax or
tighten the computing demand. There will be no adjustment
unless the programmer explicitly takes an action. A typical
usage of this framework with periodic real-time tasks is as
follows.

At the end of each period, the programmer calls a func-
tion provided by our framework that returns the latest task
execution time. The programmer next calls either of the
following two API functions. One increases the number of
cores to be used by the next GPU execution to speed up the
program. The other decreases it to slow down the program.
This framework is usable in practice because the program-
mer often knows the desired task execution time to meet the
frame-rate or deadline. It is also flexible in that the pro-
grammer can determine when to increase or decrease the
number of cores.

A downside of this framework is that a task may misbe-
have and interfere with other contending application tasks,
if the programmer fails to call the API functions correctly.
We can cap the maximum number of cores available for an
individual task to prevent it from abusing GPU resources,

but the adaptivity of computing depends on the program-
mer, and outside system control.

3.2 Implicit Adjustment

Our second approach to adaptive resource management
is an implicit adjustment framework. In this framework,
the number of cores to be allocated for the program is set
by the runtime system. Hence, the adaptivity of computing
does not really depend on the programmer. If the program
is not aware of this framework, however, it may fail to run,
since the number of core allocated for the program may be
different from what the program assumes.

The programmer specifies the desired task execution
time as a set point before the task starts. If this set point is
not specified, the runtime system tries to derive it internally
as time goes by. When the task uses the GPU, the runtime
system consistently updates the number of cores available
for the corresponding task in the next period based on the
previous execution time records. It is still the programmer’s
duty to check the number of available cores before offload-
ing the computation onto the GPU.

This implicit adjustment framework is more preferable
to the explicit adjustment framework, as it can enforce adap-
tive GPU resource management. However, it requires con-
sensus in the programming model that the number of cores
allocated for the program could be changed every time it is
offloaded onto the GPU, and the programmer must be aware
of it to make the program work. We claim that this is a nat-
ural trade-off between the generality of programming and
needed adaptivity of service.

3.3 Runtime System Support

The runtime system provides the API for real-time GPU
programmers. In order to support adaptive GPU resource
management, we must provide some additional API func-
tions.

• Our adaptive GPU resource management frameworks
require a function to measure the execution time of
each job running on the GPU. This function is easy
to implement. Since we assume that job execution on
the GPU is non-preemptive, the amount of time in run-
to-completion can be accounted as job execution time.
This accounting method is also known to work from
previous studies [5, 11]. For the explicit adjustment
framework, this function must be exposed to the pro-
grammer, while it is used internally by the implicit ad-
justment framework.

• We also need several functions to change the number
of cores to be allocated for the program. Some existing
programming languages for GPGPU,e.g., CUDA [7],



provide the API to allow the programmer to specify the
shape of the grid structure and the number of threads
mapped to compute cores. We can use this API as it
is, or provide a corresponding API if the underlying
programming language does not support it.

In addition to these API functions, the runtime system
must be able to detect when the program is offloaded onto
the GPU and when it is completed on the GPU. Since the
programmer calls a specific API function to launch the GPU
program in most GPU programming models, it is very easy
to record the start time of GPU execution. The detection of
the completion time of GPU execution, on the other hand,
is not straightforward. We would need to use an interrupt
to notify the runtime system of the completion of GPU ex-
ecution. Polling on a particular register is an alternative,
but it would not be suitable for latency-sensitive real-time
systems, as previous work demonstrated [5].

Finally, runtime system support must be integrated with
the API so that the programmer can make use of our frame-
works under a single unified programming model. We plan
to extend our CUDA runtime library developed in previous
work [2] to support our adaptive frameworks. While this is
our planned prototype implementation, and our frameworks
can also be integrated with other programming models be-
yond CUDA.

4 Summary

In this paper, we have discussed adaptivity requirements
in embedded real-time systems with GPUs, and presented
two frameworks for adaptive GPU resource management.
We conjecture that the generality of programming may need
to be compromised to achieve adaptivity of resource allo-
cation on the GPU. Nonetheless, adaptive resource man-
agement is a key solution in optimizing performance un-
der resource-constrained environments. We believe that our
frameworks for GPU programming are useful contributions
in this line of work, given the increasing emphasis in highly
parallel heterogeneous computing.
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Abstract—System virtualization is a powerful approach for the
creation of integrated systems which meet the high functionality
and reliability requirements of complex real-time systems. It is in
particular well-suited for mixed-criticality systems, since the often
applied pessimistic manner of critical system engineering leads to
heavily under-utilized resources. Existing static resource manage-
ment approaches for virtualized systems are inappropriate for the
dynamically varying resource requirements of upcoming adaptive
systems. In this paper, we propose a dynamic resource manage-
ment architecture for system virtualization which incorporates
criticality levels and allows the addition of subsystems at runtime.
The two-level approach offers flexibility beyond virtual machine
borders, that is exploited to improve the resource utilization by
an adaptive distribution of the resources over the entire system.

I. INTRODUCTION

For the next generation of advanced embedded and cyber-

physical systems, there is a trend towards adaptability and

inclusion of self-optimization [1]. Systems that adjust their

goals and behavior at runtime according to changes of the

environment or defects are characterized by varying resource

requirements and demand flexible and dynamic resource man-

agement architectures. Integrated environments can often pro-

vide a more resource-efficient implementation compared to

multiple separated hardware systems. System virtualization is

a promising approach for the integration of multiple systems

with maintained separation, and is therefore gaining significant

interest in the embedded real-time world [2]. The hypervisor

allows the sharing of the underlying hardware among multiple

operating systems (OS) in isolated virtual machines (VMs).

Virtualization is in particular well-suited for mixed-

criticality systems, which consolidate subsystems of differing

criticality (e.g. safety-critical subsystems, mission-critical sub-

systems, and subsystems of minor importance [3][4]). First,

virtualization facilitates multi-OS platforms: adequate operat-

ing systems can be provided for the very differing demands

of the subsystems, for example a highly efficient real-time

operating system for safety-critical tasks and a rich general

purpose operating system for tasks with a human machine

interface. Multiple existing software stacks including operating

system can be reused to create a system of systems, in contrast

to approaches that add real-time support for applications to a

general purpose operating system, such as RTAI [5]. Second,

the resource utilization can be increased significantly by the

addition of subsystems of low criticality to critical subsystems.

The dimensioning of the resources of critical systems has

to expect the worst-case demand at all times, which usually

results in a poor utilization.

Virtualization solutions for the server and desktop market

apply highly dynamic approaches, are however not real-time

capable. We use a multi-mode approach. A survey of real-

time mode change protocols can be found in [6], virtualized

systems are however not covered. In order to guarantee real-

time requirements, existing virtualization solutions for embed-

ded systems typically assign the resources statically to the

VMs [2]. This is hardly compatible with the dynamics of

adaptive systems. In this paper, we present a more flexible

resource management protocol with the potential of a consider-

able resource utilization improvement. Furthermore, it enables

open systems, in which the addition of applications or even

subsystems at runtime is possible. Openness is a matter of

considerable importance for many adaptive real-time systems.

II. DYNAMIC RESOURCE MANAGEMENT BEYOND

VIRTUAL MACHINE BORDERS

A. The Flexible Resource Manager

In previous work, we have developed the Flexible Resource

Manager (FRM) for self-optimizing real-time systems [7]. It is

an OS extension to improve the resource utilization of systems

with EDF Scheduling [8]. Each application is equipped with a

set of profiles and transitions between them. Profiles represent

implementation alternatives, representing for example differ-

ent optimization levels for self-optimizing applications. Each

profile contains information about minimum and maximum

resource requirements. The FRM is in charge of switching

between these profiles at runtime. Profiles are specified by the

developer of an application.

The FRM improves the resource utilization by allowing an

over-utilization and assigning temporary unused resources at

other applications’ disposal. Over-utilization is allowed if a

plan for solving every possible conflict exists and if these plans

are schedulable under hard real-time constrains. The standard

approach to achieve safe and predictable behavior for multiple

applications on a real-time operating system is to allocate

the maximal required resources upfront. When an application

does not use the complete amount of resources, the FRM
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assigns fractions of these resources to other applications. This

is realized by profile switches. The FRM selects a profile with

a lower resource consumption for the application that currently

does not need the complete amount, and activates profiles

of other applications with higher resource consumptions. If

the resource lending application needs more resources, the

resource conflicts are solved according to the accepted plan.

Schedulability and real-time capability, even during profile

transitions, have been formally proven in [7].

B. Adaption to System Virtualization

Until now, the FRM addressed non-virtualized architectures

with a single operating system. In this work, we adapt the

concept to system virtualization. Figure 1 depicts an example

with three virtual machines of different criticality. The assign-

ment of criticality on VM level is no restriction, since our

use case deals with the consolidation of entire systems. The

addition of more than one guest of the same criticality is of

course possible. Our solution implies a resource management

protocol with FRM instances on two levels. A host-level FRM

is part of the hypervisor and retains the ultimate control of

the hardware resources. The guest operating systems on the

second level use their local scheduler and a guest-level FRM

to schedule their applications and assign resources to them.

A partitioned approach with decisions on both levels and

communication in both directions follows. A guest-level FRM

is informed by the host-level FRM about the resources as-

signed and selects appropriate application profiles to utilize

them efficiently, as it does in the non-virtualization case. In

particular, it can assign temporary unused resources to other

tasks. When the subsystem is over-allocated, a situation in

which the addition of the maximum limits of a resource of

the active profiles exceeds the assigned quantity, a resource

conflict may occur. In this case, the resources are given back to

the original task by switching to other profiles. This is done ac-

cording to plans which are stored in a local conflict resolution

table (fig. 2). An entry contains a sequence of profile switches

that solves the conflict. This table is filled automatically at

runtime with the result of the online schedulability analysis.

A profile switch is only accepted, if the schedulability analysis

found a schedulable conflict resolution.
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The guest-level FRMs inform the host-level FRM about the

dynamic resource requirements and current resource utiliza-

tion. For this reason, a second profile class is introduced: next

to application profiles that specify the resource requirements

for applications, there are subsystem profiles that specify

the minimal and maximal resource limits for subsystems.

Subsystem profiles unite the active profiles of the subsystem’s

applications to a single profile on subsystem level by adding

the resources’ minimum and maximum limits. In case of an

application profile transition, the subsystem profile is updated

and communicated to the host-level FRM. The host-level

FRM’s resource assignment among the virtual machines is

based on the subsystem profiles.

Just like the guest-level FRM shifts resources between

applications, the host-level FRM can take resources away

from subsystems and allow other guests to use them. The

required reconfiguration plan for conflict resolution in real-

time is stored in the global conflict resolution table. Conflict

resolution in this two-level approach is explained using the

example of fig. 2. It is assumed that task A, executed in virtual

machine VM1, has a specific worst-case requirement of a

resource, and consequently this resource share was assigned.

Since the actual resource usage of task A was significantly

below the reserved amount, the guest-level FRM switched to

another profile and made a fraction of the assigned resource

available to task B. In case of a resource conflict, task A

requires a larger resource share than left, the guest-level FRM

resolves the conflict by switching to profiles with a resource

distribution that fulfills task A’s requirements.

If the resource conflict was caused by a resource shift to

another guest system, the guest-level FRM cannot resolve it.

A share of the resource reserved for virtual machine VM1

could have been assigned to virtual machine VM2 by the host-

level FRM, and further assigned by VM2’s guest-level FRM to

task C. The host-level FRM informed VM1’s guest-level FRM

about this resource shift and the guest-level FRM noted this in

the local conflict resolution table. In case of a resource conflict

of task A, the guest-level FRM of VM1 informs the host-level

FRM, which prompts the guest-level FRM of VM2 to release

the supplemental resources. The guest-FRM of VM2 switches

the profile of task C to one of lower resource utilization,



the host-level FRM can accordingly switch the profiles of

VM2 and VM1 and inform the guest-level FRM of VM1 to

ultimately effect the conflict resolving profile switch for task

A. Such a conflict resolving with involvement of the host-level

FRM and consequences for more than one subsystem is called

global reconfiguration, as opposed to a local reconfiguration

which is accomplished by a single guest-level FRM.

The FRMs are in charge of determining the resource assign-

ments at runtime. The decision-making task is executed as the

idle task. If not enough idle time is left for it, the resource

distribution is not improved. Whether a reconfiguration has

positive effects or not depends on the ratio between overhead

of the reconfiguration process to benefit, which again is

dependent on the duration after which the reconfiguration has

to be undone. The duration depends on various stochastic

events which are caused by both the applications itself and the

environment. The FRM permanently gathers information about

the resource utilization and computes with the help of Dynamic

Bayesian Networks a likeliness of a change of the resource

requirements. The probabilistic analysis produces a mean time

of resource changes, which is used as an approximation of the

future [7]. The criticality is of great importance. Safety-critical

subsystems do not benefit from additional resources, since the

worst-case demand is assigned. Therefore, resources are not

shifted to safety-critical VMs, but shifted away from them to

less-critical VMs.

C. Scheduling

The most important resource is the central processing unit.

Our approach targets homogeneous multiprocessor systems.

System virtualization requires scheduling decisions on two

levels (hierarchical scheduling [9]): both the virtual machines

and the tasks within the VMs have to be scheduled. There

are two main approaches in the multiprocessor scheduling

domain. As opposed to partitioned scheduling, migration of

tasks among processors is possible under global scheduling

[10].

Partitioned scheduling is for multiple reasons the right

approach for system virtualization. It introduces in general a

lower overhead, since the task migration of global scheduling

results in overhead for synchronization and lost performance

due to cache misses [10]. Furthermore, the consolidation by

system virtualization runs entire software stacks consisting of

guest operating system and tasks within a virtual machine. It

is therefore a coarse-grained approach to reuse systems with

verified (or even certified) characteristics that should not be

split up. This is especially true for mixed-criticality systems,

since a mixing of criticality levels within a subsystem should

be avoided. Task migration is therefore neither desirable nor in

general technically possible across operating system borders.

Our approach allocates each safety-critical guest and

mission-critical guest to a dedicated processor. A processor

is not shared between multiple critical guests, but an addition

of non-critical guests is possible. If critical and non-critical

guests share a processor, the non-critical guests are scheduled

in background: whenever the critical guest is not running,

the idle processor is used to execute the non-critical guest.

Consequently, the execution of a system with n safety-critical

or mission-critical guests requires a hardware platform with at

least n processors. Contrary to task migration, the migration

of an entire virtual machine from one processor to another is

less problematic and in some situations of significant help, as

explicated in the following subsection Open Systems. To keep

the introduced mapping of critical guests to processors, only

non-critical guests are possibly migrated.

D. Open Systems

Open systems require dynamic scheduling algorithms and

an online acceptance test which validates the schedulability

whenever a new task enters the system [11]. The acceptance

test checks whether it is possible to add the arriving task to

the set of previously guaranteed tasks or not. Our approach

enables the addition of both entire guest systems and tasks

at runtime. Based on the fact that the FRM requires the

scheduling algorithm EDF, under which the processor may

be utilized up to 100% [8], a request to add a new real-time

task τk with a worst-case execution time of Ck and a period

of Tk to the existing task set of the subsystem of n tasks can

be accepted if and only if

Ck

Tk

+

n∑

i=1

Ci

Ti

≤ 1. (1)

The much more complex acceptance test for the addition of

an entire new guest system is depicted in fig. 3 (guest system

Gk, processors P1 to Pm, utilization U , criticality C, number

of critical guests nC). A criticality of one is set if the system

is non-critical and a higher value denotes a critical system.

More than three criticality levels are possible, even though

our example uses three levels.

(1) If there is a processor that is unused up to now, the new

guest system is assigned to this processor and the request is

accepted.

(2) If a non-critical guest system shall be added, it is

assigned to the processor with the lowest utilization. The

addition of a non-critical guest system does not endanger the

real-time tasks, since it is scheduled in background.

(3) If there is not a critical guest assigned to each processor,

the arriving guest system is assigned to the processor with the

lowest utilization among the processors without critical guest.

The schedulability of the new guest system is guaranteed,

since it shares the processor only with non-critical guests

and obtains therefore highest priority. It is possible that the

addition of the new guest implies an unbalanced distribution

of guest systems to processors. Therefore, non-critical guests

are possibly migrated.

(4) If a critical guest is assigned to each processor, but there

is at least one guest of lower criticality level, the arriving

guest system replaces the critical guest of lowest criticality.

This could again lead to an unbalanced distribution among the

processors, for which reason non-critical guests are migrated,

if this improves the distribution.
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If none of the checked conditions was valid, the arriving

guest system has to be rejected. Concerning step (4), it is

debatable whether a higher criticality level legitimates auto-

matically the replacement of an entire guest system. It depends

on the application domain and may be unjustified and in this

case has to be deactivated to favor system continuity. But there

are definitely situations in which this replacement makes sense,

for example when a mission-critical subsystem is replaced by

a safety-critical subsystem to protect device or environment at

the expense of an unsuccessful mission.

The host-level FRM performs the schedulability test for

subsystems. The FRM approach requires that both arriving

tasks and arriving subsystems provide profiles, if they have

to be scheduled under real-time constraints. Non-real-time

applications and subsystems can be accepted without profiles.

III. CONCLUSION

The presented resource management architecture focuses

on three basic concepts. System virtualization and its abil-

ity to reuse subsystems is a powerful technique to meet

the functionality and reliability requirements of increasingly

complex systems and has potential to support the migration

to multiprocessor platforms. Mixed-criticality systems and

virtualization’s integration of both multi-source software and

subsystems with very differing characteristics are a good fit,

and resource sharing is particularly promising for this combi-

nation. Open systems increase the flexibility enormously and

are of paramount importance for upcoming adaptive embedded

and cyber-physical systems.

By combining these three concepts, our approach provides a

flexible resource management architecture for the dynamically

varying resource requirements of integrated adaptive systems.

The two-level solution beyond virtual machine borders has

the potential to increase the resource utilization significantly

compared to static approaches. Multiple criticality levels are

handled appropriately to achieve two goals: the deterministic

behavior of critical missions is guaranteed and the service

quality of non-critical missions is possibly increased by shift-

ing resources to them. The resource assignment can adapt

to chances in application behavior and environment and the

addition of tasks and entire subsystems at runtime is possible.

The approach is currently under development. We integrate

it into our real-time hypervisor Proteus [12]. The implemen-

tation of our approach requires paravirtualization, since the

guest-level FRMs have to pass information to the hypervisor.

According to paravirtualization [13], modified guest operating

systems that are able to communicate with the hypervisor are

hosted. The requirement to modify the guest operating system

is outweighed by the advantages gained in terms of flexibility

of an explicit communication and cooperation of host and

guest.
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Department of Computer Engineering
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Abstract—A control system with distributed computing re-
sources should always guarantee the safe control of the plant.
In this contribution, the concept of control kernel is used for
that purpose. Two types of nodes with different resources are
defined: the powerful server node and the resource-constrained
light node. This architecture allows to split the control tasks
into two blocks. Those demanding strong computing resources
are allocated in the server nodes and those compelling tasks
required to ensure the safety of the controlled plant are allocated
in the light nodes. Resource limitations lead to control adaptation.
Two simple applications illustrate some of the benefits of this
architecture with one server node and one light node, even the
architecture can be extended to several nodes. In the first case, an
adaptive control is implemented in the server node, providing the
control algorithm to the light node, which is also able to compute
a local safe control action. In the second experiment, two different
control tasks requiring different resources are implemented in a
mobile robot control. To keep bounded the computing time at
the local level, the supervisor decides the time allocated to each
activity, providing the resulting controller to the light n ode.

I. I NTRODUCTION

Adaptive control requires, in a direct or indirect way, to
carry out a parameter estimation task to compute and update
the controller parameters [1]. In many cases, adaptation also
implies changes in the controller structure as well as past data
retrieval. All these tasks may require a lot of computation time,
not being suitable to be implemented in an environment with
limitation of resources.

Moreover, safety is a crucial issue in embedded control
systems [2], [3]. Independently of the number of variables
to be controlled by the same processor, the systems with
hard real time requirements must ensure the delivering of
control actions to all actuators. The quality of the delivered
signal may depend on the processing level: data, computational
algorithms and resources availability, among others, but always
must ensure the safe system operation [4]. Besides components
malfunction, in complex control systems, safety can be af-
fected by either the appearance of high priority aperiodic tasks,
the variation of the controlled system dynamics requiring
switching controllers, the missing of execution deadlinesand
messages or the variation of communications delays. In this
context, in order to run control applications in a safe mode,if
the control action has not been delivered on time by the current

controller, a back-up control action should be delivered atthe
time required by the process. This signal may be the result
of a simple calculation (but sufficiently safe), an emergency
shutdown or simply a safe response such as:keep unchanged.
Note that this operation can be also interpreted as a controller
switching.

There are many different approaches to design and imple-
ment embedded control systems, (see, for instance, [5], [6]).
In this work, the concept ofcontrol kernel [4] is used to
compute the control in two stages. This control architecture has
been implemented on multiple fully automated mobile vehicles
performing activities requiring coordination between them
to avoid obstacles, path tracking, scanning, data collection,
etc.. To do this one of the robots acting as the supervisor
calculates the trajectories to be followed by others, and adapts
to control environmental conditions, so the others can use their
computation time for data collection, processing products, or
other tasks, delegating the calculation of the trajectory to the
supervisor. In case of communication problems or excessive
computation time they can apply a safe control action.

The control kernel approach presents some novel properties
based on the isolation provided by the middleware implemen-
tation. Control tasks are moved to nodes where its executionis
more efficient, based on the observed availability of resources.
As a consequence, the architecture provides a transparent
framework to combine different controllers to be applied as
decided.

The control kernel architecture is summarized in the next
section. Then, the adaptive control algorithm is split intotwo
parts to be implemented in different nodes. The proposed
approach is tested on two simple experimental systems to
evaluate its possibilities. Some results are reported. Finally,
discussion is motivated based on these preliminary results.

II. CONTROL KERNEL ARCHITECTURE

Two node types can be defined, [7]: Light nodes and Service
nodes (see Figure 1). Service nodes are powerful embedded
computers running a full featured RTOS with complete net-
working with I/O capabilities. Light nodes are small and low
power consumption SoC processors with limited computing
and networking capabilities but complete I/O features.
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A control kernel middleware is implemented in both nodes,
[7]. In a distributed embedded control architecture, many of
these nodes can be interconnected in a wired or wireless
network, see Figure 2.
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Control Applications run in service nodes on top of a full
featured Control Kernel Middleware (CKM). This middleware
offers abstractions and functionalities related to control tasks
real time execution, access to sensors and actuators, and
communications management. The programming model of
CKM follows the concept of code delegation. In this sense,
a control application delegates the execution of some control
code to the CKM that provides computational resources to
execute it. Note that a control task, once inside the CKM, can
run on whatever service node of the DCS having access to the
communications space of the task.

Light nodes are a cost-effective solution in order to allocate
some computer power as close as possible to each actuator.
This is mandatory in order to reduce the nondeterminism in
the time delivering of the control action to the plant. Light
nodes run a retail of the CKM: the CKM Runtime. This
Runtime communicates with the CKM offering interfaces for
management, sensing and acting as well as code uploading. A
light node can be used as simple slave component to interface
DCS or it can run locally its own controllers in a cyclic
executive environment. Ensuring the delivery of an appropriate

control action guarantees the safety of the system, even if this
action is to stop the plant operation.

In a Control Application, any control task that has been
delegated to the CKM can be transferred to a light node
by uploading the native code page and asking for switching.
Controller pages can be uploaded through the CKM Runtime
without any interference with the controllers currently running
in the node. The uploaded pages are activated for running
by the switching mechanism provided by the CKM Runtime.
Attention should be paid to the system schedulability [8].

In particular, service nodes may include supervising and
optimizing control activities and light nodes can run activities
to drive the system to a safe position or run a simple algorithm
that guarantees a minimum of performance in the system at
any time. In this sense, Light node ensures that a control action
(u(k)) to be sent to the process always exists. This signal may
be just a safe action (disconnect, open, close, unchange, etc.)
or the result of a simple calculus (computed locally in the
node) (ul(k)) or it may be the signal calculated (us(k)) and
received from a service node.

III. A DAPTIVE CONTROL IMPLEMENTATION

A typical structure of adaptive control involves two loops.
The classical feedback loop is keeping the required perfor-
mance of the controlled plant, whereas the extra loop is in
charge of evaluating the quality of the control, performing
a parameter estimation algorithm and determining the actual
control to be applied to the plant. The actual control may be
also rather complex. The adaptation will update the controller
parameters and/or structure. By using the control kernel con-
cept, a slightly different alternative is proposed in this paper.
Two different control actions are computed (Figure 3). One is
very simple and fast, also requiring very few resources, and
it could be just a proportional action. It is areactive control.
For that, no data retrieval is necessary and the computing time
is very short. Unfortunately, the controlled plant behavior will
not be the best achievable with a more sophisticated controller,
but it must ensure the controlled plant stability. This action will
be provided by the light node in charge of the process.

The most desirable control action, as provided by the
adaptive controller which is allocated in the server node, will
be delivered if there are enough available resources (com-
munication bandwidth, computing time, memory accessibility
and so on). In the end, this control action will be based on a
part related to the current measurement (proportional action),
one part computed from the past measurements and errors
(the integral action) and one (or more) parts due to the error
prediction (derivative action). This is clearly illustrated in the
case of using a PID adaptive control [9].

In this case the light node will compute the local control
action based on a local gainKl (1)

ul(k) = Kle(k) (1)

where e(k) is the current error. Depending on the local
resources, this control law can be also based on afrozenPID
controller, provided by the service node but being updated



from time to time, not continuously. On the other hand, the
server node will evaluate (2)

us(k) = Ksek +K1e(k − 1) +K2e(k − 2) + u(k − 1) (2)

by applying the full control structure and adapting the con-
troller parameters.
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Fig. 3. Control switching.

Under normal operation, the actual control will beu(k) =
us(k). In the event of a disturbance (lack of communication,
lost of measurement, or just not enough time to compute and
adapt the controller parameters ({Ks,K1,K2}), the light node
will provide the local control action to both the plant and the
server, to be used in future computations, Figure 3.

IV. EXPERIMENTAL WORK

Due to space shortage, two simple applications are presented
to illustrate the possibilities of the control kernel approach. As
already mentioned, the same approach can be used for more
complex applications where there is a general coordination
and adaptation at the server level and a local reactive control.
First, an adaptive control of a simulated process sufferinghigh
priority communication interferences is evaluated. In this case,
the reactive local control is used if the adaptation takes too
much time. Then, for a mobile robot with two different tasks
(tracking a trajectory and avoiding obstacles) two different
control algorithms are used. They are implemented in the
server node, being combined in a weighted way according
to the operating conditions. The time allocated to each one is
adapted to keep constant the total computing time available
for this control. At the local node, the final control action is
computed and delivered.

A. Adaptive control under interferences

A simulated process is controlled to get fast response and
adaptation capabilities. The adaptive control algorithm is run
in the service node and any time a new controller is decided
it is sent to the local controller. In the event of a high priority
aperiodic task (acting as an interference to the control process
computation), the local node keeps running the last updated
controller or a simpler back-up one.

The process transfer function isG(s) = 66.777

s2+9.391s+77.16

and it is assumed invariant, the adaptation being motivated
by the appearance of an interference. It has been simulated
and evaluated in a Matlab/Simulink environment, using the
Truetime tool to evaluate the behavior, as shown in Figure

Fig. 4. Control kernel implementation and simulation.

4. A faster and less performing controller is implemented in
the local node to be directly applied to the plant if there is
no action coming from the server node. Initially, the plant is
controlled through the control action sent by the “complex”
controller implemented in the server node. Att = 6s, an
interference forces the control to be transferred to the basic
control implemented in the light node. The control is softer
and the plant response is degraded, as can be seen in Figure
5, during the time the interference is active. In the first
appearance (interval{6, 7}), the system is in the transient
response and the behavior is degraded. During the second
interval ({8 − 13}) a change in the reference happens and
the response is again degraded but as soon as the interference
disappears, the control is assumed by the service node and the
response is stabilized and improved. It is worth to note that
the basic controller does not include integral action, as can be
seen in the steady-state error appearing in the plant response
before t = 13s. Finally, the interference appears just at the
time of a reference change,t = 15s, and the plant response
is also degraded.

Fig. 5. Switching control due to interferences.



B. Controller adaptation due to goal changes

In the second experiment, a mobile robot is controlled
to follow a trajectory avoiding unexpected obstacles [10].
Both control algorithms are implemented in the server node.
The obstacle avoidance control algorithm involves heavier
computing load, reducing the time used to compute the control
action to follow the trajectory. The local controller sendsto
the server node the sensed information where the robot per-
formance are evaluated allowing the analysis of the operating
conditions and the selection of the most suitable controller by
the supervisor. A decision is taken about how much weight
should be allocated to each control algorithm. The combined
controller task is transferred to the light node.

The performance of the control is illustrated in Figure 6,
where there are two obstacles and a reference trajectory.

Fig. 6. Mobile robot: trajectory tracking and obstacles avoidance.

The goal is to keep bounded the computing time allocated
for the robot guidance. This is shown in the upper graphic
in Figure 7, where the computing time is almost constant. In
the lower graphic, the percentage of time devoted to evaluate
the obstacle avoidance control algorithm is shown. As it can
be seen, in the time intervals characterized by the cycles
{0−70}, {100−130}, {385−410}, no obstacles are detected
and all the computing time is allocated to follow the trajectory.
During the cycles in between, the obstacle starts to be detected
and the server node determines the use of the light node
to compute the control action to mainly avoid the obstacle,
degrading the trajectory tracking performance, (Figure 6).

Fig. 7. Time devoted to obstacle avoidance, keeping boundedthe total
computing time.

V. CONCLUSION

The use of the Control Kernel structure offers many ad-
vantages in allocating different control tasks according to the

operating conditions. Two types of nodes are defined: the
powerful server node, probably taken care of many control
loops and activities, and the resource limited light node,
attached to a process, able to handle some related control
loops. A number of these nodes can be connected in a network
to implement a distributed control system.

In particular, for adaptive control, the more computing
power demanding tasks are implemented in the server node
where the actual controller structure and parameters are com-
puted. This information is transferred to the local node, where
there is also a back-up controller to ensure the delivering of a
safety control action.

Two control scenarios have been considered. In the first
case, based on a simulated plant, the appearance of aperiodic
high priority tasks reduces the availability of computing time
and provokes the switching between the adaptive control
provided by the server and the basic control computed by
the light node (Figure 3), leading to a degrading of the
control performance (Figure 5). In the second experiment,
where trajectory tracking and obstacle avoidance should be
accomplished, the scenario evaluation and the selection ofthe
control algorithm to be used are decided at the server node
level, the light node implementing the controller decided by
the supervisor.

Many other options are open with this control kernel struc-
ture and it is a matter of further research and experimentation.
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[7] R. Simarro, J. Coronel, J.E. Simó and J.F. Blanes. ”Hierarchical and
Distributed Embedded Control Kernel.”XVIIth IFAC World Congress.
Seoul, Korea, 2008.

[8] A. Crespo, P. Albertos, P. Balbastre, M. Vallés, M. Lluesma and J.E.
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”Embedded Implementation of Mobile Robots Control.”17th IFAC World
Congress. Seoul, Korea, 2008. 6821-6826.



SAFER: System-level Architecture for Failure Evasion in Real-time Applications

Junsung Kim, Ragunathan (Raj) Rajkumar
Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA, USA
{junsungk, raj}@ece.cmu.edu

Markus Jochim
General Motors R&D

30500 Mound Rd., Warren, MI, USA
markus.jochim@gm.com

Abstract

We propose a layer called SAFER (System-level Archi-

tecture for Failure Evasion in Real-time applications) to

incorporate configurable task-level fault-tolerance features

such as Hot Standby and Cold Standby in order to tolerate

fail-stop processor and task failures for distributed embed-

ded real-time systems. To detect such failures, SAFER mon-

itors the health status and state information of each task

and broadcasts the information. When a failure is detected,

SAFER reconfigures the system to recover failed processors

and tasks. SAFER has been implemented on Ubuntu 10.04

LTS and deployed on Boss, an award-winning driverless

vehicle developed at CMU. We provide preliminary mea-

surements using one of the autonomous driving simulation

scenarios used during the 2007 DARPA Urban Challenge.

1. Introduction

Advances in distributed embedded real-time systems

have enabled a variety of different applications such as sen-

sor networks, industrial control systems, avionic systems

and automotive systems which are tightly coupled with the

physical world. Such applications need to satisfy strict

timing constraints based on operating characteristics, mak-

ing timing guarantees an essential requirement. Further-

more, system reliability can be of high importance for some

safety-critical applications that interact with the physical

world. However, a trend towards increasing complexity in

distributed embedded real-time systems poses challenges in

designing a reliable system.

The conventional way of improving reliability has been

adding redundant hardware. However, this approach be-

comes less attractive to many applications because the

amount of necessary hardware multiplies as the size of the

system increases. It is also not consistent with the grow-

ing needs of flexible system design. Therefore, we pro-

pose a layer called SAFER (System-level Architecture for

Failure Evasion in Real-time applications) to incorporate

configurable task-level fault-tolerance features such as Hot

Standby and Cold Standby in order to tolerate fail-stop pro-

cessor failures and task failures for distributed embedded

real-time systems in a timely manner. To detect such fail-

ures, SAFER monitors the health status and state informa-

tion of each task and broadcasts the information. When a

failure is detected, SAFER reconfigures the system to re-

cover failed processors and tasks using task-level replica-

tion techniques.

SAFER targets multiple goals. Most importantly, no

single point of failure is permitted. In other words, a

task/processor failure should not lead to system failure.

Failure recovery within a guaranteed duration should also

be achieved. Embedded systems are usually tightly con-

nected to the physical world. In such a case, failure recov-

ery without predictable timing behavior could return unpre-

dictable results in the physical world.

Apart from the two goals above, predictive fault dis-

covery and notification, resource isolation, ease of use

of abstraction, ease of application development, and sen-

sor/actuator control are other factors considered in the de-

sign of SAFER.

The rest of this paper is organized as follows. Section

2 describes the architecture of SAFER and its implemen-

tation. Section 3 presents preliminary results measured on

Boss, an award-winning autonomous vehicle developed at

CMU. Section 4 presents the related work, and we conclude

in Section 5.

2. The SAFER Architecture

The SAFER layer is composed of SAFER daemons (one

on each processor) and a library offering a task execution

environment. The library enables any task launched on the

SAFER layer to be periodically executed (with reconfig-

urable parameters). The daemons have a master-slave ar-

chitecture [2], and the master SAFER daemon controls the

slave SAFER daemons responsible for managing tasks on

each node1 and monitoring its health status. The reconfig-

urable parameters for each task are given to the task library

when the task is launched by a SAFER daemon. For the

underlying communication layer, an inter-process commu-

nication primitive such as IPC [11] and SimpleComms [12]

can be used. The overall architecture of the SAFER layer is

illustrated in Figure 1.

The SAFER layer utilizes two main features to avoid sys-

tem failure in the presence of fail-stop processor or task

failures. The SAFER layer supports task-level replication

techniques such as Hot Standby and Cold Standby, where

1In this paper, node is interchangeably used with processor.
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Figure 1. The overall architecture of SAFER

selective tasks on failed processors are recovered on other

live processors. Replicas must therefore be placed on inde-

pendent nodes, a constraint that is referred to as a placement

constraint [6]. The major benefit of using selective task-

level recovery is its flexibility. Since we can selectively re-

cover tasks, we can increase the reliability of more critical

tasks by adding more Hot Standbys/Cold Standbys for those

critical tasks. We can also efficiently manage the available

computing resources by not replicating less-critical tasks,

thus enabling an affordable solution.

The second feature is the fail-over of the master SAFER

daemon. Since the SAFER daemons have a master-slave

relationship and manage tasks on each machine, the master

SAFER daemon becomes a single point of failure. Hence,

when the master SAFER daemon fails, one of the slave

SAFER daemons will be promoted to become the master

SAFER daemon. This can be done using a group member-

ship protocol [4, 10]. Assuming a synchronous communi-

cation network2 [4], the membership protocol of SAFER is

different from the existing work in the sense that (i) we pro-

vide predictable timing behavior and (ii) the recovery dura-

tion of the SAFER daemons is deterministic. In our mem-

bership protocol, all SAFER daemons including the master

and the slaves broadcast messages to each other. The mas-

ter can detect the failures of a slave by the lack of heartbeat

messages. The master SAFER daemon will command as

necessary the slave SAFER daemons on live processors to

recover any failed tasks. The death of the master can also

be detected by the slaves due to the absence of heartbeats,

and one of the slave SAFER daemon will be promoted to

become the master by following a predetermined sequence

of the slave SAFER daemons.

2.1. The SAFER Daemon

As illustrated in Figure 1, a SAFER daemon is com-

posed of a health monitor, status manager, time synchro-

nization manager, mapping manager and process launcher.

2The failure model of network is beyond the scope of this paper. We
assume any packet eventually arrives at the destination.

The health monitor and status manager are responsible for

monitoring the health status of the other processors and for

changing the local node’s role between the master and the

slave. The time synchronization module offers a global time

service. The mapping manager and process launcher can

automatically deploy tasks on the nodes running a SAFER

daemon.

2.1.1. Health Monitor and Status Manager

The health monitor periodically sends heartbeat signals to

the other nodes in the system and monitors the health status

of the other daemons and their processors. Therefore, the

health monitor enables the SAFER daemons to agree upon

the availability of each node. The period of heartbeat sig-

nals is configurable, and the list of current running tasks is

added to the heartbeat signal and is broadcast to the other

nodes. The status manager watches the current status of

tasks running on its own node and notifies the failure of any

task if there is a task failure (say due to a segmentation fault)

by capturing the OS signal.

2.1.2. Time Synchronization Manager

The SAFER layer offers a global time service using a ser-

vice similar to NTP [8] used for time synchronization over

the Internet. The master SAFER daemon behaves as a time

server, and each slave becomes a client for this service and

listens to messages from the time server. This service is

essential to synchronize all the daemons so that the failure

recovery occurs within the given timing requirement using

a proper offset between the primary task and its Hot/Cold

Standbys. This also enables the timing enforcer of the

SAFER library to have less penalty in resource scheduling.

2.1.3. Process Mapping Manager and Launcher

The process mapping manager and launcher are responsi-

ble for automatically deploying tasks on the nodes of the

SAFER layer based on a given system configuration file.

The system configuration file includes information about

where tasks are allocated and how many resources tasks

demand. It also contains the location of the primary and

Hot/Cold Standbys if the tasks are selected to have back-

ups. The process mapping manager maintains the informa-

tion from the system configuration file and updates when-

ever the information changes. Changes to this informa-

tion can occur due to processor failures, demand changes,

task completions, and so forth. Based on the up-to-date in-

formation from the process mapping manager, the process

launcher loads tasks on the different processors. The pro-

cess mapping manager and launcher can be connected to a

user-interface application such that the application provides

a global view of the system with the current health status

of each task on each node. As an example, the information

from the process mapping manager and launcher are visu-

alized on TROCS [7], the operator interface of Boss [13].
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2.2. The SAFER Library

The SAFER library is a task execution environment com-

posed of a status updater, process handler, timing enforcer

and network abstraction. The user threads developed by ap-

plication developers will run on the SAFER library.

2.2.1. Status Updater

The status updater of the SAFER library supports task-level

replication techniques by managing state information be-

tween the primary and its Hot/Cold Standbys. The role of

status updater changes based on whether a task it monitors

is a primary or a backup. The backups subscribe to the pri-

mary, and the primary publishes its status. They use the

Publish/Subscribe model. The status updater of the primary

task periodically transfers its internal state information to

its Hot/Cold Standbys, where the update period is config-

urable. The status updater at Cold Standby updates the state

information coming from the primary in case the primary

fails. The status updater can also be used as heartbeat sig-

nals by Hot/Cold Standbys. This could be useful when the

period of the state updater is shorter than the update period

of the SAFER daemon. This architecture is also depicted in

Figure 2.

2.2.2. Process Handler

The process handler of the SAFER library promotes a

backup to be the primary when it receives the corresponding

request from the master SAFER daemon. When a backup is

promoted, the new primary starts generating outputs for use

and confirms its promotion to the master SAFER daemon.

It must be noted that a Hot Standby is always running and

its outputs are filtered by the network abstraction under the

control of the process handler.

2.2.3. Timing Enforcer

The timing enforcer of the SAFER library enables tasks to

have guaranteed and protected access to required processing

resources in a timely manner based on Linux/RK [9]. In

Linux/RK, a shared resource is reserved and enforced by the

following parameters: computation time C every T time-

units within a deadline D. For the SAFER library, this CPU

reservation model in Linux/RK is utilized.

2.3. Failure Detection and Recovery

Heartbeat signals from the health monitor of each

SAFER daemon will be used for detecting processor fail-

ures. Since we have assumed a synchronous network, we

have defined a time delay d to represent the maximum

network delay of the heartbeat signal packets. The mas-

ter SAFER daemon will decide the death of a processor

unless it hears a heartbeat signal from a processor within

d + Theartbeat
3, where Theartbeat is the interval between

two consecutive heartbeat signals. We call this failure de-

tection scheme as time-based detection. A task failure may

be directly detected by the status manager of the SAFER

daemon by catching a signal generated by the OS when a

task has unexpectedly failed. Then, the mapping manager

of the master SAFER daemon will be notified by the status

manager, and an appropriate recovery will be initiated. We

name this failure detection scheme as event-driven detec-

tion. It should be noted that event-driven detection cannot

be used for processor failure detection.

The recovery from a failure is done by using task-

level replication techniques such as Hot Standby and Cold

Standby. A Hot Standby of a task is a replicated task run-

ning concurrently with its primary. With no failure, a Hot

Standby receives the same input as the primary, and the user

threads of the Hot Standby do what they are supposed to do

except that the outputs from them are filtered by the network

abstraction4. In the presence of any task failure detected by

the master SAFER daemon, the daemon will send a com-

mand to the SAFER daemons with the Hot Standbys for the

failed tasks. Then, the process handler of each Hot Standby

will receive the command to promote itself to be the pri-

mary. A similar process is also applicable to the recovery

operation for Cold Standbys. One prime difference is that

task needs to be launched first.

The Cold Standby of a task is a dormant binary in mem-

ory, triggered only by the failure of its primary. Without

a failure, a Cold Standby periodically receives and stores

the state information of the primary coming from the status

updater of the primary. The disadvantage of using a Cold

Standby is that the recovery latency could be long when

there is a failure detected by the master SAFER daemon.

Conversely, since it runs only on demand, it saves comput-

ing resources in the absence of failures. We are extending

Linux/RK to minimize the latency of recovery.

3Increasing the decision boundary can be one way of extending the
assumption beyond the synchronous network. For example, many wireless
networks try to send a packet n times in order to transfer it reliably, where
n is a positive integer greater than 1. Then, the decision boundary can be
adjusted to d+ nTheartbeat.

4We do not generate outputs from Hot Standbys because we assume the
fail-stop failure model. To relax the failure assumption model so that we
can check if the outputs from the primary are valid, the network abstraction
should be modified to compare the results of the primary with the results
of its Hot Standbys.



Task Period Standby Detection Recovery

BehaviorTask 10ms Cold 22ms 12ms

ControllerTask 10ms Hot 27ms 9ms

LocalPlannerTask 100ms Cold 23ms 66ms

Planner3DTask first 100ms Hot 14ms 28ms

Planner3DTask second 100ms Hot 23ms 66ms

Table 1. Evaluation on time-based detection

3. Preliminary Evaluation

SAFER is implemented on Ubuntu 10.04.3 LTS and

deployed on Boss which won 2007 DARPA Urban Chal-

lenge [13]. To measure the preliminary performance of the

SAFER layer with the presence of a failure, we have built

a cluster composed of three Intel Quad-Core machines. We

ran a scenario used to test Boss during the competition in

2007 without the perception system. The artificial intelli-

gence algorithms for behavior and planning along with ve-

hicle control were run on the cluster. By injecting processor

failures through a script, we measured fault detection time

and fault recovery time for different tasks with different pe-

riods. The fault detection time is the time duration between

when a failure happens and when the master SAFER dae-

mon detects the failure. The fault recovery time is the time

duration between when the master SAFER daemon detects

the failure and when the failed task is completely recovered.

Table 1 captures one-time measurements when time-

based detection is used. From the data, it is seen that the

failure detection time depends on the period of the master

SAFER daemon, which is 20ms. Most latencies are longer

than 20ms due to d, the network time delay of 10ms. The

recovery time of a task is related to its task period because

the process handler of its Hot/Cold Standby should be able

to receive the command from the master SAFER daemon.

Table 2 shows the measurements when event-driven detec-

tion is used. Since the local SAFER daemon detects local

task failure, the failure detection time is reduced.

4. Related Work

Fault-tolerant distributed embedded systems have been

extensively studied in [4, 10, 5, 1]. One clear distinc-

tion between the existing work and SAFER is that SAFER

provides the framework to support timely failure recovery

in a generalized setting. Fault-tolerant scheduling in dis-

tributed embedded real-time systems has also been widely

researched in [3, 6], which can be potentially used for the

inputs to SAFER as a configuration file.

5. Conclusion

We have proposed a layer called SAFER (System-level

Architecture for Failure Evasion in Real-time applications)

to incorporate configurable task-level fault-tolerance fea-

tures using Hot Standbys and Cold Standbys in order to

tolerate fail-stop processor and task failures for distributed

embedded real-time systems. SAFER is implemented on

Ubuntu 10.04 LTS and integrated into an autonomous vehi-

cle developed at CMU. We have presented initial measure-

Task Period Standby Detection Recovery

BehaviorTask 10ms Cold 2ms 9ms

ControllerTask 10ms Hot 4ms 2ms

LocalPlannerTask 100ms Cold 6ms 12ms

Planner3DTask first 100ms Hot 3ms 42ms

Planner3DTask second 100ms Hot 4ms 92ms

Table 2. Evaluation on event-driven detection

ments using one of the driving simulation scenarios used

during the DARPA Urban Challenge. Future work to be

done includes supporting the graceful degradation based on

load and resource changes. A comprehensive scheduling

framework of the primary and its backups can also be inte-

grated into SAFER.
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Abstract—This paper discusses network-wide energy optimiza-

tion of embedded systems which can adapt by switching configu-

rations. We model applications and their task chains in a net-

work of embedded devices, including sleep modes and change of 

configuration, which provides a basic adaptation mechanism. We 

present a formal model of the energy consumption for such sys-

tems and apply it to automotive embedded systems. In particular, 

we develop new potential for network-wide energy savings as well 

as optimizations for adaptive systems. For instance, we show that 

non-optimal configurations may lead to a globally optimal system 

setup, if a system adapts regularly. 

Keywords - embedded systems, energy-efficiency, network-wide 

optimization, adaptive systems, automotive 

I.  INTRODUCTION 
This paper discusses energy optimization of embedded sys-

tems which can adapt and switch configurations. While there is 
considerable work on energy efficiency for embedded systems, 
we show that there is a need to model and optimize the net-
work-wide energy consumption of such embedded systems. 

We focus on automotive systems which consist of a number 
of electronic control units (ECUs), connected via a communi-
cation network. Applications (e.g. collision warning) consist of 
a chain of tasks, residing on different electronic control units. 
For each task chain (i.e. application) different configurations 
are possible. We consider the change between different appli-
cations (and their corresponding configuration) at runtime as an 
essential adaptation mechanism. The change between applica-
tions and their active periods are usage dependent.  

In our setting, ECUs have to execute real-time tasks. Sys-
tems with hard real-time constraints must meet the given dead-
lines. We assume that the individual tasks are given by worst-
case execution time (WCET), their deadline, cycle time and the 
dependency on other tasks including the necessary communica-
tion. The vehicle applications are typically decentralized, i.e. 
parts of application software (tasks) are executed at different 
ECUs. This also means that different task allocations are possi-
ble for vehicle software.  

Most energy saving technologies optimize the energy con-
sumption of one component (i.e. CPU), mostly at runtime. 
Examples are dynamic hardware resource management and 
dynamic voltage/frequency scaling. Other methods are opti-
mizing the efficient use of the resources, such as energy-
efficient task scheduling [1, 2] or trade-offs, e.g. reducing qual-
ity of service to decrease energy consumption [3, 4].  

A lot of research focuses on the reduction of system-wide en-
ergy consumption, which means ECU-wide in this paper. For 
instance dynamic power management (DPM), which deactivate 
unused components of a system to save energy (e.g. [5]). 
[6] uses dynamic voltage scaling and DPM to reduce energy 
consumption system-wide and considers the energy consump-
tion of peripherals (e.g. memory) within standby and activa-
tion/deactivation time of the processor. A software framework 
to use the different hardware energy-saving techniques and find 
a trade-off between those is presented in [7]. This optimization 
aims to reduce system-wide energy consumption for different 
applications during runtime, but the energy for reconfiguration 
is neglected. The possibilities of network-wide energy optimi-
zation are not used in these works. A network-wide optimiza-
tion is considered within wireless sensor networks, but with the 
focus of energy efficient message routing.  

The intention of this paper is to show the potentials and 
challenges of network-wide energy optimization of adaptive 
systems by an analytical model. In particular, we show by 
example that optimizations for single applications (task chains) 
may not result in network-wide optimal combination of sever-
al, alternating applications. We also show cases where addi-
tional hardware may reduce the energy consumption. Our 
model is based on the analysis of the energy consumption of 
the individual components and their dependencies. In this pa-
per, we use existing data of their energy consumption. Detailed 
measurements for specific components and activities like net-
working are non-trivial and go beyond the scope of this paper. 

 

II. NETWORK-WIDE ENERGY OPTIMIZATION 
In this section, we discuss factors and challenges to model 

energy consumption. Besides the CPU power consumption, we 
consider the energy to communicate via a network and the 
energy during sleep modes of components. This hardware may 
also have additional impact on the energy consumption of a 
system. An example is the calibration time of sensors, which is 
necessary to assure accurate results. During that time the ECU 
has to process a neglectable workload, but changing to sleep 
mode is typically not possible. In this case, an ECU-wide opti-
mization is difficult, because the local tasks need calibrated 
sensors. Network-wide optimization is able to allocate addi-
tional tasks to that hardware to use the unused ECU resources 
during calibration time.  

The challenge of network-wide optimization is to model the 
energy consumers and their dependencies correctly. Assuming 



a specific set of task chains, one for each application, we aim to 
find the right assignment of tasks to ECUs and the timing of 
sleep modes to ensure lowest energy consumption. This is a 
challenge because of the large number of parameters and as-
pects. A vehicle may have hundreds of functions and even a 
single hardware has different energy modes. As an example, 
[8] has five different energy modes. 

We consider adaptive systems where the active applica-
tions, expressed as task chains, may vary over time. For each 
set of active task chains, we have several possible configura-
tions and one has to be selected. Alternating task chains may 
then switch between different active task chains or just between 
different configurations of the same task chains.  

Changing task chains means activating and deactivating 
tasks and, if necessary, changing the network configuration, 
which both consume energy.  

Furthermore, the energy consumption depends on the usage 
of the system. If a configuration is used for a very short time, 
energy-efficiency is less critical w.r.t. the overall system.  

III. MODELLING ENERGY CONSUMPTION 
In this section, we present a model for adaptive, network 

wide energy consumption of embedded systems. A simple, 
running example shall show the energy consumption of differ-
ent configurations and the advantages of network-wide and 
usage behavior dependent optimization. The illustrated system 
is part of a vehicle application which changes its set of task 
chains (i.e. the applications) depending on external conditions. 
To simplify the example, the system just has one active task 
chain at any time. Tasks are executable at every node, except 
they need local resources (i.e. sensors). For simplicity, we 
assume that the execution time only depends on CPU frequen-
cy and it is assumed that a valid schedule can be found. 

In our case study, the first application is object identifica-
tion using radar sensors, which is used for adaptive cruise con-
trol (ACC). ACC uses intelligent object detection (e.g. for 
obstacles). The ACC task chain uses two radar sensor-ECUs 
and two ECUs which execute the necessary tasks (T) and 
communicate using a network. Figure 1 shows a configuration 
(C1a) and its hardware and the tasks with its dependencies. 
Task T0 captures the radar data and preprocess these. Task T1 
identifies objects recorded by the radar sensor and task T2 
compares the results of the object identification. Tasks T1 and 
T2 are used in two instances at the two sensors in the example. 
Task T3 is part of an application specific function, e.g. ACC, 
which is out of scope of this case study. 

 

 
Figure 1: Task chain ACC - Configuration C1a 

 
Assuming ACC is not usable with a vehicle speed below 

30 km/h the radar sensor is used for collision warning in this 
case. Thus we alternate between ACC and the second applica-
tion, collision warning, in this example. The collision warning 
application which is less safety critical uses just one radar sen-

sor. This task assembled as configuration (C2a) is shown in 
Figure 2. 

 

 
Figure 2: Task chain Collision Warn. - Configuration C2 

 
The tasks and the communication between these have spe-

cific parameters. We assume the worst-case execution time at a 
specific frequency is convertable to the task execution time te at 
frequency fte. The cycle time tc and the necessary communica-
tion per cycle ct between tasks are also shown in Table 1. 

 

Table 1: Task properties 
Task T0 T1 T2 T3 

Worst Case 

Execution time 

10 ms 

@ 82 MHz 

15 ms 

@ 82 MHz 

10 ms 

@ 132 MHz 

n/a 

Cycle time 100 ms 100 ms 100 ms n/a 

Communication 

per cycle 

 T0->T1: 

192 kBit  

T1->T2: 

32 kBit 

T2->T3: 

16 kBit  

 

 

A. Modeling Energy-Consumers and System Assumptions 
In this section, we detail the energy consumers of our case 

study. Hardware has a processing speed fhw and dependent 
power consumption Phw. Highly energy efficient processors 
exist such as [8], which consumes 180 µA/MHz. Other embed-
ded hardware without energy-awareness such as [9] consumes 
about 5 mA/MHz. Assuming a medium energy-efficient hard-
ware the sensor hardware, which is used here, consumes 
800 µA/MHz. The sensor-ECUs work with 82 MHz and a 
supply voltage of 1.65 V, which result in a power consumption 
of 108 mW. We assume a more efficient ECU hardware. This 
needs 500 µA/MHz and consumes 109 mW at 132 MHz and 
1.65 V supply voltage. Both components are able to change to 
a sleep mode, during which the hardware consumes power Ps 
of 82.5 µW (50 µA). The change to the sleep mode itself and 
back to normal consumes time tcs, which is supposed to be 5 ms 
with the power Pcs of 108 mW respectively the energy Ecs of 
0.54 mWs. The number of sleep ns depends on the tasks’ cycle 
time. 

Communication also needs energy for the data transport. 
Within safety critical systems often time-triggered communica-
tion protocols such as FlexRay are used, which need synchro-
nized nodes and a common known communication schedule. 
This means bandwidth is reserved and a reconfiguration is 
necessary to reallocate bandwidth. In the specific case of time-
triggered communication not only sender and receiver need to 
be reconfigured, but all nodes within the network need to be 
reconfigured. We consider here a FlexRay communication 
controller [10] and the corresponding transceiver [11], for 
which we can estimate energy consumption as follows. The 
FlexRay controller has a maximum power consumption of 
165 mW and the FlexRay transceiver 175 mW (normal mode). 
Using the maximum bandwidth of 10 MBit/s a bit consumes 
34 nWs/Bit per node, which is a very rough estimation, be-
cause of static energy consumers such as for synchronization. 



Due to this and for simplicity we estimate a fixed (not per 
node) energy consumption of 30 nWs/Bit in total within our 
case study. 

In section III.C the energy for changing configuration is 
considered. We assume an activation/deactivation of one task 
consumes 1 ms and with that a task activation/deactivation 
energy Etc of 0.108 mWs, which includes the loading of soft-
ware into memory and ECU-internal configurations. If the 
whole ECU changes to sleep mode, just the energy for chang-
ing to sleep mode and back is considered. The reconfiguration 
of the network consumes energy at every node’s communica-
tion controller as discussed above. [12] measured the switch of 
a communication schedule including acknowledgement of the 
nodes which is 80 ms. The energy to change the network con-
figuration Enc within this case study (2 sensor-ECUs and 
2 ECUs) is then 108.8 mWs per change. The number of task 
changes ntc, network changes nnc and ECU mode changes nmc 
can easily be obtained from the configurations. A further aspect 
is the different active times of the applications C1 and C2, here 
C1 is 10% and C2 90% of time activated. This could be the 
case for a vehicle, which is commonly used within cities, e.g. 
taxis. The number of configuration changes is assumed to be 
60 per hour, e.g. every minute. 

The calibration time of the radar sensor (as discussed at 
section II) is assumed to be 5 ms. This calibration is necessary 
after every sleep mode and means a restart 5 ms before the first 
(valid) calculation can be done. 

To simplify the calculation, the costs for communication 
within an ECU are neglected. An ECU just has one sleep mode 
and a fixed cost for mode switching. The storing and buffering 
of data is not considered, that means memory costs are neglect-
ed. The cost for communication is assumed as fixed energy 
consumption per transferred bit; no overhead costs (e.g. error 
checks, sync, keep-alive messages, routing, etc) are analyzed in 
detail. Sensors are allowed for deactivation, but after activation 
a specific time period (calibration time) is necessary before a 
sensor is usable. It is considered that sensor-ECUs and ECUs 
change to sleep mode after task execution.  

B. Finding Optimal Configurations 
In this section we present the model to estimate the energy 

consumption of an application and calculate the energy con-
sumption of different configurations, but without considering 
the change of configurations. The energy consumption for a 
specific configuration is modeled with the summation of the 
energy consumptions of task executions, sleep periods with the 
associated mode changes and communications. The energy 
consumption is calculated over a common multiple of all task 
periods tmult, which also determines the number of sleeps ns. 
The equations to calculate the total energy consumption of a 
configuration are shown at equation (1-4). 

ܧ  ൌ ∑ ሺܧ௧௦௦  ௦௦ሻே.  ா௦ୀܧ          (1)ܧ

with ܧ୲ୟୱ୩ୱ ൌ ௧௦ݐ · ܲ௪ ൌ ቆ∑ ௧,·,௧,
்௦௦ ௧ௗ௪ୀ ቇ ௧ೠೢ · ܲ௪  (2) 

and 
௦௦ܧ  ൌ ሺሺݐ௨௧ െ ௧௦௦ݐ  െ ݊௦ · ௦ሻݐ · ௦ܲሻ  ݊௦ ·  ௦    (3)ܧ

and ܧ ൌ ∑ ሺܿ௧ · ሻே. ௧௪௨௧ୀܧ           (4) 

 
To optimize the energy consumption of configuration C1a (see 
Figure 1), the task allocation is changed. One possible configu-
ration C1b is shown in Figure 3, which reduces the energy 
consumption by 2.80%. This is a result of the lower energy 
consumption of ECU 1 compared to the sensor-ECUs. Figure 4 
shows configuration C1c, which reduces the energy consump-
tion further by 2.98%. This energy saving is a result of taking 
into account the calibration times of the sensors. Comparing 
configuration C1a and C1c an energy saving of 5.78% is 
reached. This shows the potential of network-wide optimiza-
tion.  

The application “collision warning” has the configuration 
C2 (Figure 2). The calculated energy consumptions of all the 
configurations are shown in detail in Table 2.  

 

 
Figure 3: Task chain ACC - Configuration C1b 

 

 
Figure 4: Task chain ACC - Configuration C1c 

 

Table 2: Energy consumption [mWs] of the configurations 
Configuration C1a C1b C1c C2 

Task Execution 75.83 63.66 76.96 32.47 

Sleep Periods  

+ 

Mode Change 

0.017 

+ 

16.20 

0.019 

+ 

16.20 

0.018 

+ 

10.80 

0.022 

+ 

5.40 

Data Transport 2.40 12.00 1.44 0.96 

Total 94.45 91.88 89.21 38.85 

 

C. Optimal Configurations for Alternating Configurations 
In this section we show that the combination of C1a and C2 

results in a more energy efficient system instead of the combi-
nation of the most energy efficient configurations C1c and C2.  

The vehicle may change task chains to execute different 
functions or to be more energy efficient. Nevertheless changing 
ECU and network configuration also consumes energy as dis-
cussed in Section III.A. Another aspect is the length of stay 
within a configuration and the number of changes ncc during a 
time period. Equations (5) and (6) show the calculation of the 
total energy consumption including energy for configuration 
changes Ecc. Factors ߙ and ߚ represent the percentage within 
the configurations. 

௧௧ܧ  ൌ ൫ܧ, · ߙ  ܧ, · ൯ߚ  ݊ ·        (5)ܧ



 
with ܧ ൌ ௧ܧ · ݊௧  ܧ · ݊  ௦ܧ · ݊      (6) 

 
Combining the C1c and C2, which are individually the en-

ergy efficient options, results in a set of alternating configura-
tions as shown in Figure 5. (Note that the two alternating task 
chains are shown in one figure, even though not executed sim-
ultaneously.)  

However, the set of configurations C1a and C2 as shown at 
Figure 6 is more energy efficient (2.89%), because of the big-
ger similarity of the configurations. In detail, the set “C1c+C2” 
has to (de)activate one task, change mode of sensor-ECU 1 and 
reconfigure the network. (Note that communication slot of 
task T2 is not usable of task T1, because of different 
size/bandwidth.) Configuration set “C1a+C2” has to change 
sensor-ECU 2 and ECU 1 to sleep mode and back, but no task 
(de)activation and no network reconfiguration. Table 3 shows 
the energy consumptions of these two sets. In this particular 
case, changing the network dominates the additional energy 
consumption. The small number of tasks has no real influence 
to the energy consumption which is not the case for larger 
systems. 

This shows that a combination of most energy efficient 
configurations may lead to sub-optimal energy efficiency. The 
reasons are the energy necessary to change configurations and 
the usage profile. 

 

 
Figure 5: Alternating configurations (C1c+C2) 

(not active at the same time) 

 

 
Figure 6: Optimal set of configuration (C1a+C2), which 

alternate (not active at the same time) 
 

Table 3: Total energy consumption [mWs] of the sets of 

configurations 
Configuration Without energy for 

configuration changes 
With energy for con-

figuration changes

C1c + C2 43.89 45.71

C1a + C2 44.41 44.43 

 

IV. CONCLUSION AND FURTHER STEPS 
This paper has discussed and analyzed the energy con-

sumption of decentralized adaptive systems. Based on exam-
ples the potentials of network-wide optimization and the effects 
of configuration to the total energy consumption were shown. 

The goal was to present the potentials and challenges of net-
work-wide energy optimization of adaptive systems. We have 
shown that different configurations of a single task chain may 
have considerable differences in energy consumption of 5.78%. 
In case of alternating task chains, locally optimal configura-
tions do not result in globally optimal configuration. In our 
model the energy consumption difference due to this is 2.89%. 
The reasons are energy consumption for configuration changes 
and the usage profile of the system. Similarly, adding addition-
al hardware may improve energy efficiency. This results in 
further research challenges and also new energy saving possi-
bilities. 

Our model is based on existing data on energy consump-
tion. Validating our model by measurements would require 
highly detailed measurements (in terms of time and functional 
isolation) and is not covered in this paper. 

Our approach and first results allow one to design the con-
figuration depending on the use of the car to be more energy 
efficient. E.g. the configuration for taxis, which are most time 
in cities and below 60 km/h, may differ from normal cars. 
Another possibility is the calculation of different valid configu-
rations, which are only energy-efficient for a specific kind of 
usage. The decision, which set of configuration is used, is done 
during vehicle runtime, e.g. based on the route of the car, 
which is known due to the navigation system. 
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Abstract— This paper describes an approach towards model-
driven development of SOA-based Driver Assistance Systems. In 
the field of assistance systems for truck and trailer combinations 
Service-oriented Architecture (SOA) is a promising approach to 
handle the heterogeneity and the high degree of distribution of 
these systems. Through connecting or disconnecting trailers the 
system is very likely to change at runtime which sets up the 
demand of runtime adaption. This paper illustrates a process 
model to use SoaML for modeling the components and 
architectures of these systems. Based on these models, model-
driven runtime adaption can be carried out.  

Keywords-component; Embedded Systems, Driver Assistance 
Systems, Runtime Adaption, Process Model, Service-oriented 
Architecture (SOA), SOMA  

I.  INTRODUCTION 

Modern Driver Assistance Systems (DAS) are supporting the 
driver in many situations. They, for example, assist the driver 
while changing lanes or influence the brakes of a car in order 
to keep it on the track. A new category of DAS are systems 
which support the driver backing up articulated vehicles. From 
an architectural point of view these systems are quite special. 
This is mainly because the components needed are distributed 
over at least two separate units. The connection of these units 
is not permanent and one pulling vehicle may be hooked-up to 
several different trailers over time. An example of these 
systems is the visual assistance as shown in Figure 1. The idea 
is to calculate the trajectories of the trailer and the overall 
vehicle and to overlay these on the picture of a rear view 
camera mounted on the trailer [16]. In order to do so, the 
steering angle and the angle between truck and trailer, the so-
called bending angle, are determined to calculate these 
trajectories. 

Figure 1 Components of the steering assistance for one-axle trailers. 

The previously mentioned system is just one option. Within 
the real time systems group of the University of Koblenz-
Landau several other assistance approaches have been 
developed. Besides a visual human computer interface the 
modality used could as well be acoustical or tactile. An 
approach using modified semantics of the steering wheel has 
been also investigated [17]. The number of possible variations 
of the system is highly increased considering the different 
types of trailers that could be used. This multitude of 
variations combined with a high degree of distribution of the 
heterogeneous subsystems and the possibility that the system 
could change at runtime through disconnecting or connecting 
one or more trailers cannot be handled by state-of-the-art 
software architectures in the automotive domain. Therefore, 
we proposed a novel approach in [1], using service-orientation 
combined with software agents. In this approach, all 
functionality is encapsulated in fine-grained services. These 
services may be located on any device within the articulated 
vehicle or even on a nomadic device like a Smartphone. In 
order to set up the assistance one or more software agents 
discover the currently available services, determine the 
possible types of assistance and orchestrate the services. This 
re-configuration is done every time the configuration of the 
vehicle changes, for example, by connecting a trailer or in case 
an electronic control unit (ECU) or sensor system fails to 
work.  
In this paper, we focus on identifying a modeling language as 
well as a process model to specify adaptive embedded 
systems. As a case study we are using the assistance 
approaches introduced earlier. With the chosen language and 
methodology, we aim on collecting and formalizing the 
assistance approaches being developed so far. We also want to 
identify the functionalities needed in each type of assistance in 
order to find similarities. In the next step, these functionalities 
are converted into service specifications. Using these 
specifications architectures can be developed for each type of 
assistance. By merging the modeled architectures a library of 
SOA-based assistance systems is formed. This library along 
with the specifications of the services provides the basis for 
deploying model-driven runtime adaption. 
The remainder of this paper is organized as follows: Section II 
introduces and categorizes several process models for 



developing Service-oriented Architectures. In Section III, the 
customized process model we use is presented and differences 
to state-of-the-art approaches are pointed out. Section IV 
concludes the paper and provides information on the future 
work within this project. 

II. PROCESS MODELS FOR SERVICE-ORIENTED 

ARCHITECTURES 

With the paradigm of Service-orientation getting more and 
more popular, the number of process models to develop such 
systems went up, too. In 2009 Thomas, Leyking and Scheid 
identified 21 different approaches in [2]. Most of the currently 
available models are built to suit for some special purpose, 
require a particular tool chain or concentrate on one field of 
application only. However, none of them suits to the domain 
of automotive SOA solutions. Instead of developing yet 
another model, we decided to find a process model that can be 
customized to this special scenario. In order to do so, criteria 
have been developed and the available approaches have been 
evaluated based on these. The following criteria have been 
defined:  

1. Completeness of the specification phase 
2. Independence of a specific field of application 
3. Variability in the scenario of development 
4. Tool support 
5. Acceptance of the modeling language 

Our first criterion is that the modeling approach has to allow a 
complete system specification which includes the specification 
of the services as well as the service architectures. This also 
implies that a detailed technical point of view should be 
assured rather than focusing on the business domain which is 
very common using SOA. Finally, concrete methods or 
techniques on how to carry out the steps within the process 
model should be proposed.  
The second criterion is that the field of application should not 
be restricted. Specialized models, used for Web Services for 
example, are not very promising since their focus is too 
narrow. Converting these to suit embedded automotive 
systems would change too many of their essential ideas if 
possible at all.   
Another criterion is that the starting position at the very 
beginning of the process should be variable. This is important 
because the process model should allow new developments as 
well as migrating existing systems into SOA.  
The fourth criterion is that tool support should be given. Using 
a tool that for example allows modeling the system graphically 
reduces development time. In addition, implemented 
validation functionalities decrease the probability of semantic 
errors.  
Finally, the last criterion is that the modeling language 
deployed is widely-used and hereby accepted. This demand is 
set up to ensure the readability of the models in the scientific 
community. 
Using these criteria, eleven process models are analyzed. The 
first one is a model proposed by Stein and Ivanov in [3]. The 
model is based on ten phases starting with a business process 
model ending with the deployment of the developed system. It 

focuses on business processes and the modeling languages 
suggested belong to the domain of Web Services. A similar 
model, the Enterprise SOA Roadmap method is presented in 
[4]. This model also emphasizes on business modeling since 
only one of the five steps to be executed is technical. Both of 
the process models violate criteria two that they shouldn’t 
restrict the area of application.  
Other approaches lack concrete modeling techniques. Pingel 
[5] for example, introduces a technology independent five 
phase model extending well-known approaches. Another 
approach in this category is a proposal of Mathas [6] which 
extends the software lifecycle model by adding some SOA-
specific tasks and roles while staying coarse-grained. The 
Service-oriented Modeling Framework developed by Bell is 
quite generic, too [7]. The idea of the author is to design a 
concrete process model for every case of application derived 
from his abstract methodology. Bell also proposes a special 
design notation which violates the criterion of using a widely-
used modeling language. All these models are rather to be 
seen as suggestions on how a process model may be set up 
than being a concrete model itself. 
Unlike the previously named ones the models “Service-
oriented design and development (SOAD)” [8] by Papazoglou 
and van den Heuvel and “Creating Service-oriented 
Architectures (CSOA)” [9] developed by Barry are technical 
in nature. Both of them are phase-oriented and contain 
practical techniques to be performed in those phases. Through 
basing on modeling languages like the business-oriented 
“Business Process Modeling Language (BPML)” or the 
“Business Process Execution Language for Web Services 
(WS-BPEL)” they cannot be used for other fields of 
application without major changes. This fact violates criterion 
two.  
Another approach is presented by Nadhan in [10]. The author 
describes a seven step procedure to migrate an existing 
solution into a SOA-based system focusing on technical 
issues. Targeting only on the migration scenario this model 
cannot be used for new developments. In doing so criterion 3 
is violated. 
Some highly interesting approaches are using the Service-
oriented modeling language (SoaML), a notation created to 
model and design SOA-based systems. This is a promising 
approach because the language itself satisfies the criteria set 
up in being not restricted to one field of application and being 
widely used since it is a profile of the popular Unified 
Modeling Language (UML). One of these process models is 
presented in [11]. The authors describe the development of a 
Service-based monitoring system by identifying and 
specifying the needed services. Although this is very 
promising, it does not allow specifying the architecture of the 
overall system which violates the criterion of enabling the user 
to carry out a complete system specification. Another 
methodology using SoaML introduced in [12] closely follows 
the processes defined in the Model-driven architecture (MDA) 
approach published by the Object Management Group. Tool 
support is granted by the modeling tool “Modelio”. This 
process model defines several specification steps within the 



 

 

computational independent model and the platform 
independent model of MDA. The approach is very close to 
“Service-oriented Modeling and Architecture (SOMA)” 
presented in [13]. This phase-oriented lifecycle model is based 
on the “Rational Software Architect” and is also free of any 
restrictions with respect of the area of application. Both of the 
lastly named methodologies are fitting the criteria set up 
earlier in this paper. The reasons why SOMA is favored is 
being more focused on technical issues and offering a more 
straightforward workflow.  
In the next section SOMA is presented in detail and the 
changes to suit it to embedded automotive systems are 
explained. 

III.  CUSTOMIZING SOMA FOR AUTOMOTIVE EMBEDDED 

SYSTEMS 

A. Introduction to SOMA 

The SOMA methodology has been published by Arsanjani in 
2004 [14]. The idea of this approach is to set up a phase-
oriented process model that guides through the whole 
development process. The different phases of the model can be 
seen in Figure 2. Within the first step named “Business 
modeling and transformation”, the requirements, namely the 
business processes are modeled and optimized to get a semi-
formal description of the workflow. This is normally done 
using the Business Process Model and Notation (BPMN).  
Simultaneously, the concomitant project management 
processes are defined and the computation platform to be used 
is selected. In SOMA this step is called “Solution 
management”. 

Figure 2 Overview of the SOMA phases [13]. 

 

In order to achieve an architecture model, first the service 
candidates are identified based on the components and flows 
of the business model. Therefore, SOMA recommends a 
number of identification techniques that might be used. Next, 
within the specification phase, the candidates are transformed 
into services. This is done by modeling the Service Interfaces, 
Service Contracts and the Participants which realize the 
functionality of the services. Also, the Service Architecture of 
the overall system is defined. In the next phase, the so called 
“Realization”, the focus swaps from functional to non-
functional requirements.  This includes for example the 
development of the abstraction layers or the communication 
model. The following step “Implementation” is used to 

generate or write code that realizes the functionalities and in 
addition, the code is being tested to fulfill its requirements. In 
the last phase of SOMA the developed system is put into 
operation. The functionalities are monitored at runtime and the 
infrastructure and the network are managed to ensure stability 
and performance. 

In the next subsection, our approach for a Model-driven 
development of SOA-based Driver Assistance Systems will be 
described in detail. Focusing only on the functional issues of 
the system, the business process based SOMA approach is 
customized towards a methodology suitable of handling 
embedded automotive applications. Therefore, the phases 
“Business modeling and transformation”, “Identification” and 
“Specification” are refined. 

 

B. Customized phases of SOMA 

In its first phase, Service-Oriented Modeling and Architecture 
conducts the development of a business process model. This 
step aims at identifying the tasks and parties within the 
workflow. Therefore, SOMA recommends the usage of 
BPMN as a graphical representation to specify business 
processes. This makes sense for developing SOA solutions in 
a business context. BPMN is, however, not created to describe 
technical systems like DAS. To solve this issue, we propose to 
use an UML 2 Activity Diagram. Similar to BPMN models, 
Activity Diagrams describe workflows consisting of a number 
of activities. These activities are important here because they 
accumulate the functionalities of the system. As they are not 
restricted to the business domain, Activity Diagrams allow 
modeling embedded systems without violating the semantics 
of its components. Figure 3 shows the Activity Diagram of the 
visual steering assistance system introduced in Section 1. All 
actions that have to be done to carry out the assistance are 
modeled as activities. The control flow describes how they 
cooperate to represent the DAS. 

Figure 3 Activity model of the visual steering assistance. 

The Activity Diagram itself may be modeled using any kind of 
description of the system. This includes a specification as well 
as a systems requirement model or a description in natural 
language. Within a migration scenario, code may be analyzed 
to create the diagram.  
Having finished the modeling of the workflow using an 
Activity Diagram, the next step is to identify the service 
candidates. In SoaML they are called Capabilities [15]. These 
Capabilities represent entities that offer some distinct 
functionality and therefore are predestined to become services. 
Following the recommendations of SOMA, one of the most 
straightforward ways to identify these service candidates is to 



 

 

 

analyze the BPMN model created in the first step. This is done 
by extracting the lanes of the model which represent some 
participating party and transfer them into Capabilities. The 
tasks executed by these parties are modeled as the operations 
those Capabilities provide. Eventually, this leads to a coarse-
grained model with a relatively low number of services. 

Figure 4 The Service Candidates derived from the Activity Diagram. 

In order to design a highly flexible SOA-based Driver 
Assistance System, we are confident that the services 
identified with the SOMA method are too coarse-grained. 
Within this context, the granularity should be enlarged to a 
certain extend. Considering this demand and the fact that the 
starting point of this step has changed from a BPMN model to 
an Activity Diagram, the identification phase has to be 
changed. In our modified phase, we transfer each activity of 
the Activity Diagram shown in Figure 3 into a service 
candidate. The result of this transformation in the case of our 
example system can be seen in Figure 4. For example, the 
Capability “GetSteeringAngle”, which reads out the current 
steering angle, may be used in other assistance scenarios as 
well. A more coarse-grained modeling might prohibit such re-
use. 

The next phase of the SOMA methodology is the 
specification. Since this phase is very extensive, it is split up 
into four sub-phases; specification of the Service Interfaces, 
Service Contracts, Participants and the Service Architectures.  

The specification of the Service Interfaces in SOMA is done 
by deriving them from the Capabilities. In order to do so, each 
Capability is represented by a single Service Interface. 
Furthermore SOMA recommends to specify a number of sub-
interfaces of the UML type “Interface” and to assign the 
operations of the capability to one of these sub-interfaces. 
Beyond that, no rules or guidelines are given on how many 
sub-interfaces should be created or how the operations should 
be distributed onto these. 
 
 
 
 
 
 
 

 

 

Figure 5 The Service Interface of a service to calculate the trajectory of the 
drawing vehicle. 

Obtaining a common structure is essential to be able to use the 
model for runtime adaption. Therefore, we have to extend 
SOMA in this phase, too. This is done by defining two extra 
rules. At first, any functionality that is provided by the service 
is mapped into its own sub-interface. These sub-interfaces are 
so called provided interfaces. The second rule is to create a 
sub-interface for any functionality that is needed by the 
service in order to fulfill its tasks. The interfaces modeling the 
need for a particular service are called requested interfaces. 
The result of these guidelines can be seen in Figure 5. For 
example, the interface of a service is shown that offers to 
calculate the trajectory of the pulling vehicle. This provided 
service can be seen on the left encapsulated into its own sub-
interface. To be able to calculate the trajectory, it needs the 
current value of the steering angle. This necessity is expressed 
by the sub-interface on the right.  

In a second specification step, Service Contracts are defined. 
For interacting with a Service Interface the consumer needs to 
know how to access it. Therefore one or more Service 
Contracts are defined. Service Contracts formalize the 
exchange of information between the provider and the 
consumer of a service [15]. SOMA develops contracts by 
specifying two attributes: the roles and the protocol of such a 
service call. The roles can either be “Service Interface”, 
“Interface” or “Class” types according to the SoaML 
specification. Describing the protocol, any adequate diagram 
defined in UML may be used such as interaction or state 
diagram. 

Figure 6 The Service Contract of a Service to determine the steering angle of 
the drawing vehicle. 



 

We decided to add several constraints to the generic SOMA 
approach, in order to use the contracts for runtime adaption. 
One of these constraints is the obligatory use of a Sequence 
Diagram to model the protocol. This regulation helps to keep a 
common structure while the Sequence Diagram is able to 
model further attributes such as time limits. The second 
constraint is that the messages exchanged are in Remote 
Procedure Call (RPC) style. Compared to the document style 
exchange used for Web Services, this method keeps the 
amount of data transmitted low which is crucial for embedded 
computing. Figure 6 presents such a contract developed by the 
changed SOMA methodology using the example of a service 
developed to determine the steering angle of the vehicle. In 
this contract, two roles are defined: a provider called 
“SteeringAngleService” and a consumer. The RPC style 
protocol is defined in a dedicated Sequence Diagram pictured 
at the bottom of the figure.   

Step three within the specification phase of SOMA is the 
introduction of Participants. In the systems domain a 
Participant might be a system, application or component that 
offers or consumes a service [15]. SOMA uses this type as 
some kind of particular unit. Therefore, a Participant is created 
and assigned with one or more ports where each port 
represents a Service Interface. The idea is to map the 
functionalities encapsulated within the services to hardware 
units to use these units for the Service Architecture specified 
in the last step of the specification phase. The Service 
Architectures being developed by this approach are rather 
System Architectures. This is because they do not only 
illustrate the relations between the software components but 
also between the hardware components hosting the software. 

Figure 7 The Participant realizing the steering angle Service. 

Since one of the goals of our approach is to allow the services 
to be distributed on any ECU within the vehicle combination, 
we do not want to map them onto hardware entities at this 
point. Therefore, SOMA has to be modified at this step, too. In 
doing so we are using the broadly framed specification of a 
Participant in SoaML. Since a Participant is defined to be a 
unit that provides or consumes services, it is also possible to 
specify it to be an instantiated process. This process may run 
on any hardware system of the vehicle. This definition avoids 
mapping the services to a particular hardware device without 
violating the specification of SoaML. For example, the 
Participant realizing the steering angle service is shown in 
Figure 7. 

The last step of the SOMA specification phase is to specify the 
architecture of the overall system. The Service Architecture 
illustrates the relationships between the participants involved 
using ports and contracts. This is done by assigning the ports 
of the participants to roles within the contracts. This time, we 
are able to adopt the procedure recommended by SOMA. The 

idea of our approach is to create a Service Architecture model 
for every type of DAS for articulated vehicles developed. An 
example can be seen in Figure 8. 

Figure 8 Part of the Service Architecture for the visual steering assistance. 

In this figure only a small part of the architecture is shown in 
order to obtain lucidity. It shows how the Participant realizing 
the calculation of the trajectory of the drawing vehicle uses the 
contract of the steering angle service to obtain the data needed.  
Finalizing the specification phase by modeling the Service 
Architectures, the phases of SOMA conducting the modeling 
of functional attributes is finished. Since the development of 
non-functional components is not in scope of this paper our 
modified SOMA process model is completed. 

C. Model-driven adaption 

As a result, this customized process model helps to build up 
two different databases that can be used for model-driven 
runtime adaption. First of all, a Service Inventory and hereby a 
catalog of functionalities is established. It contains a list of the 
services as well as a description of what they do and how they 
can be accessed. Second, a library of Service Architectures is 
created. This library forms a well-defined collection of 
assistance types. Using this data, the types of the services 
needed to represent a specific kind of assistance can be 
determined. These databases form the basis of two different 
adaption approaches. 

The first idea is to pursue an architecture-driven approach. 
Using a software agent that overlooks the whole system, the 
currently available services are determined. This is followed 
by matching them to the catalog of Service Architectures. In 
doing this the types of assistance realizable can be detected. 
Additionally, the information about the relationships between 
the Participants realizing the service can be used to connect 
them and build up the assistance system.  

The information modeled in the Service Interfaces could be 
used to execute adaption as well, using an interface-driven 
approach. Since every Service Interface contains not only the 
services provided but also the services consumed, it is able to 
explore whether the requested services are currently available 
within the system. Starting from a data sink, this could be used 
to determine possible assistance types as well. In the given 
example, the video out, which is able to offer visual 
assistance, would start looking for an overlay service which is 
modeled as its requested interface. The search for this service 
can be done by invoking the Service Discovery functionality. 
Having found such an overlay service in the current vehicle 
configuration, this service itself starts to search for its 
requested partners. If the chain can be finished and every 
service requested can be found, the kind of assistance is ready 



to be used. If some service needed is missing, the adaption 
mechanism stops. 

IV.  CONCLUSION AND FUTURE WORK 

By modifying SOMA, we have found an approach to model 
embedded automotive systems. In order to evaluate the 
process model, several types of assistance systems have been 
specified. The systems successfully modeled so far, are the 
visual assistance for the one-axle and two-axle trailer as well 
as the acoustical and haptic assistance for the one-axle trailer. 
The assistance using modified semantics of the steering wheel 
has also been specified using this approach.  

The process model presented fulfills the demands described in 
Section II . We are able to collect and formalize already 
existing assistance approaches as well as new developments. 
By finding service candidates, the functionalities needed 
within the different DAS are identified. Since theses 
functionalities are merged into a common database, 
similarities can be detected.  Going through the different steps 
of the specification phase these functionalities are converted 
into service specifications as well as architecture 
specifications. This data is collected within two databases and 
allows to be used for model-driven runtime adaption as 
described in Section III.  

Having now established the process model and specified the 
functional attributes of the services and Service Architectures, 
we are now able to move on with the non-functional 
components. 

The next step is the implementation of a Quality of Service 
(QoS) parameter for each service. This parameter needs to 
reflect the performance of each service affected by influences 
from inside and outside the component. It should be easily 
computable and allow a comparison between services of the 
same functionality. The QoS parameter will also be taken into 
account when a service selection algorithm is set up. We also 
aim on using the parameterized model for online verification 
conducted using formal methods. This will be done by 
transferring the SoaML model into hybrid automata. 

Another element of our future work is to define a 
communication model. State of the art in the modern 
automobile has the ECUs are connected using a mixture of 
automotive specific network systems. The communication 
system to be developed has to be highly flexible and 
independent from the kind of network used. At the same time 
the overhead produced should be minimal. Achieving this, the 
unique characteristics of automotive network systems will be 
taken into account.  

The integration of the approach into AUTOSAR will also be 
discussed within the project.  

The last step of the project will be to validate the architecture 
using a full scale prototype. 
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Abstract—As embedded systems are gaining more significance
in many branches of the industry, and as more functionality
is moving from hardware to software, industry is pushing at
the limits of modeling methods for embedded systems. The
importance of this is most obvious in the hard real time systems
area where a deadline miss can lead to a catastrophic failure.

In this paper we present an overview of the current func-
tionality implemented in ATA framework, as well as some of
the challenges encountered during the development. We end the
paper with some future outlooks for the ATA framework.

I. INTRODUCTION

Modern industrial systems are constantly facing the possibil-

ity of encountering component failure, or unexpected situations

in which the system may be forced to operate under lower

capacity. Luckily, many of such systems can be constructed to

provide different levels of quality of service. Various systems

that regulate quality of service in relation to the available

operational capacity already exist (e.g. a voice compression

codec can reduce bitrate if not enough bandwidth is present),

while additional research is being done to provide safety critical

systems with adaptivity features. Consequently, in such cases,

formal verification must cater not only for the temporal and

functional properties of a system, but also for its ability to

dynamically adapt itself, as a response to external and/or

internal stimuli.

In this work, we present a high-level overview of the

Adaptive Task Automata (ATA) framework (section III) that

we have recently proposed [1], in which we have focused on

providing the possibility to model and verify systems where the

task set can be regulated based on the extra functional system

properties. The currently available properties for modeling of

the system are related to the schedulabilty of the individual

tasks in the system as well as the schedulability of the entire

system. By analyzing the schedulability of the system at a

runtime, it becomes possible to model systems which will

automatically keep themselves schedulable in all possible

situations, as demonstrated by the example in the section IV.

To fully comprehend the ATA framework, a short overview

of the related framework Task Automata is presented in the

section II.

II. OVERVIEW OF TASK AUTOMATA

The model of task automata is a model for real time systems

with asynchronous tasks, first introduced with non-preemptive

scheduling by Norström et.al [2] and extended to include

preemptive scheduling and dynamic priority scheduling by

Fersman et.al [3], [4]. By basing our work on this model, we

are able to model and verify schedulability of the embedded

systems with a task release patterns that can be described

in the model of timed automata and executed by scheduling

policies with static or dynamic priorities, such as fixed priority

scheduling, earliest deadline first, etc. Most of the work on

task automata is handling uniprocessor systems, but supports

an array of scheduling policies.

Since task automata can be encoded as timed automata [5],

they can, in principal, be analyzed using the existing tools

created for verification of timed automata such as UPPAAL1

[6], Kronos2 [7] or others. However, the tool TIMES3 [8] has

been presented to conveniently support modeling, simulation,

schedulability analysis, formal verification and code generation

in the model of task automata.

In the next few paragraphs we will give an intuitive

description of the task automata model. For a more formal

definition, we refer the reader to the paper by Fersman et.al

[4].

t1(C1=2, D1=5, P1=1)

l1 l2

x ≥ 5
x := 0x ≤ 6

Fig. 1. A task automaton snippet

A simple automaton modeling task release pattern is pre-

sented in Figure 1. It consists of: two locations, one edge, and

a clock x. Location l1, denoted by double concentric circle, is

the starting location. An invariant (x ≤ 6) is tied to the location

l1. The edge between l1 and l2 is annotated by a guard x ≥ 5,

and a clock reset x := 0. The guard controls that the transition

cannot be taken if the clock x has value of less than 5, while

1http://www.uppaal.org/
2http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/
3http://www.timestool.com/

http://www.uppaal.org/
http://www-verimag.imag.fr/DIST-TOOLS/TEMPO/kronos/
http://www.timestool.com/


the invariant of the location l1 defines that the location should

be left before the clock x goes over 6.

Once the edge is taken, two things happen: clock x is reset

to zero and the task t1 is released. Task t1 is denoted by a triple

(C1 = 2, D1 = 5, P1 = 1) that defines task’s computation time

C1, relative deadline D1 and priority P1.

Once the task is released it is added to the task queue. Task

queue is formed as q = [ti(ci, di), . . . , tj(cj , dj)], where ci is

the remaining computation time and di a relative deadline. To

be able to verify running of a system now constructed, tasks

need to be executed in some way.

Task execution is modeled via a scheduler function which

takes two parameters: task queue q and a non-negative integer

number δ and returns new task queue q′ which represent q after

being executed for δ time units. For the previously mentioned

q, assuming that the task ti is currently running on the CPU,

result would be q′ = [ti(ci − δ, di − δ), . . . , tj(cj , dj − δ)].
Task has been successfully executed once ci reaches zero and

di is greater or equal to zero. If di reaches value of zero

first, task has broken its deadline and the system is considered

unschedulable.

During the verification, the individual automata are connected

into an automata network, against which reachability properties

are evaluated. In the rest of the paper, automata that are

modeling the task release patterns will be referenced as task

release automata.

III. ADAPTIVE TASK AUTOMATA

In the task automata model, the interface between task release

automata and the rest of automata network that simulates the

execution of tasks is very limited. That is, only task release

instructions are propagated from the task release automata to

the scheduler and queue. After a task is released, there are no

means to follow up on the status of the task as the time is

progressing.

t1(2, 3), t3(1, 3), . . .

task release
queue manip.

sched()
inqueue()

FPS,EDF, . . .
(a)

(b)

(c)

(d)

Fig. 2. Essential components of the ATA model: (a) the task scheduling
policy, (b) the task queue, (c) task automata network modeling task release
patterns, and (d) model of the environment.

Our contribution is the adaptive task automata framework

designed for modeling and verification of adaptive embedded

systems where it is possible to gather data from the queue and

scheduler via a set of predicates, with the potential of enabling

alterations of the queue. A visual overview of the structure of

ATA is given in Figure 2.

The predicates correspond to schedulability of one or many

of the tasks in the queue. In other words, we can find out

whether the schedulability of the entire system has been already

compromised and even test if it will be compromised if another

task would be admitted added to the queue.

The full formal description of the work can be found in our

recent paper [1].

t1(C1=2, D1=5, P1=1)

l1

l2

x ≥ 5 ∧ sched(t1)
x := 0

x ≤ 6

x ≥ 5 ∧ ¬sched(t1)
x := 0

t2(C2=2, D2=10, P2=1)

l2

Fig. 3. An adaptive task automaton snippet

In Figure 3, we present an adaptive task automaton similar

to the task automaton from Figure 1. Now we have extended

it with the schedulability predicate sched/1 and introduced

another edge and a task that can be released in case that the

original task would not have completed before its deadline.

The adaptive task automata framework offers few predicates

for modifying task release patterns based on the state of the

queue:

• sched/1 predicate is evaluating whether the task t1 can

be released so that it has a chance of completing in time.

We say a chance, since there is still possiblity of releasing

another, higher priority task that will preempt this task

and render it unschedulable.

Another functionality of the predicate sched/1 is to

evaluate whether an already released task can complete

in time.

• inqueue/1 predicate can be used to find out whether the

task is present in the queue or not. This predicate evaluates

to true if the task is present in the queue or currently

executing on the CPU.

• sched/2, a more advanced version of the predicate

sched/1, is used in conjunction with two parameters:

sched(t1, t2). The predicate evaluates whether the task

t1 can complete in time if the task t2 would be released

now, assuming that the predicate inqueue(t1) holds.

By using the above presented predicates, it is possible to

create a temporary inversion of priorities. A task of higher

priority can wait before being released to ensure that a task

of lower priority completes in time. While modeling a system

in our framework, one has to carefully consider whether such

behavior is wanted in the system.

Besides the basic predicates: sched/1, sched/2, and

inqueue/1, we provide two additional, derived predicates:



• sched all/0 evaluates whether all of the tasks in the

current queue are going to meet their respective deadlines;

• sched all/1 evaluates whether the tasks in the queue will

meet their deadlines provided that a new task is introduced

into the queue.

While implementing the predicates for ATA framework in

timed automata, we have encountered many issues related the

decidability of the schedulability analysis. One of the most

noticeable issues was that schedulability testing predicates rely

on testing whether the difference between two clocks is less

than a certain constant. This causes the entire system to be

categorized as diagonally constrained timed automata, which

have been proven to be decidable under the same conditions

as diagonal-free timed automata [9].

IV. EXAMPLE

A. Robot teleoperation

As an example, let us look at a model of a hypothetical

system for teleoperation of a robot. This particular robot is

equipped with a video camera that sends the image to the

user and a microphone that transmits surrounding sound to

the human operator. The human operator interfaces with the

robot via a user console. We can think of a user console as

a self contained, battery powered computer running a single

core CPU.

The console provides live feed of what the robot sees and

hears while transmitting operator’s commands back to the robot.

To keep the real-time requirements, processing loop was created

which is executed every 100 time units. The processing loops

first scans whether any commands from the operator have been

received, acts upon them, then processes incoming video frame

and audio packet and displays them to the operator.

One of the design goals of the system would be to extend

battery life of the user console while maintaining hard real-time

requirements on its functionality. To achieve that, a CPU with

three clock frequency scaling modes was built into the console.

The full power mode provides maximum performance while

sacrificing battery life. The extended life mode provides more

battery life with a small, 20%, degradation of the performance.

The third mode is most suitable for handling low battery

situations since it significantly degrades CPU performance

to only half of the full performance.

The designers have chosen to keep audio and input process-

ing at a constant performance and have built the adaptivity

feature into the video processing task by providing three

different versions of the task that can be released based on the

available resources. These versions are shown in the table 4

along with all the other tasks present in the system.

On the other hand, if the audio is not critical to the operator,

operator can choose to mute it, thus freeing up the part of the

processing cycle otherwise taken up by the audio processing.

This enables the system to schedule larger quality task for

video.

To model the reduced processing capacity, we are releasing a

high priority tasks (tint1 or tint2) at the start of each processing

cycle. Their computation times correspond to the missing

capacity.

A model of such system in the ATA framework consists of:

• a task release automaton that models the release pattern

of the input task;

• a task release automaton that models the release pattern

of the audio task, while providing audio muting features;

• an automaton modeling user interaction that mutes the

audio;

• an automaton modeling the reduction in battery levels that

causes reduction of available CPU resources;

• a periodic release automaton modeling different levels of

interference corresponding to the reduction of resources;

• and an adaptive automaton modeling the task release

pattern of the video task.

The large number of automata is due to wish to make

distinction between different tasks and to model external events

as separate automata. This can be reduced all the way to a

single task release automaton, while sacrificing simplicity of

the individual automata.

P T D C Description

tint1 7 100 100 20 High interference

tint2 6 100 100 50 Low interference

tinput 5 100 100 10 Input processing

taudio 4 100 100 20 Audio processing

tvideo 3 100 100 70 High quality video

t′video 2 – 100 40 Medium quality video

t′′video 1 – 100 20 Low quality video

Fig. 4. Tasks present in the user console for teleoperation of the robot.

tvideo

t′video

t′′video

Start

x ≤ 0

Release tvideo

Release t′video

Release t′′video

x ≥ 100

sch
ed(

tvide
o
)

sched(t′video)∧
¬ sched(tvideo)sched(tvideo)∧

¬ sched(tvideo)∧

¬ sched(t ′
video )

x ≤ 100

x ≤ 100

x ≤ 100

x := 0

Fig. 5. Adaptive task automaton model for the user console.

In Figure 5 the adaptive automaton for the video task is

presented. The automaton tests whether the best priority task

can be released first and then downgrades the quality of the

video task progressively until one task can be released. In

general case, this automaton may deadlock due to the lack of

an edge that would be taken if no variant of video task fits

into the task set, but by verifying the entirety of the system, it

is possible to deduce that the entire system never deadlocks.

A problem of inaccurate measurement of schedulability

might present itself in the case when multiple task releases

happen in zero time. This is addressed by defining the order

in which tasks are admitted to the queue, ensuring that the

adaptable task is always admitted last.

We can see that the worst case happens when the operator

wishes to use the audio, while the battery is at its lowest setting.



In that case, the video task t′′video is released and the video

quality is low. In all the other cases, the system automatically

detects the possibility to release higher quality video task and

it does so.

B. Scalability of the approach

Another example involves the usage of the sched all predi-

cate. We would like to create a scalable scheduling automaton

that would enable us to schedule job ti and its n fallback

variants with the fallback sequence ti → ti+1 → . . . → ti+n.

This can be accomplished easily in our framework by creating

a nondeterministic automaton that can transition into the job

release state if the job can be scheduled. Then, by introducing

determinism via the addition of the edge priorities [10] we can

encode the fallback sequence into the automaton.

ti

ti+n

Start

x ≤ 0

Release ti

Release ti+n

x ≥ T

sch
ed

all
(ti)

sched all(ti+n)

x ≤ T

x ≤ T

x := 0

Fig. 6. A universal automaton for scheduling of task with n fallback tasks.

V. RELATED WORK

Schedulability analysis and formal verification of adaptive

embedded system models specified in high level languages

has recently received increased attention. For instance, several

approaches on verifying adaptive embedded systems specified

as UML Statecharts are presented by Schaefer [11]. Schneider

et al. [12] have proposed a method to describe and analyze

adaptation behavior in embedded systems in which the data

flow is augmented with quality descriptions that are used by

configuration rules to determine potential adaptations. The

application of schedulability verification has already targeted

multiprocessor systems [13], or satellite systems [14], and

results on generalized frameworks for schedulability analysis

have also been provided [15]. However, in these studies the

non-schedulability of the system cannot be predicted soon

enough such that the system does not reach such a state, but

only after a task misses its deadline.

VI. ONGOING AND FUTURE WORK

At the time of writing this paper, we have established

decidability of verifying reachability in uniprocessor ATA

with fixed priority scheduling and sched predicate. We are

looking at the boundaries of applicability of our framework

and which scheduling policies can be adapted to work within

our framework considering that the sched predicate requires

significant support from the automaton implementing the

scheduling policy.

We are also planning to add several new functions that

would dynamically alter the queue of the running system, thus

simulating forceful termination of the tasks. As well as ways

of keeping the system running even in the case when the tasks

break their deadlines.
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Abstract—Traditionally, Wireless Sensor and Actuator Net-
works (WSANs) have been used as a standalone technology for a
specific application purpose such as heating control. The current
growth in embedded ICT infrastructure, driven by visions such
as the smart cities idea, is leading to the deployment of a wide
range of embedded systems in our environment, which motivates
the System of Systems [1] and ultimately, with deployment of IP
technologies into this space, the Internet of Things [2] paradigm.
However, to simplify system operation and maintenance as well
as to reduce costs, WSANs must become an infrastructure that is
capable of providing services to multiple end users concurrently
rather than requiring a new infrastructure for a new purpose.
Here, we present the concept of a WSAN infrastructure as a
WSAN Cloud, which provides services to multiple application
and data collection systems following to some extend the cloud
computing paradigm. Each instance of the WSAN cloud (i.e. a
specific set of services configured by a particular end user/system)
utilises the WSAN infrastructure as if it was a unique network
provisioned for specific requirements. This realisation of the
WSAN Cloud as Network as a Service or NaaS requires the WSAN
to support a service orientated software architecture allowing
other systems to provision the WSAN infrastructure for their
specific needs and allowing multiple systems to use the WSAN
uniquely and concurrently. The WSAN-Service Orchestration Ar-
chitecture ”WSAN-SOrA” presented here, is a novel approach to
service provisioning of embedded networked systems and enables
WSANs to act as cloud ready infrastructures that facilitate on-
demand provisioning for potentially multiple individual backend
systems.

I. INTRODUCTION

Smart Cities [3], [4] is a vision of cities offering novel

services based on a digital integration of city infrastructures

through computing systems enabling on-demand service de-

livery. One of the technologies which future smart cites will

rely on is Wireless Sensor and Actuator Networks (WSAN).

WSANs are a rapidly evolving technology but in their current

form will not be able to fully support the Smart Cities vision

due to the cost associated with equipment, deployment, and

operations and maintenance of such an extended embedded

systems infrastructure. One way of reducing cost is for

WSANs to be able to make its infrastructure available on-

demand simultaneously to multiple users. In the context of

this paper we view these users as enterprise tier systems

based on cloud computing concepts that aim at virtualising

the underlying hardware infrastructure down to the WSAN

tier.

Cloud computing [5], [6] is based around the concept of

delivering services to users. Cloud computing is particularly

important for WSANs in terms of broadening their scope.

Where Smart Cities are concerned, cloud computing enables

a WSAN infrastructure, an essential technology in Smart

Cities, to be delivered as a service and in this paper we

refer to the virtualization of WSAN infrastructure as a WSAN

Cloud. Cloud computing follows SPI (Software, Platform and

Infrastructure) model of service delivery. In the context of

this paper, we focus on the IaaS (Infrastructure as a Service)

concept for delivering the WSAN Infrastructure as a service

to the end user and providing a mechanism to provision the

infrastructure. IaaS encompasses three domains i.e. ”Compute,

Storage and Network”, and here we focus on the Network

as a Service or NaaS aspect. In order to evolve a WSAN

into a cloud infrastructure for NaaS, all tiers of a WSAN

must support the functions associated with the Service oriented

Architecture (SoA) [7] principle. We divide the WSAN cloud

infrastructure into three tiers.

• (tier 1) Node Network: This tier consists of a network of

largely wireless embedded devices which are capable of

sensing and actuation. These devices are envisioned to be

based on IPv6/6LowPAN technology with wireless net-

work interfaces, such as IEEE802.15.4, to communicate

with the Gateway tier.

• (tier 2) Gateway: This is the middle tier connecting

the node network to the backend system. This tier has

enhanced computation capabilities and software services

in line with backend systems, with interfaces to the Back-

end/Enterprise Core tier being RPC, web services or

sockets.

• (tier 3) Back-End/Enterprise Core: This is the main and

computationally most powerful tier, usually running on

a server suite. The core provides a platform for imple-

menting components such as management frameworks

and end-points for other users/systems that require data

or interfacing with the WSAN domain.

The SoA principle is well established at the Enterprise and

Gateway tier, however it is a relatively new concept for devices

in the embedded Node Network tier. Traditionally, embedded

wireless sensor/actuator devices have had low computational

power not capable of supporting SoA concepts. However, re-

cently these devices have become powerful enough to support

SoA [8] [9] along with the required underlying operating

systems such as SOS [10] , Lorien [11] and Squawk [12]

to provide necessary platform to implement SoA principles at

the embedded Node Network tier.

In this paper we introduce the concept of the WSAN

Cloud. This cloud is an organisational domain to which



other organisation/enterpise systems connect and provision the

infrastructure to deliver services using the NaaS paradigm.

In order for the WSAN infrastructure to support delivery of

NaaS and act as a cloud infrastructure, the ability to support

SoA is required at all tiers of the infrastructure. Provisioning

a SoA infrastructure where there are a large number of

devices at the Node Network tier is a complex problem being

faced by high-end networks as well. As manual provisioning

greatly increases the likelihood of errors, automated processes

are required. Provisioning becomes even more complex in

cloud infrastructures where a single physical infrastructure is

expected to be provisioned a number of times for concurrent

usage. In this paper we present an orchestration architecture

for automatic provisioning of the proposed WSAN Cloud.

II. PROVISIONING FOR NAAS

A. Provisioning

Provisioning is an ambiguous term which is widely used in

networking. For example [13], [14] use the term provisioning

to define the configuration of a sensor network application.

Provisioning in the context of this paper refers to service

provisioning in a network to support the concept of NaaS.

Although the focus of our research presented here considers

the WSAN Cloud within building management, the software

architecture proposed is not restricted to buildings but can be

used for a wide range of smart infrastructure. As delivery of

NaaS requires provisioning, we must support provisioning at

the following tiers.

• Node Network Tier: Provisioning device services.

• Gateway Tier: Provisioning service to open end-points

and data processing logic.

• Enterprise Core Tier: Provisioning of high-end services

to manage segments of the cloud infrastructure for each

end user.

B. Delivering NaaS

NaaS is required to provide reusability of the WSAN in

order to maximise resource utilisation where resources here

are the WSAN hardware i.e. (network devices at the Node

Network tier). The user of a NaaS can request a service

based on certain requirements e.g. a new Subnet or Humidity

readings in a specific WSAN zone. In order to facilitate user

requirements the WSAN Cloud needs to provision services,

in particular on the embedded devices such as a sensing

service or a routing services in a similar fashion as in a local

area network where VLAN, OSPF or trunk-port services are

provisioned. In a network with hundreds of devices, however,

a requirement for the following is needed:

1) Expedite the process of provisioning services on devices.

2) Reduce the need for the human in the loop to mitigate

erroneous output.

3) Reusability of provisioning information for other net-

works

4) A rapid provisioning engine.

Using automation the provisioning process can be expedited

and errors can be reduced. Quantifying the benefits of au-

tomated service provisioning can be viewed in terms of

time saved, no requirement for expert personnel and reduced

labour costs. However, in order to understand how automation

expedites the process of provisioning services and reduces

the errors associated with the human in the loop let us

consider an example of provisioning a WSAN. In order to

provision a service in a WSAN we need people with expert

knowledge of this type of network. A console is used to

access the network and the devices so that they can be

configured based on the end-user requirements. Furthermore

in addition to this being a tedious and time consuming task,

human intervention may also cause error as the experts have

to go through complex configuration parameters manually.

Such a manual process demands manpower and time, and this

can prove costly for large deployments. Rapid provisioning

allows an automated provisioning process to remedy all the

forementioned disadvantages. The rapid provisioning concept

is extensively applied in the Compute and Storage Cloud

domain, i.e. VMware is an example of a tool for rapid

provisioning. However, the network cloud component is still

problematic where custom provisioning is still an issue and

is true for both wired and wireless networks. The custom

provisioning process is long and error prone mainly due to

manual service provisioning and the requirement for network

experts. WSANs have been traditionally seen as an isolated,

specialised domain, where the application of cloud computing

and SoA are relatively novel concepts. In order for a WSAN

to be cloud ready the following properties are necessary:

• Need to expose the WSAN as a NaaS providing cloud

infrastructure.

• The WSAN can be used by multiple systems with differ-

ent requirements.

• Automated and rapid provisioning.

III. SERVICE ORCHESTRATION ARCHITECTURE

The WSAN Service Orchestration Architecture (WSAN-

SOrA) as shown in Figure 1a is the architecture we propose

and have developed for cloud ready WSANs to deliver NaaS

and to automate service provisioning and de-provisioning in

the WSAN Cloud. The key attribute of this architecture is to

provide an orchestration engine for provisioning services at

all tiers of the WSAN Cloud. The ability to support service

provisioning in the WSAN by multiple end user systems

supports reusability of the WSAN in form of NaaS.

The WSAN-SOrA provides a comprehensive automation

system for provisioning and de-provisioning, by introducing

the concept of model based orchestration. Orchestration is a

process which enables the WSAN Cloud to be provisioned

or de-provisioned rapidly, driven by Orchestration Model for

Service Provisioning (OMSP) shown in Figure 1b. Orches-

tration allows the rapid provisioning of services in network

devices, gateway and core to fulfill end-user requirements. In

a traditional single tier WSAN network, devices are configured

either using a terminal to the device i.e. ”command line”
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or using some sort of web interface and in most case are

hard-coded. The reason for such practice lies in the fact that

WSANs were never expected to offer cloud services, that is

providing services for multiple end users. A static interface

has been sufficient so far. Similarly, in high-end networks

there is a similar situation as most of the network devices

are provisioned using terminals and static interfaces.

A. Model Driven Orchestration

Models have been used for a number of purposes from

simulating a system to using models as a means of understand-

ing how a system functions. Rather than using mathematical

model, an OMSP is instead based on simple system descriptive

models that are used as drivers for orchestrating the rapid

provisioning of a WSAN cloud. OMSP are a generic model

for service provisioning, which can be written using XML.

The OMSP can be divided into two segments - the OMSP

template and the OMSP data. An OMSP template contains a

pointer to the network devices and a service description of the

services required to be provisioned. The OMSP data contains

the device data such as the device address corresponding to the

pointer in the OMSP template. An OMSP template provides a

reusability mechanism for provisioning as it can be reused for

provisioning on number of different networks. The OMSP data

is related to the network itself and contains network dependent

data. For example Figure 1b shows a pseudo description of an

OMSP for reading light from sector 1 devices for a limited

time. The OMSP template contains logic which can be applied

to a number of different WSAN cloud infrastructures, where

the OMSP data contains the data pertaining to the devices in

all tiers of a specific WSAN cloud.

B. Orchestration Engine

The Orchestration Engine is a model (OMSP) driven system

which uses the OMSP for provisioning the required services

on the devices in the network (atomic service provisioning).

The Orchestration engine consists of following components:

• Core

• Element Management System (EMS)

• NaaS Endpoint or middleware

1) Core (Back-End): The core of the orchestration engine is

the CPU of the engine. It contains the translating components

to read the OMSP. The core also configures the service end

points for integration between NaaS and the end-users.

2) Element Management System (Gateway): Once the

OMSP is translated, the consolidated data is sent to the EMS.

Consolidated data refers to the combination of the data from

the OMSP and the knowledge base (this is a collection of

meaningful data about the network and is described further

in section (III-C) in the orchestration engine to enable the

EMS to execute the operations necessary to complete the

service provisioning tasks. This is the entry point to the WSAN

Cloud. Each EMS manages a specific set of devices i.e. an

EMS for SunSPOTs, an EMS for TelosB, etc. The EMS

is an overlaying system that manages the gateways where

gateways are systems running on physical computing devices,

e.g. embedded wireless devices, specialised embedded PC

boards, etc., that are capable of communicating with tier 1

devices. The EMS calls the gateway device to disseminate the

service provisioning data to the network devices in the WSAN

Cloud. The data for service provisioning is simply a few bytes

as it does not contain system script or code, rather just the

service id and the parameters of the service to be instantiated.

While a full service upgrade such as updating functionality

is possible, the WSAN-SOrA does not recommend it due to

the fact that devices in the WSAN run with limited energy

resources. A Service upgrade can be compared to a full or part

firmware upgrade in a high-end network. Similarly, a WSAN

service upgrade can be used to modify the implementation

of the service, however such an operation is risk prone as

this means the devices are unavailable while the update is on-

going and in battery powered wireless networks this consumes

a considerable amount of battery power. Furthermore even

in high-level wired systems it is not a common practice as

it causes disruption to the network service while a service

upgrade is in progress.

3) NaaS Endpoint (middleware): This component is an out-

put product of the orchestration engine. Once the orchestration

engine executes the OMSP for an end-user, a service endpoint

is provided usually in the form of a web-service. The data from



the network provisioned for a specific end-user is provided to

the end-user through this service point.

C. Orchestration Flow

The design of an OMSP in the process of provisioning or

de-provisioning is the first stage. As the OMSP is passed

to the orchestration engine, the rest of the process becomes

automated. The OMSP is first decoded and translated using

the syntax knowledge base. If new syntax is required this

knowledge base acts as a repository for developers to include

new syntax. The knowledge base is a comprehensive database

for the orchestration engine. It contains information such as

data related to the OMSP syntax. With the OMSP being

usually written in XML, this format acts as a standardised

way of representing a document where the tags and attributes

in the documents are meaningless unless there is a reference

document. This data relates to the translation that is stored

in the knowledge base. The knowledge base also stores the

network data coming from devices and contains data pertaining

to the available services for each device in the network and

the current instance of those services. Service descriptions are

written and saved in the knowledge base using XML based

SDL (Service Descriptor Language) document. In summary,

the knowledge base is a collection of meaningful data about

the network and is used to support orchestration and other

operations. Once each service is identified and devices are

selected, a secondary document is created by the orchestration

engine, which contains instructions for the execution part

of the orchestration engine. The EMS manager reads this

document and calls the appropriate EMS gateway depending

on the hardware platform. These gateways contain the base

station device capable of communicating with network devices

of the same type in the WSAN Cloud. The instruction is then

disseminated in the WSAN Cloud and the services in the

network are provisioned. Dissemination in the WSAN Cloud

is based on the configured wireless communication interfaces

and protocols such as IEEE 802.15.4/6LowPAN. The orches-

tration engine needs to create an end-point (middleware) for

the newly provisioned network so that the requesting system

may extract its data. This can be done in the form of setting a

webservice (passive polling), raw socket (stream), or servlets

(push). De-provisioning is similar to provisioning, but services

are de-instantiated instead of being created.

IV. CURRENT DEVELOPMENT STATUS

A prototype has been implemented on a testbed of 30

SunSPOTs running the java based Squawk operating system

in our research building. Our sample use case assumed that

there are 3 users of the WSAN Cloud. User A requires the light

and temperature data of the building after every 30 seconds,

User B requires the light data from the seminar room every

10 seconds and User C requires the humidity data every 2

minutes. All the user uses the network simultaneously and

the provisioned segment of infrastructure they use overlapped

with each others. The core (tier 3) was supported by the open

source J2EE server Glassfish. The Core consist of technologies

such as java enterprise beans, java messaging and webservice

management supporting tools. The core connects directly to

the gateways. The Gateway uses the java standard edition

(J2SE) for supporting the EMS for SunSPOTs, for other type

of devices the EMS is written in C, for example we have

developed an EMS for the Lorien operating system running

on the TelosB mote platform. In our experiment we used

three SunSPOTs as gateway devices at different locations to

manage different sectors of the embedded wireless network.

The Network tier devices are deployed with our SoA based

system software. Each service is regarded as a separate process

with a dedicated thread provisioned for a specific or unlimited

time. We conducted a number of experiments orchestrating

NaaS requests to demonstrate the feasibility of the architecture.

The average time taken by the orchestrator to provision a

device is on average 1200 milliseconds, which is a subjective

measure and is dependent on the programming capabilities of

the developer. QoS for data reliability is at present focused on

device lifetime management.
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Consolidating multiple COTS (Commercial-Off-The-Shelf) 

real-time control systems into an integrated high performance 
system guaranteeing the original functional and timing 
constraints has been and will be a crucial issue in diverse 
mission critical applications (Figure 1). Though related 
industry shows significantly increased needs for solutions in 
COTS integration, there are still a number of problems to be 
solved necessarily in realizing the solutions. One of the most 
important issues would be how we could integrate the existing 
real-time control tasks running on low-end microprocessors 
into one single system without changing the original tasks, but 
keeping the required functions and requirements.  

A number of players including vendors and research groups 
have been proposing virtualization technique for a realizable 
solution of COTS integration issues. However, the pure 
virtualization techniques used for server consolidation would 
not be appropriate for our purposes since real-time embedded 
systems should satisfy another category of requirements 
besides functional consolidation. 

We propose a virtualization-based fault resilient real-time 
control system architecture providing COTS integration, 
security among VMs, and reliability. The proposed system 
architecture consists of secured multi-core SoC architecture 
and virtualization-based software hierarchy. The core features 
of the proposed virtualization technique are summarized in the 
following: Minimized TCB (Trusted Computing Base) through 
microkernel-based light weight hypervisor, Predictable 
components in hypervisor including IPCs, exception handling, 

memory management, and housekeeping for VMs, and 
Runtime monitoring, fault detection, recovery, and upgrading 
guaranteeing real-time constraints. 

Among the key features our hypervisor should provide, the 
runtime monitoring, fault detection, recovery, and upgrading 
features necessitate well-defined system components 
performing control of VMs under privileged mode. We have 
chosen SIMPLEX model proposed by University of Illinois at 
Urbana-Champaign and modified the architecture to be 
realized in our virtualized system architecture. The revised 
model is named vSIMPLEX. 

 

Figure 2 Secured SoC design with on-chip SPMs 
Along with the virtualization-based software architecture, 

our proposed system includes secured multi-core SoC design to 
support guaranteed reliability and security (Figure 2). Our 
proposed SoC provides secured memory transfer between on-
chip secured memory and off-chip memory, confidentiality 
through on-chip encryption engine, and predictable memory 
management by using scratchpad memory. Such features 
necessitate management policy and solutions in hypervisor 
layer to provide sufficient transparency and security to upper 
layer guest VMs and applications. Besides the features 
mentioned above, our proposed SoC includes second level 
MMU which supports hypervisor-level memory management 
which is one of the key features for hardware-level 
virtualization support in new ARM Cortex A15 or A7 
processors. 

The proposed architecture has been evaluated using 
simulation based on SystemC and reference platform based on 
ARM Cortex cores.  

Figure 1 COTS integration in real-time control 

systems 
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I. I NTRODUCTION

This paper aims to address some of the common CPS
requirements in the robotics domain. More specifically, it
introduces an “adaptive” optimization framework that sup-
ports a new, user-centric perspective of “responsiveness”
in a “scalable” manner, in the context of trajectory co-
ordination for multi-mobile-robot control. As an example
of multi-mobile-robot control, we consider multiple robot
display [1], where multiple robots shape a formation to
collectively visualize a sequence of images that users give.
From the viewpoint of responsiveness, users would perceive
a higher quality of service (QoS) it were faster or more
stable to complete robots’ visualization from the user input.
The response time of multiple robot display consists of two
parts: the computation time for assigning individual robot
tasks (i.e., path planning, trajectory coordination) and the
actuation time for performing individual tasks (i.e., robot
moving for collective visualization). In order to improve the
responsiveness, it is necessary to reduce the response time,
that is, both the computation time and the actuation time.
However, it is often complicated to reduce the response time
since reducing computation time and improving computation
results (i.e., improving actuation time in this case) are con-
flicting objectives in many cases.

In particular,trajectory coordination, which determines the
trajectory of individual robots without collision for given
paths, is a key problem that significantly affects the response
time since it aims to minimize the actuation time (i.e., mini-
mizing the maximum robot traveling time). Finding an opti-
mal solution to trajectory coordination is generally NP-hard.
Hence, it is necessary to develop approximation algorithms
that can explore a tradeoff between complexity (reducing
computation time) and performance (reducing traveling time)
effectively for sub-optimal solutions.

As a motivational example, Figure 1 represents such a
tradeoff produced by an approximation algorithm. This al-
gorithm performs iterative steps to improve performance. It
is shown in the figure that a growing number of iteration
decreases actuation time but increases computation time.
Here, an optimal point, which minimizes the response time,
can be found around 60 iterations. Finding such an optimal
point in advance is generally difficult because such a tradeoff
is quite unpredictable. The maximum robot traveling time
greatly depends on various environment parameters (i.e., the
number of robots, robot kinematics, robot deployment), and
the influences of such parameters on the traveling time are
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Figure 1. A tradeoff between the actuation time and the computation time
according to the number of iterations

sophisticated. Therefore, it is difficult to estimate the robot
traveling time for some input parameters and predict how
computation can affect traveling time.

This paper introduces an adaptive framework that estimates
such a tradeoff dynamically and exploits it adaptively to min-
imize the response time. The proposed framework performs
priority-based trajectory coordination for scalability. Similar
to prioritized planning [2], [3], our framework assigns prior-
ities to robots and determines the collision-free trajectories
of individual robots in a decreasing order of priority. More
specifically, our framework consists of two components: (1)
adaptive sequence generationfor priority assignment, and
(2) sequence-based trajectory coordinationfor collision-free
trajectory generation. A sequence is defined as an ordered list
of all participating robots, and it determines which robots are
given higher priorities in collision resolution. Furthermore,
the sequence is also used as a unit of computation in tra-
jectory coordination. Different sequences generally produce
different actuation times, and many sequences increase a
chance to decrease actuation time at the expense of increasing
computation time. As such, sequence influences both actua-
tion time and computation time directly, and it provides a
mechanism to balance the tradeoff effectively. The proposed
framework is then capable of controlling the tradeoff by
generating sequences adaptively.
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I. ABSTRACT

Wireless Sensor Network (WSN) deployments require the

maintenance of hundreds of battery run sensor motes which

may be placed in hard to reach locations. As replacing or

charging sensor batteries post deployment is both difficult

and expensive, maintaining a WSN poses challenging issues.

Power saving mechanisms aim to increase the life time of

a WSN. This is achieved through the use of power saving

techniques that aim to balance the overall usage within a

network. A common approach to power saving is to cluster

the network and schedule the working duty cycle between the

different clusters [1].

Many solutions in this area are specialized techniques that

perform well for specific scenarios [1]. While such techniques

offer great advantages they do not generalize well, meaning

a custom solution is required for each use case. For example,

LEACH is a power saving solution that performs well in

scenarios without location information but fails to work for

time-asynchronous systems. PECAS however, does not rely

on time synchronization but is only designed for uniform

placement networks. It is also identified that none of the

existing solutions can work for mobile networks.

With the emergence of middleware solutions that aim to

support diverse scenarios, there is a need to facilitate a wide

range of power saving techniques. As a result, there is a need

for a generalized power saving mechanism that will support

diverse scenarios while meeting the needs of specific use cases.

Middleware requires a generalized power saving mechanism

that is designed to be both lightweight and adaptive, supporting

the specific needs of many sensor driven systems.

We propose a self-adaptive unifying mechanism for au-

tonomous energy management of WSNs with an aim to its

incorporation as a power saving component in the SIXTH mid-

dleware [2]. This mechanism aims to provide an easy to use,

flexible and self-adaptive clustering and sleeping scheduling

technique that produces custom power saving algorithms for

diverse systems. The mechanisms comprises:

1) A framework: Light-weight, scalable, adaptive and

autonomous framework that includes:

• Voronoi-like clustering: A Voronoi diagram is a basic

geometric data structure often used in WSNs. Traditional

Voronoi tessellation requires geographical coordinates for

the grouping of discrete points in an Euclidean space into

Voronoi cells. The motes that comprise a WSN however,

not always have the ability to detect their geographic

location. We propose a variation of Voronoi tessellation

that uses Round Trip Time (RTT) to measure the relative

distance between sensors in an Euclidean space.

• Round robin scheduling: During each round only one

sensor per cluster is active and monitoring the target. All

other sensors remain in different levels of low energy

sleep mode. When a new round begins the active nodes

switch to sleep mode and a new active node is selected

in each cluster.

2) Extensions: Features from clustering algorithms are

abstracted and treated as individual extensions. This novel de-

coupled approach will allow extensions to run independently,

each managing problems such as mobility, radio adaptation,

probability activation, etc. Extensions can supplement or re-

place existing extensions in the mechanism to satisfy use case

requirements. For example, the mechanism may choose to

change the basic scheduling scheme to an optimized version.

While these contributions will form the basis for a mid-

dleware based power saving solution, future research should

extend these ideas and provide a robust platform for energy

management. For example, an evaluation component will

monitor the performance of a generated algorithm allowing

the system to either justify or reselect extensions in the

algorithm, ensuring improved performance in real time. Also,

autonomous selection of suitable extensions based on monitor-

ing of current conditions and use case requirements will form

the basis for a self adaptive custom power saving solution.
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