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Real-time embedded systems are typically constrained in terms of three system performance crite-
ria: space, time, and energy. The performance requirements are directly translated into constraints
imposed on the system’s resources, such as code size, execution time, and energy consumption.
These resource constraints often interact or even conflict with each other in a complex manner,
making it difficult for a system developer to apply a well-defined design methodology in develop-
ing a real-time embedded system. Motivated by this observation, we propose a design framework
that can flexibly balance the tradeoff involving the system’s code size, execution time, and energy
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consumption. Given a system specification and an optimization criteria, the proposed technique
generates a set of design parameters in such a way that a system cost function is minimized while
the given resource constraints are satisfied. Specifically, the technique derives code generation de-
cision for each task so that a specific version of code is selected among a number of different ones
that have distinct characteristics in terms of code size and execution time. In addition, the design
framework determines the voltage/frequency setting for a variable voltage processor whose supply
voltage can be adjusted at runtime in order to minimize the energy consumption while execution
performance is degraded accordingly. The proposed technique formulates this design process as a
constrained optimization problem. We show that this optimization problem is NP-hard and then
provide a heuristic solution to it. We show that these seemingly conflicting design goals can be
pursued by using a simple optimization algorithm that works with a single optimization criteria.
Moreover, the optimization is driven by an abstract system specification given by the system devel-
oper, so that the system development process can be automated. The results from our simulation
show that the proposed algorithm finds a solution that is close to the optimal one with the average
error smaller than 1.0%.
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1. INTRODUCTION

Embedded systems are characterized by the diversity of application areas, rang-
ing from simple nodes in a sensor network to large-scale complex systems,
such as flight control and factory automation. Because of this diversity, embed-
ded systems typically have requirements in different aspects of system perfor-
mance, which are, in turn, expressed as constraints on system resources, such
as space, time and energy. For example, in a cost-sensitive system, it may be
desirable to generate as small code as possible, since the amount of memory
used by application programs affect the component cost for memory modules.
On the other hand, many real-time systems have timing requirements that are
expressed in terms of deadlines that tasks must meet even in the worst-case.
For this type of system, the designer must guarantee the worst-case timing
performance since the system may function incorrectly without such a guaran-
tee. Guaranteeing the worst-case performance, however, could result in larger
code. Another constraint commonly found in mobile embedded systems is on
the energy consumption of the system, since an increasing number of them are
powered by batteries. Moreover, in general, most systems have a mixture of
these different requirements that interact or even conflict with each other in a
complex manner.

These different performance requirements, combined with other types of con-
straints, such as implementation cost and time-to-market requirement, make it
difficult for a system designer to apply a well-defined methodology in developing
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embedded systems. Motivated by this observation, we propose an embedded
system design framework that can be used to balance the tradeoff relation-
ship among code size, execution time, and energy consumption. The proposed
framework aims at providing a system designer with a parameterized view of
the system development process, where the system can be flexibly fine-tuned
with regard to the different performance criteria.

The tradeoff between code size and execution time is assumed to be en-
abled by providing different versions of code for the same application program,
which have different characteristics in terms of code size and execution time.
Specifically, we incorporate a code generation technique for a dual instruction
set processor that exploits the tradeoff between a program’s code size and its
WCET (worst-case execution time) [Lee et al. 2004]. A dual instruction set
processor [Lee et al. 2003] supports a reduced (compressed) instruction set in
addition to a full (normal) instruction set. By using the reduced instruction
set in code generation, an application program’s code size can be significantly
reduced, while its execution time is increased. Such dual instruction set pro-
cessors provide a mechanism to dynamically switch the instruction set mode
in which the processor executes [Furber 1996]. Therefore, using different in-
struction sets selectively for different program sections, we are able to flexibly
balance the tradeoff between a program’s code size and execution time.

On the other hand, we assume that the tradeoff between execution time and
energy consumption is enabled by using a variable voltage processor. Such a
processor provides a mechanism to reduce the energy consumption by lowering
the processor’s supply voltage at runtime. However, when the supply voltage
is lowered, the operating clock frequency must be lowered accordingly, which
leads to an increased execution time for programs. Therefore, by setting an
appropriate voltage/frequency level, we can exploit the tradeoff relationship
between the processor’s execution speed and energy consumption. The tech-
nique for dynamically adjusting the supply voltage and the clock frequency is
called a DVS (dynamic voltage scaling) technique.

Figure 1 shows the overall structure of the proposed design framework. The
design framework receives two sets of inputs: a system specification and an
optimization criteria. In the system specification, the task set defines the func-
tionality of the system, along with the tradeoff data between the code size and
execution time of each program. Besides, the system specification includes the
scheduling policy used to schedule the tasks, which must meet the timing re-
quirements associated with each of them. Finally, the hardware model describes
the hardware platform on which the applications are executed. This includes
the tradeoff data between the execution speed, i.e., the clock frequency, and the
energy consumption of the processor.

The optimization criteria are assumed to be specified by the system developer,
which describe the resource constraints and the goal of the design optimization.
The resource constraints are specified in terms of space, time, and energy. In
other words, they consist of the code size, the timing and the energy constraints
imposed on the system. On the other hand, the goal of the design optimization
is given in the form of an objective function that captures the system cost that
is desired to be minimized.
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Fig. 1. Overall structure of the proposed design framework.

Given these inputs, the design framework generates a set of design param-
eters in such a way that the resulting system satisfies the constraints imposed
on different aspects of the system resources and, at the same time, minimizes
the system cost function. The design parameters being derived are: (1) the code
generation parameters that are given to the code generator to select a version of
code for each application program and (2) the voltage setting parameters that
are given to the operating system so that it can adjust the voltage/frequency of
the processor at runtime. By deriving these design parameters that are used at
different levels of system development at the same time, the proposed design
framework can effectively exploit the tradeoff involving space, time, and energy.

The main contribution of the paper can be summarized as follows. First, we
identify the tradeoff relationship involving code size, execution time, and en-
ergy consumption, and propose a system optimization framework that flexibly
balances this tradeoff. Second, we formulate a multidirectional optimization
problem, show the NP-hardness of the problem, and provide a heuristic solu-
tion to it. Finally, we develop a framework where system design parameters can
be systematically drived from an abstract specification of system requirements,
which are given by the system developer.
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The rest of the paper is organized as follows. In Section 2, we describe the
system model and assumptions, and formulate an optimization problem that
we address. Section 3 details the algorithm for deriving the system design pa-
rameters. We present the results from simulations in Section 4. In Section 5,
we discuss the issues of extending our proposed framework by relaxing some
assumptions. We present a survey of related work in Section 6 and finally con-
clude the paper in Section 7.

2. SYSTEM MODEL AND PROBLEM DEFINITION

We describe the system model and assumptions of our proposed framework in
Section 2.1. Based on this, we formally define our problem of design parameter
derivation in Section 2.2.

2.1 System Model and Assumptions

We assume that the system consists of a set of tasks T = {τ1, τ2, . . . , τn}, where n
denotes the number of tasks. Each task τi is characterized by 〈pi, X i〉 as follows:

—Period pi: the fixed time interval between the arrival times of two consec-
utive requests of τi. We assume each task has a relative deadline equal to
its period. We further assume that the tasks are scheduled under the EDF
(earliest-deadline-first) scheduling policy, which has been shown to be an
optimal dynamic-priority scheduling algorithm [Liu and Layland 1973].

—Execution Descriptor List X i: the list that enumerates the possible pairs of
code size si and WCEC (worst-case execution cycles)1 ci of τi, under the as-
sumption that τi has multiple versions of executable code. That is,

X i = {xi, j = 〈si, j , ci, j 〉| j = 1, 2, . . . , Ki},
where xi, j denotes the j th element of X i, called an execution descriptor, si, j
and ci, j give the code size and WCEC of the j th version of executable code of τi,
and Ki denotes the number of elements in X i. In other words, the execution
descriptor list for a task essentially summarizes the tradeoff relationship
between the task’s code size and worst-case execution time.

We assume that each task’s execution descriptor list is derived by the se-
lective code transformation technique [Lee et al. 2004], which utilizes a dual-
instruction set processor. The greedy nature of this technique ensures that the
execution descriptor list X i satisfies the following two properties:

—The code size si, j increases while the WCEC ci, j decreases as the index j
increases. That is, �s

i, j = si, j −si, j−1 > 0 and �c
i, j = ci, j −ci, j−1 < 0, ∀i ∈ [1, n]

and ∀ j ∈ [2, Ki].

1Rather than the worst-case execution time (WCET), we use the notion of the worst-case execution
cycles (WCEC), that is the number of execution cycles in the worst case to execute for the com-
pletion of τi , since the execution time of programs can vary depending on runtime settings of the
voltage/frequency of the processor.
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—The marginal gain in the WCEC reduction for the unit increase in the code
size is monotonically nonincreasing, i.e.,

|�c
i, j+1|

�s
i, j+1

≤ |�c
i, j |

�s
i, j

, ∀i ∈ [1, n], ∀ j ∈ [2, Ki − 1]

Note that the minimum number of execution descriptors for a task is 2, because
xi,1 corresponds to the program compiled entirely into the reduced instruction
set (minimum code size and maximum execution cycles), and xi,Ki to the pro-
gram compiled entirely into the full instruction set (maximum code size and
minimum execution cycles).

We assume that the processor supports variable voltage and clock frequency
settings, where the operating frequency of the clock is proportional to the sup-
ply voltage. By lowering the supply voltage and thus the clock frequency, the
processor’s energy consumption can be reduced while execution performance
is degraded to a certain extent. We assume that the operating frequency can
be set at a continuous level. That is, if we let fi denote the CPU frequency at
which τi executes, fi ∈ (0, fmax], where fmax denotes the maximum clock fre-
quency at which the processor can run. We assume that the execution time of a
program is inversely proportional to the frequency setting. That is, if we denote
the execution time of a task τi by ti and the clock frequency by f , it holds that
ti ∝ 1/ f . In addition, since we assume that the energy consumption of the pro-
cessor is proportional to the supply voltage squared [Chandrakasan et al. 1992]
and that the supply voltage and the clock frequency are in a direct proportional
relationship. That is, if we let E denote the processor’s energy consumption, it
holds that E ∝ f 2.

For each task τi, we now define its energy consumption ei as proportional
to its WCEC and its CPU frequency squared [Chandrakasan et al. 1992] as
follows:

ei = κ
P
pi

ci f 2
i (1)

where κ gives the energy consumption constant and P = LCMn
i=1(pi) denotes

the hyperperiod, i.e., the least common multiple of periods of all the tasks. The
equation implicitly assumes that the energy consumed in a cycle is indepen-
dent of whether the processor is executing the reduced instruction or the full
instruction set. This assumption holds for the target processor (ARM7TDMI)
considered in this paper [Chang et al. 2002], but may not hold for other dual-
instruction set processors. Then, we define the system energy consumption E
as the total energy consumption of all tasks in a hyperperiod, i.e.,

E =
n∑

i=1

ei (2)

Finally, we define the system code size S as the sum of code sizes of all the
tasks, i.e.,

S =
n∑

i=1

si (3)
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2.2 Problem Definition

With the assumptions described in the previous section, we define our design op-
timization problem, called the SETO (size-energy-time optimization) problem.
Given the timing constraint of each task and a list of possible pairs of code size
and WCEC of each task, the SETO problem is to determine the code size, WCEC,
and CPU frequency of each task such that the system cost function is minimized
subject to the system’s resource constraints in terms of space, time, and energy.

The inputs and outputs of the SETO problem are as follows:

—Input: task set T . The inputs of the SETO problem are (1) the timing
constraint and (2) the code generation information of individual tasks. The
timing constraint of task τi is given by its period pi. The code generation
information of task τi is given by its execution descriptor list X i.

—Output: 〈V , F 〉. The outputs of the SETO problem are (1) an execution de-
scriptor that guides code generation decision for a task and (2) voltage (fre-
quency) setting that determines the DVS setting for that task. We define an
execution descriptor assignment vector V = 〈v1, v2, . . . , vn〉, where vi = j
indicates that the execution descriptor xi, j is assigned to task τi, and that
the task’s code size is si = si, j while its WCEC is ci = ci, j . We also define
a frequency assignment vector F = 〈 f1, f2, . . . , fn〉, where fi denotes the
frequency setting for task τi.2

As a constrained optimization problem, the SETO problem has the following
objective function and constraints:

—Optimization: To capture the resource costs in terms of memory space and
energy consumption considering their relative importance, we define the sys-
tem cost function as a linear combination of the system code size and the sys-
tem energy consumption, normalized to the upper bound imposed on each.
That is,

f (S, E) = α
S
S̄

+ β
E
Ē

(4)

where S denotes the system code size, E denotes the system energy consump-
tion, and coefficients α and β are constants, which we assume the system
designer provides to indicate the relative importance of code size and energy
consumption constraints, respectively. We also assume that the upper bound
on the system code size (S̄) and that on the system energy consumption (Ē)
are given by the system designer in the form of the design constraints, as will
be shortly discussed.
Note that the system cost function does not take the timing behavior into
account. Since in a hard real-time system, the timing requirement only serves
as a constraint and does not affect the value or cost of the system, the objective
function does not include the notion of time.

2In the problem formulation under discussion, fsys = f1 = f2 = · · · = fn for all the tasks in the task
set, since setting them all equal provides the optimal solution in terms of energy consumption under
the EDF scheduling algorithm. However, this does not hold for a different scheduling algorithm,
for example, the rate-monotonic (RM) algorithm [Shin et al. 2000; Saewong and Rajkumar 2003].
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—Constraints: The system’s resource requirements are defined in terms of
constraints imposed on space, time, and energy, as follows:
• Code size constraint. The system code size S must not exceed a given

upper bound S̄.
• Timing constraint. The task set must be schedulable under the given

scheduling policy, i.e., all the task instances must finish execution be-
fore their respective relative deadlines, which are equal to their periods,
respectively. We can check whether the timing constraint on the task set is
satisfied using a simple schedulability test, since the tasks are scheduled
by the EDF scheduling algorithm. The schedulability test calculates the
system utilization and determines that the whole task set is schedulable
if the utilization is below 1.0 [Liu and Layland 1973].

• Energy constraint. The system energy consumption E must not exceed a
given upper bound Ē.

In real-world applications, reducing code size may not linearly increase the
benefit (or interchangeably, reduce the cost) of the system. That is, provided
that the total code size of the system fits in the total available memory capac-
ity, further reducing the code size may not affect the system’s value. In such
a situation, a more viable approach will be one that models the code size con-
straint and/or the objective function using a discrete step function. The model
described in this paper in its current form does not allow the use of nonlinear
function in the system value function. However, the problem with a discrete
code size cost function can be formulated as a set of smaller subproblems with
different (distinct) code size constraints and then a best solution can be selected
among the solutions to these smaller subproblems.

The SETO problem is, given a task set, to find the execution descriptor assign-
ment vector V and the frequency assignment vector F such that the following
system cost function is minimized

f (S, E) = α
S
S̄

+ β
E
Ē

(5)

subject to

S =
n∑

i=1

si ≤ S̄ (6)

U =
n∑

i=1

ti

pi
≤ 1.0 (7)

E = κ

n∑
i=1

P
pi

ci f 2
i ≤ Ē (8)

where ti = ci/ fi denotes the (worst case) execution time of task τi. Inequalities
6, 7, and 8 guarantee the size, timing, and energy constraints, respectively.

We present the following theorem to show that the SETO problem is in-
tractable.
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THEOREM 2.1. The SETO problem is NP-hard.

PROOF. The proof is via a polynomial-time reduction from the subset sum
problem that is known to be NP-complete [Garey and Johnson 1979]. Let a set
of positive integers A = {a1, . . . , an} and k represent an instance of the subset
sum problem. Assume that for each i, 1 ≤ i ≤ n, ai ≥ 1 and

∑n
i=1 ai = M .

For reduction, for each i, 1 ≤ i ≤ n, we first construct the execution descriptor
list X i of τi such that X i = {〈ε, ai − ε〉, 〈ai − ε, ε〉}, where ε < 1/n. We pick the
coefficients of the system cost function, α and β, such that α = 1 and β =
0. We also pick the system code size upper bound S̄ and the system energy
consumption upper bound Ē such that S̄ = M and Ē = κM . We pick the system-
level CPU frequency Fsys such that Fsys = 1.0, and thus the CPU frquency fi
of each τi is constructed as fi = 1.0. We finally construct the period pi of τi such
that pi = k. The energy consumption ei of τi is κci.

In any schedule,
∑n

i=1(ci + si) = M . The system code size and energy con-
sumption constraints are then always met;

∑n
i=1 si < S̄ and

∑n
i=1 ei < Ē. In any

feasible schedule, the timing constraint should be met;
∑n

i=1 ci ≤ k. Then, in
any feasible schedule,

∑n
i=1 si ≥ M − k. Considering ε < 1/n, we know that the

minimum system code size is between M − k and M − k + 1. Considering α = 1
and β = 0, the system cost function is minimized if, and only if, the system code
size is minimized. The minimum system code size is achieved if, and only if,
there is a subset A′ of A such that the sum of the elements of A′ is k.

Given the difficulty of the SETO problem, a natural approach is to develop
a heuristic algorithm that can effectively address the SETO problem.

3. OPTIMIZATION ALGORITHM

We propose an algorithm that assigns to each task an execution descriptor and
the processor’s operating frequency in such a way that the assignment meets
the design goals described in the previous section. The algorithm consists of two
distinct phases. In the first phase, it tries to satisfy the constraints imposed on
the system’s code size, timing behavior, and energy consumption, while the sec-
ond phase is aimed at minimizing the system cost function. The first phase
begins with the smallest code size possible for each task by using an initial exe-
cution descriptor assignment vector V = 〈1, 1, . . . , 1〉. Then, aiming at meeting
the timing and the energy constraints, the algorithm iteratively transforms the
assignment vector. In each iteration of the algorithm, it selects a task whose
code size is to be increased while the system code size does not exceed the given
upper bound. In return for the increased code size of the selected task, the
workload generated by the task is reduced, which not only makes the task set
more likely to be schedulable, but also reduces the system’s energy consump-
tion. Specifically, assuming the current execution descriptor assignment vector
is V = 〈v1, v2, . . . , vn〉, each iteration of the algorithm selects an execution de-
scriptor from the candidate set {xi, j |i ∈ [1, n] and j ∈ [vi + 1, Ki]}3 and assigns

3If vi = Ki for a task τi , then the candidate set does not contain any execution descriptor for that
task.
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vi = j . The selection is made in such a way that the system workload is reduced
as much as possible for the unit increase in the code size.

Once both the timing and the energy constraints are met, the first phase is
terminated and the second phase begins. In the second phase, the algorithm
continues transforming the execution descriptor assignment vector by select-
ing an execution descriptor and assigning it to the corresponding task, where
the selection is geared toward minimizing the system cost function. Note that
the resource constraints remain satisfied during the second phase. Since the
transformation reduces the system workload, the timing and energy constraints
cannot be violated, while the code size constraint is checked in every iteration
of the transformation. The algorithm terminates when (1) selecting any of the
execution descriptors remaining in the candidate set would violate the system
code size constraint, or (2) no further reduction of the system cost function can
be made by the transformation, i.e., the system cost function has been mini-
mized.

After the algorithm finishes, the clock frequencies for tasks F = 〈 f1, f2,
. . . , fn〉 are assigned with a single value for all the tasks, i.e., fi = f , ∀i ∈
[1, n], which is shown to be optimal in terms of energy consumption under the
EDF scheduling policy [Saewong and Rajkumar 2003]. Calculating the optimal
setting for the clock frequency f will be discussed later in Section 3.1.

In Sections 3.1 and 3.2, we show that throughout the transformation process,
a single selection criteria can be used that favors the execution descriptor with
the maximum ratio of reduction in the system workload to the increase in the
code size. In Section 3.3, we will show that a simple greedy heuristic can be
employed for this purpose, which has a low complexity but yet produces near-
optimal results.

3.1 Phase 1: Satisfying the Timing and Energy Constraints

The first phase of the assignment algorithm repeats selecting a task and in-
creasing its code size until the timing and energy constraints are satisfied. The
selection is made in such a way that both constraints are met with the increase
in the system code size as small as possible. Therefore, in selecting an execu-
tion descriptor, the algorithm favors the one with the maximum reduction of
the system workload for the unit increase in code size, as will be described in
the following.

As explained earlier in Section 2.2, we can check whether the timing con-
straint is met by using a simple schedulability test that compares the system
utilization against the upper bound of 1.0. To be more specific, the deadlines of
all the tasks are met if, and only if, the processor utilization is less than or equal
to 1.0, assuming that all the task instances are executed using the maximum
frequency of the processor. If we use the same operating frequency f for all the
task instances, the processor utilization can be represented as a function of the
frequency. That is, U ( f ) = ∑n

i=1 ti/pi = (1/ f )
∑n

i=1 ci/pi, and the schedulability
condition states that U ( fmax) ≤ 1.0. Furthermore, under the EDF scheduling
algorithm, the optimal clock frequency setting is to use the same clock frequency
for all the task instances in such a way that makes the processor utilization
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equal to 1.0 [Saewong and Rajkumar 2003]. That is, if U ( fmax) is less than or
equal to 1.0, setting fi = fmax ×U ( fmax), ∀i ∈ [1, n] guarantees that the timing
constraints of all the tasks are met, and at the same time minimizes the energy
consumption of the task set.

Based on this observation, if the task set is not schedulable with the initial
execution descriptor assignment vector V = 〈1, 1, . . . , 1〉, the algorithm tries
to lower the task set’s processor utilization by selecting a task and reduce its
WCEC while increasing a certain amount of code size. For this purpose, the
algorithm selects an execution descriptor from the candidate set that has the
largest ratio of the reduction of utilization to the increase in the code size.
In order to estimate the reduction of the processor utilization by selecting an
execution descriptor, we rewrite the equation for the utilization as

U ( f ) = 1
f

n∑
i=1

ci

pi
= 1

f P

n∑
i=1

(
P
pi

)
ci = 1

f P

n∑
i=1

wi (9)

where wi = (P/pi)ci gives the number of clock cycles required by all the in-
vocations of task τi during a hyperperiod. Based on this, the algorithm selects
the execution descriptor xi, j with the maximum value of |�wi, j |/�si, j , where
�wi, j = wi, j − wi and �si, j = si, j − si. We call this ratio |�wi, j |/�si, j the work-
load reduction factor of the execution descriptor xi, j and it is used throughout
the entire transformation process.

On the other hand, the energy consumption by the processor in a hyperpe-
riod is calculated by E = κ

∑n
i=1(P/pi)ci f 2

i , as in Eq. (8) presented earlier in
Section 2.2. If we set the operating frequency of all the tasks to be fi = f , the
energy consumption becomes E = κ f 2 ∑n

i=1 wi. Letting f = fmax × U ( fmax) =
1
P

∑n
i=1 wi gives

E = κ

P2

(
n∑

i=1

wi

)3

(10)

Therefore, in order to satisfy the energy constraint with the smallest increase
in the total code size, the algorithm selects the execution descriptor xi, j with
the maximum workload reduction factor, which is the same selection criteria
used in satisfying the timing constraint.

This means that the first phase of the algorithm can be driven by a single
selection criteria for the execution descriptor to achieve its goal of satisfying
both the timing and energy constraints with the smallest increase in the code
size. That is, the algorithm incrementally transforms the execution descriptor
assignment vector by selecting in each iteration an execution descriptor xi, j
with the maximum workload reduction factor among the ones in the candidate
set. This selection is repeated until both the constraints are met, after which the
algorithm moves on to its second phase where it tries to minimize the system
cost function. In the case where either of the two constraints cannot be satisfied
by the incremental transformation, the algorithm terminates and determines
that there is no assignment of execution descriptors that makes the task set
feasible under the given set of constraints.
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3.2 Phase 2: Minimizing the System Cost Function

Once the timing and the energy constraints are met, the algorithm tries to
minimize the system cost function by balancing the tradeoff between the system
code size and the energy consumption. As mentioned earlier in Section 2.2, the
system cost function is represented as a linear combination of the system code
size and the system energy consumption, which is given by

f (S, E) = α
S
S̄

+ β
E
Ē

= α

S̄

n∑
i=1

si + βκ

P2 Ē

(
n∑

i=1

wi

)3

(11)

where nonnegative constants α and β reflect the relative importance of the
system code size and the system energy consumption constraints, respectively.
The second phase of the algorithm uses the same strategy in transforming
the execution descriptor assignment vector by selecting a task and increasing
its code size in exchange for reduced energy consumption. In doing this, the
value of the system cost function may increase or decrease depending on the
amount of code size increase and the energy consumption reduction. Therefore,
the algorithm should pay attention to the change in the system cost function,
as explained in the following.

Suppose that the algorithm has selected an execution descriptor xi, j to be
used in transforming the execution descriptor assignment vector. The system
code size then increases, whereas the total energy consumption is reduced,
because (1) the total workload generated by the task set is reduced and (2) the
operating frequency can be lowered accordingly. That is, the value of the system
cost function after the transformation is f ′ = α(S′/S̄) + β(E ′/Ē), where{

S′ = S + �S (�S > 0)
E ′ = E − �E (�E > 0) (12)

The reduction of the system cost function can be calculated by � f = f − f ′ =
β(�E/Ē) − α(�S/S̄). If we let �E = γ�S, we have � f = (γβ/Ē − α/S̄)�S.
Therefore, for the reduction � f to be positive, the selection by the algorithm
should have γ > α Ē/β S̄, since we assume α > 0 and β > 0. Furthermore,
in order to achieve the maximum reduction of the cost function, the algorithm
should select the execution descriptor that corresponds to the largest value
of γ , i.e., the largest ratio of �E to �S. Since the largest reduction of the
energy consumption can be achieved by the largest reduction of the system
workload, the above mentioned selection is equivalent to selecting the one with
the maximum workload reduction factor, which is the same selection criteria
used in the first phase.

Therefore, the second phase of the algorithm selects the execution descrip-
tor xi, j with the maximum workload reduction factor, provided that �E/�S >

α Ē/β S̄ and �si, j ≤ S̄ − S. If assigning the execution descriptor with the max-
imum workload reduction factor would increase the system cost function, i.e.,
if �E/�S ≤ α Ē/β S̄, selecting any other execution descriptor would degrade
the system cost function as well. In such a case, the optimization process is
terminated and the final solution is generated. On the other hand, if assigning
the execution descriptor with the maximum workload reduction factor would
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violate the code size constraint, i.e., if �si, j > S̄ − S, the algorithm checks
the one with the next largest workload reduction factor by resuming the selec-
tion procedure after eliminating from the candidate set the execution descriptor
with the maximum workload reduction factor. If there remains no execution de-
scriptor in the candidate set, this means that no task’s workload can be further
reduced, in which case the algorithm finishes with the current assignment. The
next section describes the assignment algorithm and discusses its properties
and complexity.

3.3 The Assignment Algorithm

Figure 2 shows the ALG algorithm that assigns execution descriptors to tasks.
The ALG algorithm, in both the first and the second phases, selects the execu-
tion descriptor with the maximum workload reduction factor in a greedy fash-
ion. Also, note that in the case where either of the timing and energy constraints
cannot be satisfied within the code size limit, the first phase of the algorithm
determines that no assignment is possible such that the task set meets those
requirements. On the other hand, in the second phase, the algorithm contin-
ues the transformation of the execution descriptor assignment vector, either
(1) until the system cost function is minimized, or (2) until the transformation
has consumed all the remaining code space. After the algorithm has finished,
V will contain the assignment of execution descriptors for all the tasks, from
which the code generation decisions can be made.

The algorithm does not examine all the execution descriptors of tasks in each
iteration. Instead, it checks only one execution descriptor for each task in se-
lecting the one with the maximum workload reduction factor. Specifically, since
each task’s execution descriptor list has the property that the marginal gain in
the ratio of reduction of the WCEC to the increase of the code size (|�ci, j |/�si, j )
is monotonically nonincreasing, as previously mentioned in Section 2.1, the
workload reduction factors (|�wi, j |/�si, j = (P/pi)|�ci, j |/�si, j ) are also in a
nonincreasing order. That is, the execution descriptors xi, j+1, xi, j+2, . . . , xi,Ki for
a task τi cannot have a greater workload reduction factor than the execution
descriptor xi, j for the same task τi. Therefore, assuming that the current exe-
cution descriptor assignment vector is {v1, v2, . . . , vn}, the algorithm only needs
to examine X = {xi, j |i ∈ [1, n], j = vi + 1}4 for the purpose of selecting an
execution descriptor among the remaining ones for all the tasks.

The algorithm has a substantially lower time complexity than an exhaustive
search algorithm. That is, the number of iterations of the proposed algorithm
is

∑n
i=1(Ki − 1) in the worst case, which is linear to the number of tasks. On

the other hand, an exhaustive search would require the complexity of 	n
i=1Ki,

which is exponential to the number of tasks and thus is considered impractical.
Finally, the algorithm can be further improved by maintaining an ordered

list for the candidate set X , with the workload reduction factor as the key.
Having such an ordered list, selecting an execution descriptor with the maxi-
mum workload reduction factor takes constant time and adding an execution

4Again, if vi = Ki for a task τi , this candidate set does not contain any execution descriptor for that
task.
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Fig. 2. The algorithm ALG for assigning an execution descriptor to each task.

descriptor to the set requires O(log(|X |)) time, which would otherwise require
time complexity of O(|X |) and constant time, respectively.

3.4 Reverse-Direction Version

Thus far, we have described the proposed ALG algorithm and now we present
its reverse-direction version (ALG-R).5 While the ALG algorithm works from

5This algorithm was suggested by an anonymous reviewer.
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Table I. Benchmark Programs Used in the Experiments

Number of
Name Source Description exec. desc.

crc SNU-RT 32-bit CRC checksum computation 7
fir SNU-RT Finite impulse response filter 10
jfdctint SNU-RT Integer discrete cosine transform 5

for the JPEG image compression algorithm
ludcmp SNU-RT Solution to 10 simultaneous linear equations 5

by the LU decomposition method
matmul SNU-RT multiplication of two 5 × 5 integer matrices 7
adpcm.rawcaudio MiBench Adaptive differential pulse code 3

modulation speech encoding
G.721.encode MediaBench CCITT G.721 voice compression 7
blowfish public domain Symmetric block cipher used for 8

data encryption

the smallest possible code size of each task toward the largest possible code
size, the ALG-R algorithm works the other way around, i.e., from the largest
possible code size of each task toward the smallest possible code size. The ALG-
R algorithm works as follows:

—Phase 1. The first phase begins with the largest code size possible for each task
by using the last execution descriptor for each task, i.e., V = 〈K1, K2, . . . , Kn〉.
In this phase, the algorithm tries to reach a point where all constraints
are met. It selects the execution descriptor xi, j with the minimum value
of �wi, j /|�si, j | (workload increase factor), where �wi, j = wi, j − wi and
�si, j = si, j − si. We note that the ALG algorithm selects a task with the
maximum workload reduction factor.

—Phase 2. Given that all constraints are met, we try to decrease the system cost
function as much as possible, by choosing a task with the minimum workload
increase factor as long as the chosen task does not increase the system cost
function.

—Assignment. The assignment step is the same as the ALG algorithm.

4. RESULTS

To assess the effectiveness of the proposed algorithm (ALG) and its variation
(ALG-R), we simulated them with benchmark programs. Section 4.1 describes
the simulation setup used for the performance analysis; Section 4.2 presents
the results from simulations.

4.1 Simulation Setup

For the simulations, we obtained a set of benchmark programs from three
different benchmark suites: SNU-RT real-time benchmark suite [SNU],
MiBench [Guthaus et al. 2001], and MediaBench [Lee et al. 1997]. One ex-
ception is the blowfish program, which has been obtained from the public do-
main sources. Table I lists the programs used in the simulations. In the table,
the first column shows the name of each benchmark, while the second one de-
notes the source of each program. The third column gives a brief description of
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each benchmark program, and the final column shows the number of elements
in each benchmark program’s execution descriptor list (Ki).6 Note that the
number of execution descriptors differs from one program to another, as it de-
pends on the characteristics of the specific benchmark program.

For simulations, we have five simulation parameters as follows:

—The number of tasks (n). We set the variable n equal to 2, 3, . . . , and 8.
—The tightness of the code size constraint (rS). We set the variable rS equal to

0.2, 0.4, . . ., and 1.0 to determine the upper bound on the system code size S̄
as follows:

S̄ = rS · (Smax − Smin) + Smin,

where Smax and Smin represent the maximum and minimum possible sys-
tem code sizes, respectively. In other words, a smaller value of rS means a
tighter system code size constraint, whereas a larger value means a looser
constraint, with an extreme case being when rS = 1.0, where the code size is
not constrained at all.

—The tightness of the energy constraint (rE ). Similar to rS , we set the variable
rE equal to 0.2, 0.4, . . ., and 1.0 to determine the upper bound on the system
energy consumption Ē as follows:

Ē = rE · (Emax − Emin) + Emin

where Emax and Emin denote the maximum and minimum possible system
energy consumption, respectively.

—The initial system utilization (rU ). We define the initial system utilization
rU as the utilization of the task set when the execution descriptor assign-
ment vector is V = 〈1, 1, . . . , 1〉 and the frequency assignment vector is
F = 〈 fmax, fmax, . . . , fmax〉. The initial system utilization rU is adjusted by
determining the period pi of each task τi by pi = ci,1 · n/rU , while we set the
variable rU equal to 0.2, 0.4, . . ., and 1.0.

—The relative importance of code size constraint and energy consumption con-
straint in the system cost function (α and β). To vary the relative importance
of the system code size constraint and the system energy consumption con-
straint, we vary the relative importance of the two optimization criteria by
letting α = 0.0, 0.2, . . ., and 1.0 and β = 1.0 − α.

For each value of the number of tasks, n = 2, 3, . . . , and 8, we generated 30
different task sets in a random manner from a set of benchmark programs.7

6Specifically, the number of execution descriptors for a program is derived by using a selective code
transformation technique described in Lee et al. [2004]. The technique begins with the smallest
code size possible for a given program, and then gradually increases the code size while satisfying
the constraint given on the upper bound on the total code size. In return for the increased code
size, the WCET of the program is reduced. The technique proposed in Lee et al. [2004] generates
code for the program so that the WCET is minimized within the code size constraint. By applying
the technique, while adjusting the code size constraint, we can derive the possible set of execution
descriptors for the given program.
7To generate 30 different task sets, we added a modified crc program when n = 2, 6, and 7, and
modified crc and matmul programs when n = 8.
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Table II. Impact of the Number of Tasks on the Solution Quality

Closeness Solution Percentage (%)
Number of Mean (std. dev.) Worst-case Optimal Feasible
Tasks ALG ALG-R ALG ALG-R ALG ALG-R ALG ALG-R
2 1.000 (0.004) 1.000 (0.003) 1.236 1.185 90.9 88.0 95.8 95.7
3 1.001 (0.005) 1.001 (0.003) 1.156 1.122 88.1 84.2 98.2 97.9
4 1.001 (0.004) 1.001 (0.003) 1.089 1.057 87.8 83.0 99.5 99.1
5 1.001 (0.003) 1.000 (0.002) 1.056 1.032 87.4 81.1 99.7 99.5
6 1.000 (0.002) 1.000 (0.001) 1.029 1.015 87.4 81.9 99.9 99.9
7 1.000 (0.001) 1.000 (0.001) 1.017 1.011 87.3 83.0 100.0 100.0
8 1.000 (0.001) 1.000 (0.001) 1.014 1.009 86.8 81.5 100.0 100.0

For each task set, the other four simulation parameters, combined together,
give us a total of 750 different simulation cases. That is, since rS , rE , and rU
have five different values, respectively, and the combination of α and β has six
distinct values, the combination of all these values results in 5×5×5×6 = 750
distinct cases.

Three performance metrics are used to measure the effectiveness of our pro-
posed algorithm. One is the feasible solution percentage, which is the percentage
of simulation cases, where an algorithm finds a feasible solution. Another is the
optimal solution percentage, which is the percentage of simulation cases, where
an algorithm finds an optimal solution. Here, the optimal solution is defined
to be an assignment that gives the minimum value of the objective function,
which is found by an exhaustive search over all the possible combinations of the
assignment. The final metric is the closeness, which represents the closeness of
the solution of an algorithm to an optimal solution. The closeness of a solution
z to the optimal solution z∗ is defined as follows:

closeness(z) = z
z∗ (13)

We computed the mean of closeness of an algorithm’s solutions only for its
feasible solutions.

We simulated two heuristic algorithms over all the simulation cases for each
number of tasks and also performed an exhaustive search to find an optimal
solution.

4.2 Simulation Results

Table II presents the results to show the impact of the number of tasks (n) on the
effectiveness of the two algorithms, which are our proposed algorithm (ALG)
and its reverse-direction version (ALG-R). It is shown that these two algorithms
generate near-optimal solutions, with the average closeness no greater than
1.001, while ALG-R performs slightly better than ALG in terms of generating
the worst-case closeness. The worst-case closeness of ALG ranges from 1.014 to
1.236 and that of ALG-R ranges from 1.009 to 1.185. Two algorithms perform
similarly in finding feasible solutions, but ALG performs slightly better than
ALG-R in finding optimal solutions. The optimal solution percentage of ALG
ranges from 86 to 91%, while that of ALG-R ranges from 81 to 88%.
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Table III. Impact of the Tightness of the Code Size Constraint on the Solution Quality

Closeness Solution percentage (%)
Mean (std. dev.) Worst-case Optimal Feasible

rS ALG ALG-R ALG ALG-R ALG ALG-R ALG ALG-R
0.20 1.000 (0.002) 1.001 (0.002) 1.022 1.016 83.7 73.8 98.7 97.3
0.40 1.001 (0.003) 1.001 (0.002) 1.056 1.032 85.2 77.5 100.0 100.0
0.60 1.001 (0.003) 1.000 (0.002) 1.056 1.032 86.7 80.1 100.0 100.0
0.80 1.001 (0.003) 1.000 (0.002) 1.056 1.032 89.1 81.1 100.0 100.0
1.00 1.001 (0.003) 1.000 (0.002) 1.056 1.032 91.5 93.1 100.0 100.0

As the number of tasks increases, the algorithms generate a worst-case so-
lution closer to the optimal one. With a large number of tasks, the algorithms
have a number of different possible selections for the execution descriptor as-
signment. Therefore, even if the algorithms make suboptimal decisions, the
solutions are more likely to be close to the optimal one, since the algorithm
have a number of choices of tasks whose code size is increased in return for
reduced workload.

On the other hand, the optimal solution percentage of the two algorithms
decreases as the number of tasks increases. This can be explained as follows.
When there are a large number of tasks, the solution space is large, i.e., there
exist a number of different feasible solutions. Therefore, a number of execution
descriptor assignments are possible that are different from the optimal one, but
yet very close to it, which leads to the situations that both of the two algorithms
generate solutions different from the optimal one. However, even in such cases,
the magnitude of the closeness for the algorithms is negligibly small, which
indicates that the algorithms can always derive a near-optimal solution.

To assess the impact of the other parameters, we summarize the simulation
results in a number of different ways. In doing this, we fixed the number of
tasks to n = 5, while all the parameters other than the one being considered
are varied in the manner explained in Section 4.1. The simulation results are
averaged over all the combinations of the varying parameters.

First, we analyzed the impact of the tightness of the system code size con-
straint on the solution quality by varying the variable rS . The results are shown
in Table III. When the constraint on the system code size is tight, i.e., when the
value of rS is small, the algorithms should efficiently reduce the workload of the
task set by distributing the small additional code space to appropriate tasks. On
the other hand, when the constraint is loose, i.e., when the value of rS is large,
the algorithms are allowed to more freely select a task whose code size is to be
increased for reduced workload. Therefore, the optimal solution percentage of
the proposed algorithm becomes higher as the value of rS increases.

Table IV shows the simulation results according to the variation in the tight-
ness of the system energy consumption constraint. The average closeness of the
algorithms is shown to be immune to the tightness of the energy consumption
constraint. On the other hand, as the value of rE increases, the worst-case
closeness of the algorithms gets smaller and their optimal solution percentage
becomes higher.

Table III and IV also show that ALG generally performs better than ALG-
R in terms of finding optimal solutions, except when there is no code size
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Table IV. Impact of the Tightness of the Energy Constraint on the Solution Quality

Closeness Solution percentage (%)
Mean (Std. Dev.) Worst-Case Optimal Feasible

rE ALG ALG-R ALG ALG-R ALG ALG-R ALG ALG-R
0.2 1.002 (0.005) 1.001 (0.004) 1.056 1.032 75.3 73.2 99.0 97.7
0.4 1.001 (0.002) 1.000 (0.001) 1.023 1.013 86.1 79.5 99.7 99.7
0.6 1.001 (0.003) 1.000 (0.002) 1.021 1.016 89.9 83.1 100.0 100.0
0.8 1.000 (0.001) 1.000 (0.001) 1.010 1.012 95.1 87.7 100.0 100.0
1.0 1.000 (0.001) 1.000 (0.001) 1.010 1.012 89.8 82.2 100.0 100.0

Table V. Impact of the System Utilization on the Solution Quality

Closeness Solution Percentage (%)
Mean (std. dev.) Worst-case Optimal Feasible

rU ALG ALG-R ALG ALG-R ALG ALG-R ALG ALG-R
0.2 1.001 (0.003) 1.000 (0.002) 1.056 1.032 87.3 81.2 99.7 99.5
0.4 1.001 (0.003) 1.000 (0.002) 1.056 1.032 87.2 81.1 99.7 99.5
0.6 1.001 (0.003) 1.000 (0.002) 1.056 1.032 87.3 81.1 99.7 99.5
0.8 1.001 (0.003) 1.000 (0.002) 1.056 1.032 87.2 81.1 99.7 99.5
1.0 1.001 (0.003) 1.000 (0.002) 1.056 1.032 87.2 81.1 99.7 99.5

Table VI. Impact of the Relative Importance of the System Code Size and the System Energy
Consumption on the Solution Quality

Closeness Solution Percentage (%)
Mean (Std. Dev.) Worst-Case Optimal Feasible

α ALG ALG-R ALG ALG-R ALG ALG-R ALG ALG-R
0.0 1.000 (0.001) 1.001 (0.002) 1.007 1.012 80.5 37.5 99.7 99.5
0.2 1.000 (0.000) 1.000 (0.001) 1.005 1.006 97.7 94.6 99.7 99.5
0.4 1.000 (0.001) 1.000 (0.001) 1.015 1.011 97.3 98.1 99.7 99.5
0.6 1.000 (0.002) 1.000 (0.001) 1.028 1.018 92.7 95.2 99.7 99.5
0.8 1.001 (0.003) 1.000 (0.002) 1.042 1.025 83.6 87.0 99.7 99.5
1.0 1.002 (0.006) 1.001 (0.004) 1.056 1.032 71.6 74.5 99.7 99.5

constraint, i.e., when rS = 1.0. With no code size constraint, but energy and
time constraints, ALG-R can perform better than ALG, since ALG starts from
the largest energy consumption (smallest code size) of each task while ALG-R
starts from the smallest energy consumption (largest code size).

Table V summarizes the results according to the varying initial system uti-
lization. The system utilization constrains the optimization problem in the form
of tightness of timing constraint for each task. Since the EDF scheduling algo-
rithm is able to meet the deadlines of all the tasks provided that the system
utilization (under the maximum frequency settings) is under 1.0, the system
utilization has a direct relationship with the schedulability of the task set and
thus the timing constraints. The results do not differ significantly, depending
on the initial system utilization. That is, the timing constraint does not have
a great influence on the solution quality, since it does not affect the procedure
of minimizing the objective function once all the tasks are guaranteed to meet
their respective deadlines.

Finally, Table VI shows the results according to the relative importance of
the system code size and the system energy consumption.When α = 0.0 and
β = 1.0 − α = 1.0, the objective function consists only of the system energy
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consumption, where the optimization goal is to minimize the system energy
consumption. On the other hand, when α = 1.0 and β = 0.0, the optimization
goal is to solely minimize the system code size, indicated by the objective func-
tion simply denoting the system code size. As shown in the table, the relative
importance given by the system developer does not have a great impact on
the solution quality, in terms of both the worst-case closeness and the optimal
solution percentage.

Two notable cases from the others are when α = 1.0 and α = 0.0, where we
have a smaller optimal solution percentage for both algorithms. These corre-
spond to the cases where the optimization goal is merely the system code size
or the system energy consumption only. Since the algorithms use the workload
reduction (increase) factor as the criteria in selecting the task whose code size
is increased (reduced) for a reduced (increased) workload in order to reduce a
combination of the system code size and energy consumption, such performance
degradation is possible when the objective function captures only the system
code size or the system energy consumption. That is, in selecting a task and in-
creasing its code size, the algorithms give priority to the one with the maximum
workload reduction factor (minimum workload increase factor), instead of the
one with the smallest increase in code size or in energy consumption. Even in
such cases, both algorithm’s average closeness was no greater than 1.002.

5. DISCUSSION

Thus far, we have addressed the proposed optimization problem under the as-
sumptions that (1) the operating frequency of the processor can be continu-
ously scaled and (2) the execution descriptor list of each task has the property
of monotonically nonincreasing workload reduction factors. This section dis-
cusses the issues of extending our design framework in relaxing these two
assumptions.

5.1 Discrete-Level CPU Frequency Settings

In Section 2.1, we assumed that the clock frequency of the processor can be set
at a continuous level. However, using continuously variable clock frequencies
is infeasible, because it requires significant power and hardware cost [Ishihara
and Yasuura 1998]. In other words, real processors usually have a finite number
of operating frequencies and clock frequencies cannot be continuously scaled.
To sustain acceptable performance and timeliness guarantee, these processors
have to operate at the next higher energy-efficient operating frequency( f ′) if
a desired frequency is not available [Saewong and Rajkumar 2003]. That is,
where the processor has Q levels of clock frequency (i.e., f ′ ∈ {F1, F2, . . . , FQ }
and fmax = FQ ), the next higher clock frequency( f ′) can be determined as

f ′ = MIN { Fi | U (FQ ) · FQ ≤ Fi , 1 ≤ i ≤ Q} (14)

Although the schedule of the task set is feasible under f ′, it may not result
optimal energy efficiency. When the resulting processor utilization is less than
1.0 (i.e., U ( f ′) < 1.0), the processor is not fully utilized and there are idle
times in the task schedule. In this case, some tasks may have a chance to lower
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their clock frequencies one more step, so that tasks may have different clock
frequencies in order to improve the energy efficiency.

For this problem, several DVS algorithms were proposed in [Ishihara and
Yasuura 1998; Kwon and Kim 2003]. However, these algorithms cannot be di-
rectly used for the periodic task model. In this paper, we formulate this problem
as a well known 0/1 Knapsack problem, and it can be solved using a traditional
search algorithm.

Where the clock frequency for τi is

fi = { Fqi | Fqi ∈ {F1, F2, . . . , FQ } , 1 ≤ qi ≤ Q}
the set of current clock frequencies for tasks is

F = { f1, . . . , fn} = {Fq1 , . . . , Fqn}
Our goal is to find a set of tasks which can be scheduled with the next lower
clock frequency(Fqi−1) while the feasible schedule of tasks is still guaranteed
(U (F ′) ≤ 1, where U (F ′) is the processor utilization when tasks are scheduled
with F ′). Let the solution be L = {li|li ∈ [0, 1], 1 ≤ i ≤ n}. If τi can be scheduled
with a next lower clock frequency, then li is set to 1; otherwise to 0. Then the
problem can be formulated as follows.

—Find L = {l1, . . . , ln}
• (Objective) which maximizes

U ′ =
n∑

i=1

ti

pi
=

n∑
i=1

ci

pi · Fqi−li

• (Constraints) while satisfying

U ′ ≤ 1 and ∀i ∈ [1, n] , qi − li > 0 where li ∈ {0, 1}
• (Assignment) When the solution(L) is found, the clock frequency for each

task can be adjusted as

∀i ∈ [1, n] , qi = qi − li and fi = Fqi .

Even if the tasks are scheduled with these lowered clock frequencies, the
task set may not fully utilize the processor (i.e., U (F ′) < 1). In this case, we
may iterate the above procedure until no task can be scheduled with a further
lowered clock frequency.

5.2 Nonconvex Property of Execution Descriptor List

So far, we have assumed that the execution descriptor list of each task has
the property of monotonically nonincreasing workload reduction factors. The
proposed algorithm presented in Section 3.3 needs to examine only one execu-
tion descriptor for each task because of this property. That is, the candidate set
X = {xi, j |i ∈ [1, n], j = vi + 1} only contains, at most, one execution descriptor
for a task, which is immediately following the one xi,vi that is currently assigned
during the iteration of the proposed algorithm. However, when we relax this
assumption on the execution descriptor list property, the algorithm should ex-
plore an extended candidate set X ∗ = {xi, j |i ∈ [1, n], j ∈ [vi + 1, Ki]} that lists
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all the execution descriptors for a task that have larger code sizes than the one
currently assigned for that task (i.e., xi,vi ). That is, by substituting X with X ∗ in
the proposed algorithm, we can solve the same problem of finding the execution
descriptor assignment vector, without assuming any property for the execution
descriptor list for each task.

This modified algorithm still has a significantly lower time complexity than
an exhaustive search algorithm. If we let K denote the sum of number of execu-
tion descriptors for all the tasks, i.e., K = ∑n

i=1 Ki, then the worst-case number
of evaluations of the execution descriptors is given by

∑K
i=1(K −i) = (K 2−K )/2.

Since K is proportional to the number of tasks n, this indicates that the time
complexity of our modified algorithm is O(n2), while that of the algorithm pre-
sented in Section 3.3 is linear to the number of tasks. Note that this complexity
is still polynomial to the number of tasks, while that of the exhaustive search
is 	n

i=1Ki, which is exponential to the number of tasks.

6. RELATED WORK

In general, a program’s code size and its execution time have a tradeoff rela-
tionship with each other. When main memory was a scarce and costly resource,
much effort was made to keep the code size as small as possible. Microprogram-
ming approaches and CISC (complex instruction set computing) architectures
are typical examples of techniques for code size reduction. However, with the in-
crease of memory capacity, the emphasis has been shifted onto enhancing the ex-
ecution time. Along with the evolution of RISC (reduced instruction set comput-
ing) and VLIW (very long instruction word) architectures, a number of aggres-
sive compiler techniques have been developed aiming at improving a program’s
execution speed in exchange for an increase in code size. Examples include loop
unrolling, software pipelining, and procedure inlining [Muchnick 1997].

Recently, especially in the embedded domain, software techniques for code
size reduction have been widely developed, since the cost of main memory is
often critical in these systems [Sutter and Furhere 2003]. Techniques based
on code compression [Cooper and McIntosh 1999] and procedural abstrac-
tion [Fraser et al. 1984] attempt to reduce the amount of memory occupied
by program code, despite the fact that they may degrade the execution speed.
Another approach for code size reduction is by using mixed-width instruction
sets [Krishnaswamy and Gupta 2002], where the processor supports a reduced
bit-width in addition to a normal instruction set.

While the above-mentioned techniques generally aim at addressing the code
size constraint often imposed on embedded systems, challenges in compiler
techniques for embedded real-time systems also lie in handling the WCEC
instead of average-case performance. For example, Zhao et al. [2004] proposed
a method to tune the worst-case performance of an application program via
an interactive compiler optimization framework. The approach aims at finding
a program transformation sequence that yields good worst-case performance,
by allowing the user to gauge the progress of reducing the WCEC during the
compilation process. In addition, they proposed a technique to automatically
search for an effective optimization sequence using a genetic algorithm.
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In addition to the worst-case performance, an important issue in embed-
ded system design is the energy consumption. One of the most acknowl-
edged techniques for reducing the energy consumed by the system is the DVS
(dynamic voltage scaling). This technique adjusts the processor’s operating
clock frequency and supply voltage at runtime, in order to reduce the energy
consumption of the processor while providing adequate execution performance.
Especially in real-time systems, much effort has been made to develop a method
to derive frequency and voltage settings for tasks in the system so that the
overall energy consumption is minimized while the tasks meet the timing re-
quirements. The DVS techniques for real-time systems are to effectively control
the tradeoff relationship between the execution time and energy consumption
of real-time tasks.

A seminal work in the area of DVS algorithms for hard real-time systems
has been reported by Yao et al. [1995]. The authors proposed an optimal voltage
setting algorithm for aperiodic tasks under the EDF scheduling algorithm. The
algorithm estimates the workload density for each execution interval based
on tasks’ arrival times, deadlines, and execution cycles, according to which
the frequency/voltage pair is assigned to each task instance. Quan and Hu
[2001] indicate that this algorithm is not directly applicable to other scheduling
algorithms because the schedulability of a task set is largely dependent on
the underlying scheduling policy. Based on this observation, they proposed an
extension to Yao et al.’s algorithm that can be applied to aperiodic task sets
scheduled by a fixed-priority scheduling scheme, which is optimal in terms of
energy consumption.

For a periodic task set, Shin et al. [2000] proposed a power optimization
method for computing the lowest possible processor speed that guarantees the
schedulability of the task set under EDF and RM scheduling. Pillai and Shin
[2001] described heuristics for computing the processor speed dynamically to
deal with situations where a task uses less than its WCEC. They also pre-
sented the implementation of their heuristics for EDF scheduling, which has
been known as the first implementation that supports DVS for real-time sys-
tems. Gruian [2001] developed a stochastic DVS approach based on execution
time distributions of tasks. This algorithm assigns several different voltage lev-
els to each task based on the given distribution function so that a task starts
execution at a low speed and later accelerates the execution. The author also
proved that his stochastic DVS algorithm is probabilistically optimal. While
most studies have focused on the problem of minimizing the energy consump-
tion of the processor subject to the schedulability of a task set, Rusu et al. [2002,
2003] proposed a framework for the problem of maximizing the system value
(reward) subject to timing and energy constraints, where the system value is
the sum of task values for all tasks and the value of a task is determined by the
task’s CPU frequency.

In our earlier work [Shin et al. 2004], we have developed a design frame-
work for addressing optimization problems for embedded real-time systems
with timing, code size, and energy constraints. We first introduced a triple-
tradeoff relationship among code size, execution time, and energy consumption.
We then formulated an optimization problem that is to minimize the system
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code size subject to timing and energy constraints. In this paper, we extend this
work (1) by considering another optimization problem, which is to minimize the
weighted combination of code size and energy, (2) by showing the problem as
NP-hard and presenting an algorithm to it, and (3) by evaluating our algorithm
using benchmark programs through simulations.

7. CONCLUSIONS AND FUTURE WORK

We have proposed a design framework for real-time embedded systems that
balances the tradeoff relationship involving code size, execution time, and en-
ergy consumption. The tradeoff between code size and execution time is en-
abled by using a code-generation technique that can provide different versions
of code for a given program that have distinguished characteristics in terms
of code size and execution time. On the other hand, the tradeoff between ex-
ecution time and energy consumption is enabled by using a variable voltage
processor, which provides a mechanism to reduce the energy consumption by
lowering the processor’s supply voltage while the execution speed is degraded
accordingly.

The proposed design framework formulates the multidirectional optimiza-
tion as a single constrained optimization problem. The constraints are given as
upper bounds on the system’s total code size and the energy consumed by exe-
cution of the tasks, along with the task set’s timing requirements. Within these
resource constraints, the proposed technique optimizes the system by minimiz-
ing the objective function, which captures the system cost in terms of code size
and energy consumption and their relative importance. The technique derives
a set of design parameters as a result: (1) the code generation parameters used
by the code generator to select a specific version of code for each task and (2) the
voltage setting parameters used by the operating system to adjust the proces-
sor’s supply voltage and the operating clock frequency. The design parameters
are derived in such a way that the objective function is minimized while they
collectively satisfy the given resource constraints.

We showed that the design goals seemingly conflicting with one another can
be pursued by using a single selection criteria and provided an algorithm to
derive the design parameters. The algorithm begins with the smallest code size
possible for all the tasks and iteratively selects a task to increase the code size
in return for reduced workload. By reducing the total workload generated by
the task set as much as possible within the code size limit, the algorithm first
tries to satisfy the timing and energy constraints, and then seeks to minimize
the objective function. The performance of the proposed algorithm and its vari-
ation has been evaluated using a set of simulations, where we compared the
solutions provided by the proposed algorithm with the optimal ones found by
an exhaustive search. The results show that our proposed algorithm provides
near-optimal solutions, with the average error of approximately 0.6%.

The future direction of our research will focus on the following. First, the
applicability of the proposed framework can be significantly enhanced by in-
corporating more accurate timing analysis techniques that take the variation
of the number of cycles that a program executes according to DVS settings. For
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example, the memory access cycle can vary according to the clock frequency.
That is, lowering the clock frequency may reduce the number of cycles required
for a memory access, since the processor cycle time is stretched while the mem-
ory cycle time remains the same. Therefore, a task’s WCEC, which has been
assumed to be known at compile time, should be estimated while the potential
variation in memory access cycles are taken into account. One novel example
of such timing analysis technique has been proposed by Seth et al. [2003] with
frequency-sensitive parameters.

Another direction for future research is to incorporate on-line optimization
techniques that operate while the system is running. For example, we can fur-
ther optimize the system by using on-line DVS algorithms and/or adaptive
scheduling algorithms. For example, the energy consumed by the processor can
be efficiently reduced by exploiting slack time. When a task is executed, it is
highly likely to finish before its estimated WCET for a number of reasons. First,
the WCET bound for a task used in schedulability analysis is not the actual
WCET, but a safe upper bound to its execution time. Second, regardless of how
accurate and tight the WCET bound may be, tasks can be completed before
their estimated WCET, since execution times depend upon the input data and
the actual execution paths taken according to them. Efforts have been made to
develop efficient and effective on-line DVS algorithms [Kim et al. 2002, 2003].
Using such techniques, by accurately estimating the slack times and putting
them into use for lowering other tasks’ voltage and frequency settings, the
energy consumption of the system can be substantially reduced. In addition,
exploring runtime variations by incorporating some statistical information for
energy optimization is another interesting open problem.

In this paper, we proposed an optimization algorithm (ALG) assuming that
the task set is scheduled by the EDF scheduling algorithm. However, a different
scheduling algorithm, e.g., a fixed-priority scheduling policy, such as the RM
(Rate Monotonic) scheduling, can be used to schedule the tasks. In such a case,
a simple schedulability analysis based on utilization bound cannot be directly
used. In addition, it is no longer guaranteed that the energy consumption can
be minimized by assigning the same frequency and the same supply voltage
to all the tasks or even to all the instances of the same task [Shin et al. 2000;
Saewong and Rajkumar 2003]. Therefore, it is necessary to develop a different
optimization algorithm based on an appropriate schedulability anlaysis for the
RM scheduling algorithm. We plan to extend our framework in this direction.
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