
J

Z

J
a

b

c

a

A
R
R
A
A

K
R
M
Z

1

i
s
s
t
(
i
m
t

S
o
a
p
2
F
2
2
m
i
t

i

0
d

ARTICLE IN PRESSG Model
SS-8763; No. of Pages 10

The Journal of Systems and Software xxx (2011) xxx–xxx

Contents lists available at ScienceDirect

The Journal of Systems and Software

j our na l ho mepage: www.elsev ier .com/ locate / j ss

ero-laxity based real-time multiprocessor scheduling

inkyu Leea, Arvind Easwaranb, Insik Shina,∗, Insup Leec

Department of Computer Science, KAIST, South Korea
Cister Research Unit, Polytechnic Institute of Porto, Portugal
Department of Computer and Information Science, University of Pennsylvania, PA, USA

 r t i c l e i n f o

rticle history:
eceived 27 May 2011
eceived in revised form 1 July 2011
ccepted 1 July 2011
vailable online xxx

a b s t r a c t

It has been widely studied how to schedule real-time tasks on multiprocessor platforms. Several studies
have developed optimal scheduling policies for implicit deadline task systems. So far however, studies
have failed to develop effective scheduling strategies for more general task systems such as constrained
deadline tasks. We argue that a narrow focus on deadline satisfaction (urgency) is the primary reason for
this lack of success. In particular, few studies have considered the impact on scheduling of the restriction
eywords:
eal-time systems
ultiprocessor scheduling

ero-laxity

that a job cannot simultaneously execute on more than one core (parallelism). In this paper we look at
one such simple, but effective, characterization of urgency and parallelism – the zero laxity first policy (ZL
policy). We study in detail how beneficial the ZL policy is to schedulability. We then develop an improved
schedulability test for any algorithm that employs the ZL policy, and prove that the test dominates pre-
viously known tests. Our simulation results show that the improved ZL schedulability test outperforms
the existing ones.
. Introduction

Real-time scheduling theories have been studied for achiev-
ng predictability on satisfying timing constraints. Since 1970s,
cheduling algorithms for uniprocessor systems have been exten-
ively studied. Based on a comprehensive understanding of how
ask deadlines affect schedulability, Earliest Deadline First (EDF)
Liu and Layland, 1973) was developed as an optimal schedul-
ng algorithm. While uniprocessor scheduling has successfully

atured over years, the same cannot be said about scheduling
heory for multi-cores (multiprocessors).

Some multiprocessor studies in the past (e.g., Cho et al., 2002;
rinivasan and Baruah, 2002; Andersson et al., 2001) have focused
n adapting existing uniprocessor scheduling to multiprocessors,
nd some others have developed novel policies specific to multi-
rocessors (e.g., Cheng et al., 1997; Baruah et al., 1996; Cho et al.,
006; Anderson and Srinivasan, 2000; Andersson and Tovar, 2006;
unaoka et al., 2008; Andersson and Bletsas, 2008; Easwaran et al.,
009; Levin et al., 2010; Lee et al., 2011; Stavrinides and Karatza,
011). In spite of some significant achievements of these studies,
Please cite this article in press as: Lee, J., et al., Zero-laxity based
doi:10.1016/j.jss.2011.07.002

any important scheduling problems continue to pose challenges,
ncluding the efficient scheduling of general task systems such as
hose in which task deadlines differ from their periods. We believe

∗ Corresponding author.
E-mail addresses: jinkyu@cps.kaist.ac.kr (J. Lee), aen@isep.ipp.pt (A. Easwaran),

nsik.shin@cs.kaist.ac.kr (I. Shin), lee@cis.upenn.edu (I. Lee).

164-1212/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
oi:10.1016/j.jss.2011.07.002
© 2011 Elsevier Inc. All rights reserved.

that one of the primary reasons for this lack of success is the
sole focus on deadline satisfaction (or “urgency”) by these exist-
ing approaches. When a task cannot be simultaneously scheduled
on more than one processor at the same time (“parallelism” restric-
tion), it becomes equally important to consider task “parallelism”
when assigning priorities to tasks. Otherwise, there can exist only a
few tasks (less than the number of processors) with long remaining
execution times, instead of many tasks (no less than the number of
processors) with short remaining execution times, and this entails
that some tasks fail to meet their deadlines.

In this paper we consider two job parameters to quantify the
notions of urgency and parallelism at any time instant t: (1) remain-
ing time to deadline of a job (D(t)) for urgency, and (2) remaining
execution time of a job (C(t)) for parallelism. It is intuitive that D(t)
captures the notion of urgency. To understand how C(t) captures
parallelism, consider two jobs J1 and J2 such that J1 has a larger
C(t) in comparison to J2. Then, by scheduling J1 ahead of J2 we can
ensure that the number of unfinished jobs at the next time instant
is maximized. This in turn implies that the jobs can use processing
capacity with more parallelism than otherwise. We prove that C(t)
is optimal in terms of parallelism in Section 3.1, where we consider
an algorithm that assigns job priorities based solely on C(t).

One of the simple but effective ways to consider both urgency
and parallelism is to assign the highest priority to any zero or neg-
 real-time multiprocessor scheduling. J. Syst. Software (2011),

ative laxity job, where the laxity of a job is defined as D(t) − C(t).
We denote this policy as the ZL policy, and any work-conserving,
preemptive scheduling algorithm that employs this policy as a
ZL-based scheduling algorithm. By work-conserving, we mean an

dx.doi.org/10.1016/j.jss.2011.07.002
dx.doi.org/10.1016/j.jss.2011.07.002
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:jinkyu@cps.kaist.ac.kr
mailto:aen@isep.ipp.pt
mailto:insik.shin@cs.kaist.ac.kr
mailto:lee@cis.upenn.edu
dx.doi.org/10.1016/j.jss.2011.07.002

 ING Model
J

2 ms an

a
t
p
a
j
t

l
e
l
I
a
m
i
2
a
i
e
o
s
i
t
p
f

t
p
i
o
a
m
n
p
f
E
e
a
t
a

1

t
p
t
e
a
t
(
t

2

2

t
m
m
o

b
a

ARTICLESS-8763; No. of Pages 10

 J. Lee et al. / The Journal of Syste

lgorithm that always schedules any unfinished, ready-to-execute
ask if there are available processors. Once the ZL policy is incor-
orated into a scheduling algorithm, the ZL-based scheduling
lgorithm assigns the highest priority to any zero or negative laxity
ob and then prioritizes the remaining jobs based on the policy of
he original algorithm.

The ZL policy has been effectively used in global EDZL (Ear-
iest Deadline first until Zero Laxity) scheduling (Lee, 1994; Cho
t al., 2002), which assigns the highest priority to zero or negative
axity jobs (the ZL policy) and then uses EDF for remaining jobs.
t has been shown that EDZL dominates1 EDF (Park et al., 2005),
nd further it has also been observed in simulations that EDZL is
ore efficient (being able to schedule more task sets) in schedul-

ng general task systems than many other algorithms (Cho et al.,
002). To generalize such a dominance relationship between EDF
nd EDZL, we present and prove a beneficial property of the ZL pol-
cy to schedulability: any work conserving, preemptive algorithm
mploying the ZL policy dominates the original algorithm itself. An
bvious conclusion to draw here is that the ZL policy, although a
imple technique for considering urgency and parallelism together,
s in fact quite effective in handling general task systems on mul-
iprocessors. Therefore it is interesting, and hence the focus of this
aper, to study the ZL policy in detail and investigate the general
amily of ZL-based algorithms.

Although just incorporating the ZL policy is sufficient to improve
he schedulability of any work-conserving algorithm, the true
otential of the policy will only be realized when a corresponding

mprovement in the schedulability tests is achieved. Hence, based
n an observation of deadline miss under the ZL policy, we develop

 new ZL-specific schedulability test. Under this policy, deadline
iss occurs only when there are at least m + 1 tasks with zero or

egative laxity at the same time, where m denotes the number of
rocessors in the platform. Although there exist schedulability tests
or any ZL-based algorithm (Theorem 1 in Lee et al., 2010) and for
DZL (Theorem 7 in Baker et al., 2008), to the best of our knowl-
dge, they do not utilize the “at the same time” property of the
bove observation. In this paper, we show that, by characterizing
his property, it is possible to obtain a new schedulability test for
ny ZL-based algorithm that dominates the previously known tests.

.1. Contribution

The contributions of this paper are two-fold. First, we analyze
he ZL policy such that it not only serves as a simple yet good exam-
le for the effectiveness of considering urgency and parallelism
ogether, but also has a property that any work-conserving, pre-
mptive algorithm employing the ZL policy dominates the original
lgorithm (Section 3). Second, we develop an improved test using
he “at the same time” property described in the previous paragraph
Section 4), and perform simulations to show the performance of
he proposed schedulability test (Section 5).

. System model

.1. Task model

In this paper we assume a sporadic task model (Mok, 1983). In
his model, a task �i ∈ T is specified as (Ti, Ci, Di), where Ti is the
Please cite this article in press as: Lee, J., et al., Zero-laxity based
doi:10.1016/j.jss.2011.07.002

inimum separation, Ci is the worst-case execution time require-
ent, and Di is the relative deadline. Further, we focus our attention

n implicit (Ci ≤ Di = Ti) and constrained (Ci ≤ Di ≤ Ti) deadline task

1 Algorithm A dominates or is tighter than Algorithm B if any task set schedulable
y Algorithm B is also schedulable by Algorithm A, but the reverse is not true. Such

 definition of dominance or tightness can also be applied to schedulability tests.
 PRESS
d Software xxx (2011) xxx–xxx

systems. A task �i invokes a series of jobs, each separated from its
predecessor by at least Ti time units. We also assume that a single
job of a task cannot be executed in parallel. We let n denote the
total number of tasks in the system.

In this paper we assume quantum-based time and without loss
of generality let one time unit denote the quantum length. All task
parameters are then specified as multiples of this quantum length.

In constrained deadline task systems, at most one active job per
task exists in any time slot, and hence, for simplicity of presentation,
we use the term “task” also to refer to “active job of a task” in the
rest of this paper. We use Di(t) and Ci(t) to denote the remaining
time to deadline and the remaining execution time, respectively, of
a job of �i at time t. We express that a job of �i is active at t when
Ci(t) is non-zero. Also, we define Di(t) − Ci(t) as the laxity of task �i
at time instant t.

2.2. Multiprocessor platform

We assume that the platform is comprised of m identical
unit-capacity processors, and therefore restrict the system static-
utilization Usys to at most m. It has been previously shown that
Usys ≤ m is a necessary condition for feasibility of the task system
on m processors (Baker and Cirinei, 2006).

Like most existing studies in multiprocessor scheduling (for
example, see Baruah et al., 1996), we assume that the system does
not incur any penalty when a job is preempted or when a job is
migrated from one processor to another.

2.3. Scheduling algorithm

A global scheduling algorithm, which maintains a global ready-
queue, can preempt a job on one processor and later resume it on
any other processor in the platform. In this paper we only con-
sider global scheduling algorithms, and therefore, hereafter do not
explicitly use the term “global” for each one. In addition, we are
only interested in priority-driven, work-conserving, preemptive
scheduling algorithms so that we do not explicitly use the term
“priority driven, work-conserving, preemptive” for each one as well
in this paper.

3. Analysis of the ZL policy

In this section, we analyze the ZL policy. We first discuss the
relevance of two properties of real-time jobs in multiprocessor
scheduling: “urgency” characterized by the remaining time to
deadline of the job (D(t)) and “parallelism” characterized by the
remaining execution time of the job (C(t)). Then, we present that
the ZL policy is not only an effective technique to consider both D(t)
and C(t), but also has an important dominance property.

3.1. Job parameters: urgency and parallelism

One of the primary objectives in any hard-real-time setting is to
meet job deadlines, and therefore urgency is an important property
to consider when scheduling jobs. This has indeed been the case in
almost all scheduling theory research on single processor systems
(Baruah et al., 1990; Liu and Layland, 1973), and many of the studies
on multiprocessor scheduling (Baruah et al., 1996; Andersson et al.,
2001; Bertogna et al., 2005; Andersson and Bletsas, 2008; Easwaran
et al., 2009; Anderson and Srinivasan, 2000). These multiproces-
sor studies have resulted in many scheduling algorithms such as
 real-time multiprocessor scheduling. J. Syst. Software (2011),

PFair (Baruah et al., 1996), fixed-priority (Andersson et al., 2001),
EDF (Bertogna et al., 2005), task-splitting (Anderson et al., 2005;
Andersson and Bletsas, 2008) and virtual clustering (Easwaran et al.,
2009).

dx.doi.org/10.1016/j.jss.2011.07.002

 ING Model
J

ms an

p
b
P
e
a
g
o

i
a
E
p
2
o
s
t
a
h

o
t
p
f
o
r
e
c
t
t
i
f

L
t
T

P

s
i
t
w
i
s
t
i
v
a
h
l
p

j
s
p
p
t
t
t
b
m
u
n
t

ARTICLESS-8763; No. of Pages 10

J. Lee et al. / The Journal of Syste

Aforementioned studies either do not explicitly consider jobs
arameters related to parallelism, or avoid the issue of parallelism
y splitting tasks into subtasks with unit execution time (e.g., PFair).
arallelism refers to the restriction in our task model that multiple
xecutions of a job cannot be scheduled on more than one processor
t the same time. We claim, and demonstrate in the following para-
raphs, that the job parameter C(t) is an effective characterization
f the parallelism restriction on multiprocessor platforms.

Different from uniprocessor systems, parallelism plays an
mportant role in multiprocessor systems. To substantiate this
rgument, we now consider the well-studied scheduling algorithm
DF. Although this algorithm is known to be optimal for single
rocessor systems, it is not optimal on multiprocessors (Baker,
005). In the following paragraph we show that EDF is optimal even
n multiprocessors if we remove the parallelism restriction. This
uggests that the inefficiency is mainly because parallelism restric-
ion is not considered when assigning priorities to jobs. Note that
lthough this optimality result of EDF is known, we document it
ere for completeness.

We now prove the optimality of EDF when multiple executions
f the same job can be scheduled on more than one processor at
he same time. Under these assumptions of EDF scheduling and no
arallelism restriction, the following two job sets are equivalent
rom a scheduling view-point: (1) a job set J comprised of, among
thers, a job J1 with release time r, execution requirement c and
elative deadline d, and (2) a job set J′ identical to J in all respects,
xcept job J1 is replaced with c jobs each with release time r, exe-
ution requirement 1 and relative deadline d. This follows from the
rivial fact that at each time instant when EDF schedules i execu-
ions of job J1 in the former case, it will also schedule i out-of c jobs
n the latter case. We record this urgency optimality of EDF in the
ollowing lemma.

emma 1 (Urgency optimal). Consider a set J of jobs with release
imes and deadlines, where each job has one unit of execution time.
his job set is feasible if and only if it is schedulable under EDF.

roof. (⇐): Trivial.
(⇒): Suppose a job J1 misses its deadline at time t when J is

cheduled under EDF. Further, let t denote the earliest such time
nstant. Eliminate all jobs in the schedule with deadline greater
han t. Note that these jobs have no impact on the schedule of jobs
ith deadline at most time t. That is, job J1 will still miss its deadline

n the new schedule. Now consider the time instant t′ in the new
chedule such that 1) t′ < t, 2) all m processors are always busy in
he interval (t′, t], and 3) either t′ = 0 or at least one processor is idle
n the interval (t′ − 1, t′]. Consider all jobs scheduled in the inter-
al (t′, t]. All of these jobs have deadline at most t and are released
t or after time t′. If they were released earlier, then they would
ave been scheduled in the interval (t′ − 1, t′]. Then the total work-

oad in the interval (t′, t] is strictly greater than the total available
rocessing capacity m(t − t′). Therefore job set J is infeasible. �

Having ascertained the importance of parallelism in assigning
ob priorities, we now turn to the question of “Which job parameter
hould be used to characterize the parallelism restriction?”. In this
aper we consider the remaining execution time of a job C(t) for this
urpose. In order to justify this choice, we focus on Largest Execu-
ion First (LEF) scheduling algorithm (Easwaran et al., 2008). At any
ime instant, LEF prioritizes jobs based on their remaining execu-
ion time; the larger the remaining execution time, the higher will
e the job priority. In the following lemma we prove that the overall
Please cite this article in press as: Lee, J., et al., Zero-laxity based
doi:10.1016/j.jss.2011.07.002

akespan of a non-real-time job set is minimized when it is sched-
led under LEF. In other words, we show that when deadlines do
ot matter, LEF optimally utilizes the m processors by minimizing
he makespan of the job set.
 PRESS
d Software xxx (2011) xxx–xxx 3

Lemma 2 (Parallelism optimal). Given a set of jobs with release and
execution times and infinite deadline, the latest finish time of this
job set (makespan) on m processors is minimized when the jobs are
scheduled by LEF.

Proof. We prove this theorem by contradiction. Suppose the
makespan can be shortened. This implies that there exists one or
more idle instants in the schedule (time instants at which less than
m jobs are scheduled). Further, in order to shorten makespan, it
must be possible to delay at least one of these idle instants. That is,
there exists an idle instant such that the total workload scheduled
up to that instant is lower under LEF, when compared to a makespan
optimal schedule. Let t denote the earliest such idle instant. That
is, in the interval (t, t + 1] less than m jobs are scheduled. Further,
let J = {J1, . . . , Ji} (i < m) denote the jobs scheduled in (t, t + 1] such
that each job in this set has non-zero remaining executions at t + 1.
Note that if no such job exists, then the idle instant at t cannot be
delayed and this contradicts our assumption.

Let t′ denote the latest time instant before t at which at least
one job from J is not scheduled although it is active. Without loss
of generality, let J1 denote that job. That is, at all times in the interval
(t′ + 1, t + 1] each job in J is either scheduled or inactive. Note that if
such a t′ does not exist, then the idle instant at t cannot be postponed
and this again contradicts our assumption.

Now, in the interval (t′, t′ + 1], J1 is not scheduled although it is
active and therefore m other jobs must be scheduled. We claim that
out of these m jobs there exists at least one job J′ such that J′ /∈ J and
J′ finishes its entire execution by time t. We now prove this claim.
Clearly, since |J| < m, at least some jobs scheduled in the inter-
val do not belong to J. Suppose there are k such jobs and suppose
all these jobs execute until t + 1. Then in the interval (t′, t + 1] the
following statements hold: 1) total available processing capacity is
m(t + 1 − t′), 2) total workload scheduled from J is (m − k)(t + 1 − t′)
plus at least one execution of J1, and 3) total remaining workload
scheduled is k(t + 1 − t′). This is clearly not feasible. Therefore our
claim is true.

At t′ the remaining execution time of J1 is strictly greater than
t + 1 − (t′ + 1), because by definition it is always scheduled in the
interval (t′ + 1, t + 1] and it has remaining executions at t + 1. How-
ever, the remaining execution time of J′ at t′ is at most t − t′.
This contradicts our assumption that jobs are scheduled using LEF,
because J1 has higher priority than J′ at t′ under LEF. �

The above lemma proves that LEF minimizes makespan, and this
also means LEF maximizes the number of active jobs. Then, LEF, pri-
oritizing jobs with larger C(t), enables jobs to execute concurrently
since the number of active jobs are maximized, and thereby par-
allelism restriction does not matter. Therefore, the job parameter
C(t) can capture the notion of parallelism.

Some studies in the past have simultaneously considered both
urgency and parallelism when assigning priorities to jobs. To the
best of our knowledge, these studies include the Earliest Deadline
first until Zero Laxity (EDZL) (Lee, 1994; Cho et al., 2002), Least Lax-
ity First (LLF) (Leung, 1989), Dynamic Density First (DDF) (Lee et al.,
2010), and Fixed Priority until Zero Laxity (FPZL) (Davis and Burns,
2011) scheduling algorithms. A property common to all these algo-
rithms is that they assign the highest priority to any zero or negative
laxity job (the ZL policy). In the next subsection, we present and
prove that the ZL policy has a dominance property, which is bene-
ficial to schedulability.

3.2. The dominance property of the ZL policy
 real-time multiprocessor scheduling. J. Syst. Software (2011),

As we mentioned in the introduction, the ZL policy can be
incorporated into any work-conserving, preemptive algorithm. We
denote a base algorithm A employing the ZL policy as AZL. That is,
AZL assigns the highest priority to any zero or negative laxity job

dx.doi.org/10.1016/j.jss.2011.07.002

 ING Model
J

4 ms an

(
j
t
a
i
r
e
t

T
s

P
.
A

i
s
t
A
i
t
f
t

f
r

T
a

P

s
a
b
p
u
Z

4

u
s
p
a

4

(
t
m
o

O
a
l

t
{
h

1

2

(Bertogna and Cirinei, 2007; Bertogna et al., 2009). These studies
describe the pattern of a job release corresponding to the largest
workload of a task �i that can interfere with a task �k. This worst-
case interference pattern is depicted in Fig. 1. Given an interval
ARTICLESS-8763; No. of Pages 10

 J. Lee et al. / The Journal of Syste

with arbitrary tie-breaking), and then prioritizes the remaining
obs based on the policy of A. AZL is said to dominate A, if every
ask set that can be scheduled by A is also schedulable by AZL. Such

 dominance relationship demonstrates the impact of the ZL pol-
cy on schedulability, and is therefore useful to establish. Such a
elationship has already been proved between EDZL and EDF (Park
t al., 2005), and in the following theorem, we generalize this result
o any scheduling algorithm A.

heorem 1. If a task set is schedulable by Algorithm A , it is also
chedulable by AZL.

roof. The proof is similar to Park et al. (2005). Let �A(t) = {j1, j2,
 . ., jm} be a set of jobs which have the m highest priority under
lgorithm A at time t.

Suppose that there is a job J1 with zero laxity at t, but it is not
n �A(t). Then, J1 will eventually miss its deadline by Algorithm A
ince after t its remaining execution time will be strictly larger than
ime to its deadline. We conclude if the task set is schedulable by
lgorithm A, any jobs with zero laxity at t is in �A(t). Algorithm AZL

s different from Algorithm A in that it gives the highest priority
o jobs with zero laxity. Therefore, we conclude that �A(t) = �AZL(t)
or all t if a task set is schedulable by Algorithm A. This proves the
heorem. �

The dominance of AZL over A implies that any schedulability test
or A can also be used for AZL without modification. We record this
esult in the following theorem.

heorem 2. Any schedulability test for Algorithm A can also be
pplied to AZL.

roof. Immediately follows from Theorem 1. �

Theorem 1 indicates that the ZL policy is beneficial to the
chedulability of base algorithms. While Theorem 2 enables us to
pply base-algorithm schedulability tests for the corresponding ZL-
ased algorithm, such tests do not use any characteristic of the ZL
olicy itself. In the next section, using a property of deadline miss
nder the ZL policy, we develop a new schedulability test for any
L-based algorithm.

. The improved ZL schedulability analysis

In this section, we first derive a condition for deadline miss
nder the ZL policy. Based on this condition, we then develop a new
chedulability test for any ZL-based algorithm. Finally, we com-
are our test with the existing schedulability test for any ZL-based
lgorithm (Lee et al., 2010).

.1. The condition of deadline miss under any ZL-based algorithm

Suppose there is a task that misses a deadline at t2, and let t1
≤t2) denote the first time instant before the deadline miss when
here is a task with negative laxity. Then, there must be more than

 tasks with zero or negative laxity at t1− 1, and we present this
bservation generally as follows:

bservation 1. When a task misses its deadline under any ZL-based
lgorithm, there are at least m + 1 tasks which have zero or negative
axity at the same time before the deadline miss.

According to Observation 1, we know that for a deadline miss
o occur in any ZL-based algorithm there must exist tasks T′ =
�1, . . . , �n′ }, such that n′ ≥ m + 1 and all the following properties
old.
Please cite this article in press as: Lee, J., et al., Zero-laxity based
doi:10.1016/j.jss.2011.07.002

. For each task �k ∈ T′, �k has zero or negative laxity within Dk time
units from its release.

. There exists a time instant t0 such that for each task �k ∈ T′,
 PRESS
d Software xxx (2011) xxx–xxx

(a) �k has zero or negative laxity at t0;
(b) �k has at least one unfinished execution at t0 (i.e., Ck(t0) ≥ 1);

and
(c) �k has higher priority than any task �i /∈ T′ in the interval [t0,

t0 + 1).

Property 1 is identical to Observation 1 except the “at the same
time” part of the observation, and hence it is a necessary condition
of the observation. Property 2a paraphrases Observation 1 using a
specific time instant which satisfies the “at the same time” condi-
tion. Property 2b trivially holds since we only consider tasks that
are active at t0. This is because a task with no active job at a time
instant cannot affect executions of other tasks at that instant. Prop-
erty 2c comes from the ZL policy: a task with zero or negative laxity
has higher priority than tasks with positive laxity.

Properties 2a, 2b and 2c together capture Observation 1 includ-
ing the at the same time constraint. Since the state-of-the-art
schedulability tests (for any ZL-based algorithm Lee et al., 2010
and for EDZL Baker et al., 2008) only capture Property 1, they fail to
consider Observation 1 in its entirety. In the following subsection
we develop a new ZL schedulability test that captures all the above
properties, and then compare it to the existing tests in Section 4.3.

4.2. A new ZL schedulability test

To check whether a task �k can have zero or negative laxity,
existing approaches (Baker et al., 2008; Lee et al., 2010) have used
the concept of the worst-case interference of higher-priority tasks
on �k between its release and deadline. Following the notations in
these studies, we denote the total interference of a task �i on a task
�k in an interval [a, b) as Īk,i(a, b). It represents the cumulative length
of all intervals within [a, b) in which �k is ready to execute and �i
is executing while �k is not. The worst-case interference of task �k
from task �i in any interval of length l is then defined as

Ik,i(l) = maxt0 Īk,i(t0, t0 + l), (1)

and the overall worst-case higher priority interference is defined
as∑
i /= k

Ik,i(l). (2)

Note that the above equation over-estimates interference,
because it does not consider the fact that the worst-case interfer-
ence scenario for each task may occur in different time intervals.
It is known that computing Ik,i(l) precisely is computationally
intractable, and therefore existing approaches have used an upper
bound that is valid for any work-conserving scheduling algorithm
 real-time multiprocessor scheduling. J. Syst. Software (2011),

Fig. 1. The situation where the maximum interference occurs under any work-
conserving algorithm.

dx.doi.org/10.1016/j.jss.2011.07.002

 ING Model
J

ms an

[
p
fi
s
c

�

l
t
s

I

U
b

4
o
t
f
o
b
c
t
W
o

g
�
t
i
c
t
o
o
T
�
I

I

T
o

I

W
o
�

I

ARTICLESS-8763; No. of Pages 10

J. Lee et al. / The Journal of Syste

a, b) of length l, the first job of �i begins its execution at a and com-
letes the execution at a + Ci. Here a + Ci is also the deadline of the
rst job. Thereafter, jobs are released and scheduled as soon as pos-
ible. We denote by �i(l) the number of jobs of �i that can execute
ompletely within the interval of interest (including the first job).

i(l) =
⌊

l − (Ci + Ti − Di)
Ti

⌋
+ 1 =

⌊
l + Di − Ci

Ti

⌋
(3)

The contribution of the last job can then be bounded by min (Ci,
 + Di− Ci− �i(l) · Ti). The maximum interference of a task �i on a
ask �k during an interval of length l under any work-conserving
cheduling algorithm (denoted by IWC

k,i
(l)) is therefore

WC
k,i (l) = �i(l) · Ci + min(Ci, l + Di − Ci − �i(l) · Ti) (4)

sing IWC
k,i

(l), we now develop a new schedulability test for any ZL-
ased algorithm.

According to Observation 1, the task set T′ described in Section
.1 must have at least m + 1 tasks in order for a deadline miss to
ccur under the ZL policy. We now focus on each task �k ∈ T, and try
o see what inequalities concerning interference should be satisfied
or �k to belong to T′. As discussed above, the amount of interference
f a task �i on a task �k during an interval of length Dk is upper-
ounded by IWC

k,i
(Dk). This interference function however, does not

onsider any of the properties associated with the ZL policy; in par-
icular, it does not consider the properties described in Section 4.1.

e now look at how each property reduces the interference of �i
n �k.

We first focus on the impact of Property 2a on the interference
enerated by a task �i ∈ T′ on task �k ∈ T′. Suppose that both �k and
i have zero or negative laxity at b − � (� ≥ 0), where the release
ime instant and deadline of �k are a and b, respectively, as shown
n Fig. 2. Since �i has zero or negative laxity at b − �, it is not exe-
uted at least during Di−Ci time units from its release time to the
ime instant b − �. Thus, given b − �, when both �k and �i have zero
r negative laxity, the worst-case interference pattern of �i on �k
ccurs when deadline of �i is aligned to b − � as shown in Fig. 2.
hen, we can derive the following interference bound function for
i ∈ T′ during an interval [a, b − �) of length l = Dk− � (denoted by
ZL
k,i

(l)):

ZL
k,i(l) =

⌊
l

Ti

⌋
Ci + min

(
Ci, l −

⌊
l

Ti

⌋
Ti

)
, (5)

hen, we represent the upper-bound of the interference of �i ∈ T′
n �k during an interval [a, b − �) of length Dk− � as follows:

ZL
k,i(Dk − �), for �i ∈ T′. (6)

e now upper-bound the above interference for all possible values
Please cite this article in press as: Lee, J., et al., Zero-laxity based
doi:10.1016/j.jss.2011.07.002

f �, using the observation that the interference is maximized when
 = 0. The resulting bound is given as follows:

ZL
k,i(Dk − �) ≤ IZL

k,i(Dk), for �i ∈ T′. (7)

Fig. 2. The situation where deadline of � i is aligned at b − �.
 PRESS
d Software xxx (2011) xxx–xxx 5

Note that the above upper-bound is tighter than IWC
k,i

(Dk) since it

obviously holds IZL
k,i

(l) ≤ IWC
k,i

(l) for any l > 0.
Next, we look at the impact of Property 2b on the interference

of a task �i ∈ T′ on task �k. Property 2b indicates that task �i has
at least one unfinished execution after �k reaches zero or nega-
tive laxity and before its deadline. Therefore, at least one execution
unit of �i can be removed from the interference, because �k is
required to have zero or negative laxity without interference from
this execution. Combining this with the interference upper-bound
given in Eq. (7), we get that the interference of �i on �k is bounded
by:

IZL
k,i(Dk) − 1, for �i ∈ T′. (8)

We then focus on the impact of Property 2c on the interference
of a task �i /∈ T′ on task �k. Since Property 2c indicates that for at least
one time unit �k has higher priority than �i, the interference from
�i on �k must only be considered for an interval of length Dk− 1.
Therefore, this interference is given by:

IWC
k,i (Dk − 1), for �i /∈ T′. (9)

Based on the interference of �i on �k in Eqs. (8) and (9), we derive
a condition for �k to have zero or negative laxity under any ZL-based
algorithm as follows:

Lemma 3. Task �k can have zero or negative laxity under any ZL-
based algorithm only if the following inequality holds:∑
(i /= k)∧(�i /∈ T′)

IWC
k,i (Dk − 1) +

∑
(i /= k)∧(�i ∈ T′)

{
IZL
k,i(Dk) − 1

}
≥ m · (Dk − Ck)

(10)

Proof. From Eqs. (8) and (9), we know that the total interfer-
ence of all the other tasks {�i}i /= k on �k is upper-bounded by the
LHS of Eq. (10). For �k to have zero or negative laxity, �k cannot
be executed during at least Dk− Ck time units. At each such time
slot, interference from at least m other tasks is needed to block
the execution of �k. Hence, if the total interference of all the other
tasks is less than m · (Dk− Ck), �k cannot have zero or negative
laxity. �

Lemma 3 offers a necessary condition for �k to have zero or nega-
tive laxity, and we can obtain the following schedulability test once
we apply the lemma to the deadline miss condition of Observation
1.

Lemma 4. A task set is schedulable by any ZL-based scheduling algo-
rithm if there are at most m different tasks �k satisfying Eq. (10).

Proof. Immediately follows from Observation 1 and Lemma 3. �

To further reduce the maximum interference of any task, we can
use the following lemma:

Lemma 5 (Lemma 4 in Bertogna et al., 2005).∑
i /= k

IAny
k,i

(l) ≥ m · x ⇔
∑
i /= k

min

{
Any
I

k,i
(l), x

}
≥ m · x (11)

where IAny
k,i

(l) is any interference bound of �i on �k in an interval of
length l.

Proof. The proof is given in Lemma 4 in Bertogna et al. (2005), but
intuition is as follows: if the LHS of Eq. (11) holds and �i is executed
 real-time multiprocessor scheduling. J. Syst. Software (2011),

more than x in an interval of length l, �i can interfere with �k during
at most x. This is because if the amount of execution of �i (denoted
by y) is larger than x, at least y − x amount of execution of �i should
be concurrently executed with �k’s execution. �

dx.doi.org/10.1016/j.jss.2011.07.002

 ING Model
J

6 ms an

i
s

L
r

(

(

P
w

I
L

w
L

u
u
t

c
e
u
g
w
p
o

1

2

3

l
1
l
a
i
i

l
t
S
f

(

ARTICLESS-8763; No. of Pages 10

 J. Lee et al. / The Journal of Syste

Applying Lemma 5 to Lemma 4, and unifying the length of the
nterval in the interference functions, we can derive a tighter ZL
chedulability test as follows.

emma 6. A task set is schedulable by any ZL-based scheduling algo-
ithm if either (A) or (B) is true:

A) The following inequality holds for at most m different tasks �k ∈ T′:∑
i /= k

min
{

IWC+
k,i (Dk − 1), Dk − Ck

}
≥ m · (Dk − Ck) (12)

B) The following inequality holds for at most m different tasks �k ∈ T′:∑
i /= k

min
{

IWC+
k,i (Dk), Dk − Ck + 1

}
≥ m · (Dk − Ck + 1) (13)

where

IWC+
k,i (l = Dk − 1 or Dk) =

{
IWC
k,i

(l), if �i /∈ T′,

IZL
k,i

(l), if �i ∈ T′
(14)

roof. We now apply Lemma 5 to Eq. (10) in two ways. First,
e can unify the interval length using the inequality IZL

k,i
(Dk) − 1 ≤

ZL
k,i

(Dk − 1) for each �i ∈ T′. Then, we obtain Eq. (12) by applying
emma 5.

Second, the number of tasks in T′ in Eq. (10) is at least m + 1,
hich is at least m excluding task �k. Thus, the second term of the

HS of Eq. (10) is at least as much as
∑

(i /= k)∧(�i ∈ T′)I
ZL
k,i

(Dk) − m. Then,

sing the inequality IWC
k,i

(Dk − 1) ≤ IWC
k,i

(Dk) for each �i /∈ T′, we can
nify the interval length to Dk. Moving the term −m to the RHS and
hen applying Lemma 5, we obtain Eq. (13). �

Since Eqs. (12) and (13) in the above theorem depend on a spe-
ific set of tasks in T′, the resulting ZL schedulability test will have
xponential complexity. This is because we will be required to eval-
ate Eqs. (12) and (13) for all possible subsets (size ≥m + 1) of the
iven task set. However, once we apply the following procedure,
e can safely compute Eqs. (12) and (13) for a task �k, with com-
lexity O(n · log (n)), which comes from sorting interference values
f all tasks as follows:

. Calculate min
{

IWC
k,i

(l), l − Ck + 1
}

(denoted by Wi(l)) and

min
{

IZL
k,i

(l), l − Ck + 1
}

(denoted by Zi(l)) for all tasks �i (/= �k),
where l = Dk− 1 for Eq. (12) and l = Dk for Eq. (13).

. Sort (Wi(l) − Zi(l)) and select those tasks in which their cor-
responding value (Wi(l) − Zi(l)) belongs to the m smallest
{(Wi(l) − Zi(l))}i /= k values. Denote this set of tasks by T′k(l, WC).
We can formally express T′k(l, WC) as follows:

T′k(l, WC) = {�i|�i(/= �k) ∈ m smallest Wi(l) − Zi(l)} (15)

. If �i /∈ T′k(l, WC), IWC+
k,i

(l) = IWC
k,i

(l), and if �i ∈ T′k(l, WC), IWC+
k,i

(l) =
IZL
k,i

(l).

For a task to miss its deadline, there should be at least m + 1 zero
axity tasks (in T′) at the same time as mentioned in Observation
. The above procedure decides whether �k can be one of the zero

axity tasks. To do this, we find an upper-bound of interference of
ll tasks {�i}i /= k on �k if there are at least m + 1 zero laxity tasks
ncluding �k itself. When �i interferes with �k, it can have two
nterference functions: the smaller function IZL

k,i
(l) for �i ∈ T′, and the
Please cite this article in press as: Lee, J., et al., Zero-laxity based
doi:10.1016/j.jss.2011.07.002

arger function IWC
k,i

(l) for �i /∈ T′. While we know that the number of
asks in T′ is at least m + 1, we do not know which tasks belong to T′.
ince IZL

k,i
(l) ≤ IWC

k,i
(l), the less tasks �i in T′, the more the total inter-

erence on �k. Therefore, we only consider the case where there
 PRESS
d Software xxx (2011) xxx–xxx

are m + 1 tasks in T′ for an upper-bound of the interference of all
tasks {�i}i /= k on �k. Then, the upper-bound is calculated when we
choose tasks with the m smallest {(Wi(l) − Zi(l))}i /= k values as ele-
ments of T′; here we choose “m” tasks instead of “m + 1” because
we exclude task �k. Thus, the LHSs of Eqs. (12) and (13) under any
possible choice of T′ are clearly upper-bounded by the case where
T′ is equal to T′k(Dk − 1, WC) and T′k(Dk, WC), respectively. Finally,
using the above procedure we can derive the following polynomial
time-complexity ZL schedulability test:

Theorem 3 (A new ZL schedulability test). A task set is schedulable
by any ZL-based scheduling algorithm if either (A) or (B) is true:

A) The following inequality holds for at most m different tasks �k:∑
i /= k

min
{

IWC∗
k,i (Dk − 1), Dk − Ck

}
≥ m · (Dk − Ck) (16)

(B) The following inequality holds for at most m different tasks �k:∑
i /= k

min
{

IWC∗
k,i (Dk), Dk − Ck + 1

}
≥ m · (Dk − Ck + 1) (17)

where

IWC∗
k,i (l = Dk − 1 or Dk) =

{
IWC
k,i

(l), if �i /∈ T′k(l, WC),

IZL
k,i

(l), if �i ∈ T′k(l, WC)
(18)

and T′k(l, WC) is defined in Eq. (15).

Proof. This theorem safely holds from Lemma 6 and the above
procedure to select T′k(l, WC). �

Tip for further improving the test of Theorem 3. We can improve
this test by applying the theorem iteratively as follows. Once we
apply Theorem 3, we know whether a task �i can have zero or neg-
ative laxity. From Property 2a, any task �i in T′ should be able to have
zero or negative laxity. So tasks which cannot have zero or nega-
tive laxity should not be included in T′k(t, WC). If we apply Theorem
3 again with this constraint, we can reduce the candidate set of
tasks for m smallest (Wi(t) − Zi(t)) values. Thus interference can
decrease further, and lead to improved schedulability. The detailed
procedure is as follows:

1. For all tasks �k, set isZero[k] ← true and oldIsZero[k] ← true.
2. For all tasks �k, calculate whether �k satisfies Eq. (16) or (17).

When the equations for �k are calculated, only tasks with
isZero[i] = true can be included in T′k(t, WC). If one of the equations
does not hold for �k, set isZero[k] ← false.

If Theorem 3 holds, the task set is schedulable and this proce-
dure halts.

3. If there is no task such that isZero[k] < > oldIsZero[k], then the task
set is deemed unschedulable and this procedure halts.

Otherwise, set oldIsZero[k] ← isZero[k] for all �k and go to Step
2.

4.3. Comparison of the existing ZL schedulability test

In this subsection, we compare our new ZL schedulability test in
Theorem 3 with the existing one (Lee et al., 2010), both in terms of
schedulability and time-complexity. While our new ZL schedulabil-
ity test accommodates all the properties described in Section 4.1,
the existing test does not capture the condition of “at the same
time” in Observation 1 (it only accommodates Property 1). The
 real-time multiprocessor scheduling. J. Syst. Software (2011),

existing test captures two deadline miss conditions which are nec-
essary for Observation 1: (a) there are at least m + 1 tasks which have
zero or negative laxity; and (b) there is at least one task which has
negative laxity. Note that (a) is equivalent to Observation 1 except

dx.doi.org/10.1016/j.jss.2011.07.002

 IN PRESSG Model
J

ms and Software xxx (2011) xxx–xxx 7

t
c
i

L
s
o

(

(

P
(
r
t

i

T
t

P
t

I

m
n
l
T

t
c
f
c
o
O
t
c
t
t
p

(
e
e
3
t
2
t
s

E

a
6
i
m
4
2
s

Table 1
An example of calculating IWC

k,i
(Dk), IZL

k,i
(Dk), and IWC∗

k,i
(Dk) in the new and existing ZL

schedulability tests (Theorem 3 and Lemma 7)

min
{

IWC
k,i

(Dk), Dk − Ck + 1
}

i = 1 i = 2 i = 3 i = 4

k = 1 (Dk − Ck + 1 = 9) · 4 7 7
k = 2 (Dk −Ck + 1 = 9) 4 · 7 7
k = 3 (Dk − Ck + 1 = 2) 2 2 · 2

k = 4 (Dk − Ck + 1 = 2) 2 2 2 ·
min

{
IZL
k,i

(Dk), Dk − Ck + 1
}

k = 1 (Dk − Ck + 1 = 9) · 2 6 6
k = 2 (Dk − Ck + 1 = 9) 2 · 6 6
k = 3 (Dk − Ck + 1 = 2) 2 2 · 2
k = 4 (Dk − Ck + 1 = 2) 2 2 2 ·

min
{

IWC∗
k,i

(Dk), Dk − Ck + 1
}

k = 1 (Dk − Ck + 1 = 9) · 4 6 6

with lower fixed-priority has zero or negative laxity. In turn, a
lower fixed-priority task with positive laxity cannot interfere with
a higher fixed-priority task. We can improve schedulability of FPZL
by utilizing this property in an iterative manner. In the first round,
ARTICLESS-8763; No. of Pages 10

J. Lee et al. / The Journal of Syste

he condition of “at the same time”, and (b) is true for any work-
onserving scheduling algorithm. Using (a) and (b), the existing test
s as follows:

emma 7 (Existing ZL Schedulability test Lee et al., 2010). A task
et is schedulable by any ZL-based scheduling algorithm if either (A)
r (B) is true:

A) The following inequality holds for at most m different tasks �k:∑
i /= k

min
{

IWC
k,i (Dk), Dk − Ck

}
≥ m · (Dk − Ck) (19)

B) The following inequality does not hold for any task �k:∑
i /= k

min
{

IWC
k,i (Dk), Dk − Ck + 1

}
≥ m · (Dk − Ck + 1) (20)

roof. The proof is the same as that of Theorem 7 in Baker et al.
2008). To summarize, Eqs. (19) and (20) correspond to (a) and (b),
espectively, and inequalities hold in a similar way to Lemma 3, and
he minimum operation holds by Lemma 5. �

We formally express dominance relationship between the exist-
ng ZL schedulability test and our new one as follows:

heorem 4. The new ZL schedulability test in Theorem 3 dominates
he existing ZL schedulability test in Lemma 7.

roof. If we focus on (A), the LHS of Eq. (16) is not larger than
hat of Eq. (19) because it holds that IWC∗

k,i
(Dk − 1) ≤ IWC

k,i
(Dk − 1) ≤

WC
k,i

(Dk). On the other hand, while (B) in Theorem 3 allows at most
 tasks satisfying Eq. (17), the corresponding (B) in Lemma 7 allows
o task satisfying Eq. (20), and moreover the LHS of Eq. (17) is not

arger than that of Eq. (20) since it holds that IWC∗
k,i

(Dk) ≤ IWC
k,i

(Dk).
hus, this theorem holds. �

When we apply the existing ZL schedulability test in Lemma 7,
he calculation of the LHS of Eqs. (19) and (20) for a given task �k has
omplexity O(n). We need to calculate the LHS of Eqs. (19) and (20)
or all tasks in the worst case, and then the existing test has time-
omplexity O(n2). On the other hand, in Theorem 3, the calculation
f the LHS of Eqs. (16) and (17) for a given task �k has complexity
(n · log (n)), because we need to sort values (Wi(l) − Zi(l)) for all

asks �i (/= �k). Further, similar to the existing test, we need to cal-
ulate the LHS of Eqs. (16) and (17) for all tasks in the worst case, and
hen our improved test has time-complexity O(n2 · log (n)). Thus,
he improved ZL schedulability test incurs only a marginal time
enalty, when compared to the existing test.

An example of the new and existing ZL schedulability tests
Theorem 3 and Lemma 7). For better understanding of the new and
xisting ZL schedulability tests, we present an example of four tasks
xecuted on two processors: �1 = �2 = (10, 2, 10) and �3 = �4 = (5,
, 4). As shown in Table 1 (See min

{
IWC
k,i

(Dk), Dk − Ck + 1
}

), all
asks satisfy Eq. (20), i.e., 4 + 7 + 7 ≥ 2 × 9 = 18 (for �1 and �2), and

 + 2 + 2 ≥ 2 × 2 = 4 (for �3 and �4). Similarly, we can check that all
asks satisfy Eq. (19). Therefore, the task set cannot be deemed
chedulable by Lemma 7.

However, once we apply Theorem 3, �1 and �2 cannot satisfy
q. (17). That is, the difference between min

{
IWC
k,i

(Dk), Dk − Ck + 1
}

nd min
{

IZL
k,i

(Dk), Dk − Ck + 1
}

for k = 1 (or 2) is 4-2, 7-6, and 7-
, respectively for i = 2 (or 1), 3, and 4. So, only �3 and �4 are

ncluded in T′k(l, WC) for k = 1 or 2. Then, as shown in Table 1 (See{ }
Please cite this article in press as: Lee, J., et al., Zero-laxity based
doi:10.1016/j.jss.2011.07.002

in IWC∗
k,i

(Dk), Dk − Ck + 1), the LHS of Eq. (17) for k = 1 or 2 is
 + 6 + 6 = 16, which is strictly less than the RHS of the equation
·9=18, and thus �1 and �2 cannot satisfy Eq. (17). Here �3 and �4
atisfy Eq. (17), i.e., 2 + 2 + 2 ≥ 2 × 2 = 4. We conclude there are only
k = 2 (Dk − Ck + 1 = 9) 4 · 6 6
k = 3 (Dk − Ck + 1 = 2) 2 2 · 2
k = 4 (Dk − Ck + 1 = 2) 2 2 2 ·

two tasks (�3 and �4) which satisfy Eq. (17), and therefore the task
set is deemed schedulable by Theorem 3.

4.4. Summary of existing tests for specific zero-laxity based
algorithms

We have presented an improved ZL schedulability test, which
can be applied to any work-conserving zero-laxity based schedul-
ing algorithm. However, once we focus on individual ZL-based
algorithms, schedulability can be improved by using characteristics
of the individual algorithms. Now we briefly summarize the cut-
ting edge of schedulability tests for individual ZL-based algorithms:
EDZL (Baker et al., 2008) and FPZL (Davis and Burns, 2011).

The schedulability test for EDZL has been developed in Baker
et al. (2008). In EDZL, tasks with positive laxity are prioritized
according to their deadlines (i.e., EDF). For positive-laxity tasks,
since a task with later deadline cannot interfere with another task
with earlier deadline, the maximum interference of �i on �k occurs
when the deadlines of two tasks are aligned as shown in Fig. 2 with
� = 0. Thus, the interference bound function for positive-laxity task
�i on �k during an interval of length l is the same as IZL

k,i
(l). Therefore,

if we replace IWC
k,i

(l) with IZL
k,i

(l), Lemma 7 can be a schedulability
test for EDZL. Such replacement can reduce interference because
IZL
k,i

(l) is always smaller than or equal to IWC
k,i

(l), and thus improves
schedulability compared to the original lemma.

The schedulability test for FPZL has been presented in Davis
and Burns (2011). In FPZL, a task with lower fixed-priority can
interfere with tasks with higher fixed-priority only when the task
 real-time multiprocessor scheduling. J. Syst. Software (2011),

Fig. 3. The situation where the maximum interference occurs under any work-
conserving algorithm when the slack value (Si) is applied.

dx.doi.org/10.1016/j.jss.2011.07.002

ARTICLE IN PRESSG Model
JSS-8763; No. of Pages 10

8 J. Lee et al. / The Journal of Systems and Software xxx (2011) xxx–xxx

 0

 5000

 10000

 15000

 20000

 0 0.5 1 1.5 2

Th
e

nu
m

be
r o

f d
ed

ic
at

ed
 ta

sk
 se

ts

Task set utilization

Tot
t-IZL
t-ZL

(a) m = 2, implicit deadline task systems

 0

 5000

 10000

 15000

 20000

 0 0.5 1 1.5 2 2.5 3 3.5 4

Th
e

nu
m

be
r o

f d
ed

ic
at

ed
 ta

sk
 se

ts

Task set utilization

Tot
t-IZL
t-ZL

(b) m = 4, implicit deadline task systems

 0

 5000

 10000

 15000

 20000

 0 0.5 1 1.5 2

Th
e

nu
m

be
r o

f d
ed

ic
at

ed
 ta

sk
 se

ts

Task set utilization

Tot
t-IZL
t-ZL

(c) m = 2, constrained deadline task systems

 0

 5000

 10000

 15000

 20000

 0 0.5 1 1.5 2 2.5 3 3.5 4

Th
e

nu
m

be
r o

f d
ed

ic
at

ed
 ta

sk
 se

ts

Task set utilization

Tot
t-IZL
t-ZL

(d) m = 4, constrained deadline task systems

ty test

w
p
l
t
t
m
i
c
r
f
m

(
b
p
a
e
D∑
c
d
fi
c
v
t
a
E
s

or Di is equal to Ti for implicit deadline task systems.
For each combination of (a), (b) and (c), we repeat the following

procedure (from Bertogna et al., 2009) and generate 100,000 task
Fig. 4. Schedulabili

e calculate Eq. (19) for all �k, and record whether each task has
ositive laxity (i.e., violating Eq. (19) means the task has positive

axity). If Lemma 7 holds, the task set is schedulable. If not, we con-
inue on the next round. In the round, if �i has lower fixed-priority
han �k and �i has positive laxity, the interference of �i on �k (i.e.,

in
{

IWC
k,i

(Dk), Dk − Ck

}
) does not count when the LHS of Eq. (19)

s calculated. Here we update positive-laxity tasks using the newly
alculated interference, and if there exists any updated task, we
epeat the next round. If not, the iteration halts. By removing inter-
erence from lower fixed-priority tasks with positive laxity, we find

ore schedulable task sets FPZL.
A technique has been developed for reducing interference

Baker et al., 2008; Bertogna et al., 2009), and this technique can
e also applied to the tests for ZL-based algorithms. For exam-
le, when we apply Lemma 7 for any work-conserving ZL-based
lgorithm, the LHS of Eq. (19) means the amount of total interfer-
nce of all other tasks {�i}i /= k on �k during an interval of length
k. Thus, a task �k can be blocked by other tasks during at most

i /= k min
{

IWC
k,i

(Dk), Dk − Ck

}
/m, and then �k can finish its exe-

ution within Ck +
∑

i /= k min
{

IWC
k,i

(Dk), Dk − Ck

}
/m. Here we can

efine the slack Sk of �k as the minimum time interval between the
nishing time and the deadline of �k, and the slack Sk can be cal-
ulated by Dk − Ck −

∑
i /= k min

{
IWC
k,i

(Dk), Dk − Ck

}
/m. This slack

alue can reduce interference of �i on �k as shown in Fig. 3 (Compare
Please cite this article in press as: Lee, J., et al., Zero-laxity based
doi:10.1016/j.jss.2011.07.002

he figure with Fig. 1). Then, we apply this slack value to Lemma 7 in
n iterative manner. In each round, �k updates its slack value when
q. (19) is calculated, and in the next round, the newly updated
lack values of each task reduce interference of the task on other
s for t-ZL and t-IZL.

tasks. The iteration halts when there are no more updated slack
values. This idea of using slack values is also easily applied to the
schedulability tests for EDZL (Baker et al., 2008) and FPZL (Davis
and Burns, 2011).

5. Performance evaluation

This section evaluates the performance of the improved ZL
schedulability test.

We generate task sets based on a technique proposed earlier
(Baker, 2005), which has also been used in many previous studies
(e.g., see Bertogna et al., 2009; Andersson et al., 2008). We have two
input parameters: (a) the number of processors m (2 or 4) and (b)
the task system (constrained or implicit deadline), and (c) individ-
ual task utilization (Ci/Ti) distribution (bimodal with parameter2:
0.1, 0.3, 0.5, 0.7, or 0.9, or exponential with parameter3: 0.1, 0.3, 0.5,
0.7, or 0.9). For each task, Ti is uniformly chosen in [1, Tmax = 1000],
Ci is chosen based on the bimodal or exponential parameter, and Di
is uniformly chosen in [Ci, Ti] for constrained deadline task systems
 real-time multiprocessor scheduling. J. Syst. Software (2011),

2 For a given bimodal parameter p, a value for Ci/Ti is uniformly chosen in [0, 0.5)
with probability p, and in [0.5, 1) with probability 1 − p.

3 For a given exponential parameter 1/�, a value for Ci/Ti is chosen according to
the exponential distribution whose probability density function is � · exp (− � · x).

dx.doi.org/10.1016/j.jss.2011.07.002

 ING Model
J

ms an

s
s

•
•

•

t
s
t

b

[
s

d
o
4
d
t
m

l
d
t

6

c
i
t
d
e
t
r

s
D
t
t
e
s
o
l
1
t
B
t

A

M
T
(
a
0

ARTICLESS-8763; No. of Pages 10

J. Lee et al. / The Journal of Syste

ets, thus resulting in 1,000,000 task sets for any given m and task
ystem.

Initially, we generate a set of m + 1 tasks.
In order to exclude unschedulable sets, we check whether the
generated task set can pass a necessary feasibility condition
(Baker and Cirinei, 2006; Baruah et al., 2009).
If it fails to pass the feasibility test, we discard the generated task
set and return to step 1. Otherwise, we include this set for eval-
uation. Then, this set serves as a basis for the next new set; we
create a new set by adding a new task into this old set and return
to step 2.

We evaluate the performance of two schedulability tests: (1)
he existing ZL schedulability test in Lemma 7, and (2) the improved
chedulability test in Theorem 3. These tests are respectively anno-
ated as ‘t-ZL’, and ‘t-IZL’, in the figures.

In Fig. 4 we plot the number of task sets proven schedula-

le by each test, with total set utilization (Usys
def.=

∑
�i ∈ TCi/Ti) in

Usys−0.01 ·m, Usys + 0.01 ·m). Here ‘Tot’ means the number of task
ets with each total set utilization.

Fig. 4(a) and 4(b) shows schedulability test results of implicit
eadline task systems for m = 2 and m = 4. Here we can easily
bserve that ‘t-IZL’ outperforms ‘t-ZL’. For m = 2, while ‘t-ZL’ deems
09,430 task sets schedulable among 1,000,000 task sets, ‘t-IZL’
eems 465,117 task sets schedulable, which include 13.6% addi-
ional task sets compared to ‘t-ZL’. For m = 4, ‘t-IZL’ deems 12.8%

ore task sets schedulable than ‘t-ZL’.
Fig. 4(c) and 4(d) plot performance results of constrained dead-

ine task systems for the cases of m = 2 and m = 4. Similar to implicit
eadline task systems, ‘t-IZL’ also finds a considerable portion of
ask sets schedulable, while ‘t-ZL’ fail to find them schedulable.

. Conclusion

This paper presents the ZL policy, as an initial step towards
onsidering urgency and parallelism for assigning job priorities
n multiprocessor environments. We show that, although simple,
he ZL policy is nevertheless effective in scheduling constrained
eadline task systems. Further, existing algorithms can be easily
xtended with the ZL policy, and the improved ZL schedulability
est developed in this paper can be used for such modified algo-
ithms.

In multiprocessor platforms, it is clear that the ZL policy
ignificantly improves schedulability by prioritizing tasks with
(t) − C(t) = 0. However, there are few studies on how to simul-

aneously consider parallelism and urgency more effectively than
he ZL policy. One direction of future work is to investigate such
ffective policies, and these studies can lay the foundation towards
olving an important open problem, which is development of an
ptimal multiprocessor scheduling algorithm for arbitrary dead-
ine task systems with a periodic release model (Liu and Layland,
973). Another direction of future work is to identify some proper-
ies of our ZL schedulability analysis (e.g., sustainability Burns and
aruah, 2008) and extend the analysis towards other systems (e.g.,
ime-triggered embedded systems Kopetz, 2008).

cknowledgements

This work was supported in part by the IT R&D Program of
KE/KEIT [2011-KI002090, Development of Technology Base for
Please cite this article in press as: Lee, J., et al., Zero-laxity based
doi:10.1016/j.jss.2011.07.002

rustworthy Computing], Basic Research Laboratory (BRL) Program
2009-0086964), Basic Science Research Program (2011-0005541),
nd the Personal Plug&Play DigiCar Research Center (NCRC, 2011-
018245) through the National Research Foundation of Korea (NRF)
 PRESS
d Software xxx (2011) xxx–xxx 9

funded by the Korea Government (MEST), and KAIST-Microsoft
Research Collaboration Center.

This work was also partially funded by the Portuguese
Science and Technology Foundation (FCT), the European Com-
mission (ARTISTDesign), the ARTEMIS-JU (RECOMP), and the
Luso-American Development Foundation (FLAD).

References

Anderson, J.H., Srinivasan, A., 2000. Early-release fair scheduling. In: Proceedings of
Euromicro Conference on Real-Time Systems, pp. 35–43.

Anderson, J.H., Bud, V., Devi, U., 2005. An EDF-based scheduling algorithm for mul-
tiprocessor soft real-time systems. In: Proceedings of Euromicro Conference on
Real-Time Systems, pp. 199–208.

Andersson, B., Bletsas, K., 2008. Sporadic multiprocessor scheduling with few pre-
emptions. In: Proceedings of Euromicro Conference on Real-Time Systems, pp.
243–252.

Andersson, B., Tovar, E., 2006. Multiprocessor scheduling with few preemptions.
In: Proceedings of IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, pp. 322–334.

Andersson, B., Baruah, S., Jonsson, J., 2001. Static-priority scheduling on mul-
tiprocessors. In: Proceedings of IEEE Real-Time Systems Symposium, pp.
193–202.

Andersson, B., Bletsas, K., Baruah, S., 2008. Scheduling arbitrary-deadline sporadic
task systems on multiprocessor. In: Proceedings of IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Applications, pp.
197–206.

Baker, T.P., 2005. Comparison of empirical success rates of global vs. paritioned fixed-
priority and edf scheduling for hand real time, Tech. Rep. Technical Report TR-
050601, Dept. of Computer Science, Florida State University, Tallahasee.

Baker, T.P., Cirinei, M., 2006. A necessary and sometimes sufficient condition for
the feasibility of sets of sporadic hard-deadline tasks. In: Proceedings of IEEE
Real-Time Systems Symposium, pp. 178–190.

Baker, T.P., Cirinei, M., Bertogna, M., 2008. EDZL scheduling analysis. Real-Time
Systems 40, 264–289.

Baruah, S., Mok, A., Rosier, L., 1990. Preemptively scheduling hard-real-time sporadic
tasks on one processor. In: Proceedings of IEEE Real-Time Systems Symposium,
pp. 182–190.

Baruah, S., Cohen, N.K., Plaxton, C.G., Varvel, D.A., 1996. Proportionate progress: a
notion of fairness in resource allocation. Algorithmica 15 (6), 600–625.

Baruah, S., Bonifaci, V., Marchetti-Spaccamela, A., Stiller, S., 2009. Implementation of
a speedup-optimal global EDF schedulability test. In: Proceedings of Euromicro
Conference on Real-Time Systems, pp. 259–268.

Bertogna, M., Cirinei, M., 2007. Response-time analysis for globally scheduled sym-
metric multiprocessor platforms. In: Proceedings of IEEE Real-Time Systems
Symposium, pp. 149–160.

Bertogna, M., Cirinei, M., Lipari, G., 2005. Improved schedulability analysis of EDF
on multiprocessor platforms. In: Proceedings of Euromicro Conference on Real-
Time Systems, pp. 209–218.

Bertogna, M., Cirinei, M., Lipari, G., 2009. Schedulability analysis of global schedul-
ing algorithms on multiprocessor platforms. IEEE Transactions on Parallel and
Distributed Systems 20, 553–566.

Burns, A., Baruah, S., 2008. Sustainability in real-time scheduling. Journal of Com-
puting Science and Engineering 2 (1), 74–97.

Cheng, B.-C., Stoyenko, A., Marlowe, T., Baruah, S., 1997. LSTF: A new scheduling
policy for complex real-time tasks in multiple processor systems. Automatica
33 (5), 921–926.

Cho, S., Lee, S.-K., Ahn, S., Lin, K.-J., 2002. Efficient real-time scheduling algo-
rithms for multiprocessor systems. IEICE Trans. on Communications E85–B (12),
2859–2867.

Cho, H., Ravindran, B., Jensen, E.D., 2006. An optimal real-time scheduling algorithm
for multiprocessors. In: Proceedings of IEEE Real-Time Systems Symposium, pp.
101–110.

Davis, R.I., Burns, A., 2011. FPZL schedulability analysis. In: Proceedings of IEEE Real-
Time Technology and Applications Symposium, pp. 245–256.

Easwaran, A., Shin, I., Lee, I., 2008. Towards optimal multiprocessor scheduling for
arbitrary deadline tasks. In: Proceedings of the Work-in-Progress Session of IEEE
Real-Time Systems Symposium, pp. 1–4.

Easwaran, A., Shin, I., Lee, I., 2009. Optimal virtual cluster-based multiprocessor
scheduling. Real-Time Systems 43 (1), 25–59.

Funaoka, K., Kato, S., Yamasaki, N., 2008. Work-conserving optimal real-time
scheduling on multiprocessors. In: Proceedings of Euromicro Conference on
Real-Time Systems, pp. 13–22.

Kopetz, H., 2008. On the design of distributed time-triggered embedded systems.
Journal of Computing Science and Engineering 2 (4), 340–356.

Lee, S.K., 1994. On-line multiprocessor scheduling algorithms for real-time tasks. In:
IEEE Region 10’s Ninth Annual International Conference, pp. 607–611.

Lee, J., Easwaran, A., Shin, I., 2010. LLF schedulability analysis on multiprocessor
platforms. In: Proceedings of IEEE Real-Time Systems Symposium, pp. 25–36.
 real-time multiprocessor scheduling. J. Syst. Software (2011),

Lee, J., Easwaran, A., Shin, I., Lee, I., 2010. Multiprocessor real-time scheduling con-
sidering concurrency and urgency. ACM SIGBED Review 7 (1).

Lee, J., Easwaran, A., Shin, I., 2011. Maximizing contention-free executions in
multiprocessor scheduling. In: Proceedings of IEEE Real-Time Technology and
Applications Symposium, pp. 235–244.

dx.doi.org/10.1016/j.jss.2011.07.002

 ING Model
J

1 ms an

L

L

L

M

P

S

S

J
r
S
r
H
T

A
o

ARTICLESS-8763; No. of Pages 10

0 J. Lee et al. / The Journal of Syste

eung, J.Y.-T., 1989. A new algorithm for scheduling periodic, real-time tasks. Algo-
rithmica 4, 209–219.

evin, G., Funk, S., Sadowski, C., Pye, I., Brandt, S., 2010. DP-FAIR: A simple model for
understanding optimal multiprocessor scheduling. In: Proceedings of Euromicro
Conference on Real-Time Systems, pp. 3–13.

iu, C., Layland, J., 1973. Scheduling algorithms for multi-programming in a hard-
real-time environment. Journal of the ACM 20 (1), 46–61.

ok, A., 1983. Fundamental design problems of distributed systems for the hard-
real-time environment, Ph.D. thesis, Massachusetts Institute of Technology.

ark, M., Han, S., Kim, H., Cho, S., Cho, Y., 2005. Comparison of deadline-based
scheduling algorithms for periodic real-time tasks on multiprocessor. IEICE
Transaction on Information and Systems E88-D, 658–661.

rinivasan, A., Baruah, S., 2002. Deadline-based scheduling of periodic task systems
on multiprocessors. Information Processing Letters 84 (2), 93–98.

tavrinides, G.L., Karatza, H.D., 2011. Scheduling multiple task graphs in het-
erogeneous distributed real-time systems by exploiting schedule holes with
bin packing techniques. Simulation Modelling Practice and Theory 19 (1),
540–552.

inkyu Lee received B.S. and M.S. degrees in computer science in 2004 and 2006,
espectively, from KAIST (Korea Advanced Institute of Science and Technology),
outh Korea. He also received a Ph.D. in Computer Science from KAIST in 2011. His
esearch interests include real-time embedded systems and computer networks.
Please cite this article in press as: Lee, J., et al., Zero-laxity based
doi:10.1016/j.jss.2011.07.002

e won the best student paper award from the 17th IEEE Real-Time and Embedded
echnology and Applications Symposium (RTAS) in 2011.

rvind Easwaran received a Ph.D. from the University of Pennsylvania, USA, in 2008
n Advances in Hierarchical Real-Time Systems: Incrementality, Optimality, and
 PRESS
d Software xxx (2011) xxx–xxx

Multiprocessor Clustering. From January 2009 to October 2010, he was a Invited Sci-
entist in CISTER lab, at the Polytechnic Institute of Porto, Portugal. Since November
2010, he is working as a R&D Scientist in Honeywell Aerospace, Advanced Tech-
nology. He was nominated for the best paper award in Euromicro Conference on
Real-Time Systems (ECRTS) in 2008 and won the best student paper award in IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS) 2011.
His research interests lie in real-time embedded systems.

Insik Shin is an assistant professor in Dept. of Computer Science at KAIST, South
Korea, since 2008. He received a Ph.D. from University of Pennsylvania in 2006. He
has been a post-doctoral research fellow at Malardalen University, Sweden, and a
visiting scholar at University of Illinois, Urbana-Champaign until 2008. His research
interests lie in cyber-physical systems and real-time embedded systems. He is cur-
rently a member of Editorial Boards of Journal of Computer Science and Engineering.
He has served various program committees in real-time embedded systems. He
received Best Paper Award from IEEE Real-Time Systems Symposium (RTSS) in 2003
and Best Student Paper Award from IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS) in 2011.

Insup Lee is Cecilia Fitler Moore Professor of Computer and Information Science
and Director of PRECISE Center at the University of Pennsylvania. He holds a sec-
ondary appointment in the Department of Electrical and Systems Engineering.
His research interests include cyber-physical systems, real-time and embedded
 real-time multiprocessor scheduling. J. Syst. Software (2011),

systems, runtime assurance and verification, formal methods and tools, trust
management, and high-confidence medical systems. He received a PhD in Com-
puter Science from the University of Wisconsin, Madison. He is IEEE Fellow and
received IEEE TC-RTS Outstanding Technical Achievement and Leadership Award in
2008.

dx.doi.org/10.1016/j.jss.2011.07.002

	Zero-laxity based real-time multiprocessor scheduling
	1 Introduction
	1.1 Contribution

	2 System model
	2.1 Task model
	2.2 Multiprocessor platform
	2.3 Scheduling algorithm

	3 Analysis of the ZL policy
	3.1 Job parameters: urgency and parallelism
	3.2 The dominance property of the ZL policy

	4 The improved ZL schedulability analysis
	4.1 The condition of deadline miss under any ZL-based algorithm
	4.2 A new ZL schedulability test
	4.3 Comparison of the existing ZL schedulability test
	4.4 Summary of existing tests for specific zero-laxity based algorithms

	5 Performance evaluation
	6 Conclusion
	Acknowledgements
	References

