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Abstract—The trend towards multi-core/many-core architec-
tures is well underway. It is therefore becoming very important
to develop software in ways that take advantage of such par-
allel architectures. This particularly entails a shift in program-
ming paradigms towards fine-grained, thread-parallel computing.
Many parallel programming models have been introduced tar-
geting such intra-task thread-level parallelism. However, most
successful results on traditional multi-core real-time scheduling
are focused on sequential programming models. For example,
thread-level parallelism is not properly captured into the concept
of interference, which is key to many schedulability analysis
techniques. Thereby, most interference-based analysis techniques
are not directly applicable to parallel programming models.
Motivated by this, we extend the notion of interference to cap-
ture thread-level parallelism more accurately. We then leverage
the proposed notion of parallelism-aware interference to derive
efficient EDF schedulability tests that are directly applicable to
synchronous parallel task models on multi-core platforms. Our
evaluation results indicate that the proposed analysis significantly
advances the state-of-the-art in EDF schedulability analysis for
synchronous parallel tasks.

I. INTRODUCTION

An irreversible shift towards multi-core processors is un-
derway. Recent development trends suggest that the chip
industry is moving to multi-/many-core architectures to better
manage trade-offs between performance, power efficiency, and
reliability in deep submicron technology. For example, Intel
designed a research chip with 80 cores [1], and Tilera intro-
duced a range of processors with up to 100 cores [2]. Given the
increasing emphasis on multi-/many-core chip design, software
parallelism is likely to be one of the greatest constraints
on computer performance. This inherently entails a shift in
programming paradigms towards fine-grained thread-parallel
computing, rather than relatively coarse-grained application-
level parallelism.

A popular technique to achieve fine-grained, thread-level
parallelism operates on the principle of divide-and-conquer. It
breaks down a larger task into many smaller subtasks, runs
those subtasks in parallel, and merges the results once each
subtask completes computation. The synchronous parallel pro-
gramming model embodies this kind of parallel decomposition.
A synchronous parallel task consists of a sequence of parallel
region, called segments, and each segment includes one or
more threads. Two important aspects are associated with the
synchronous parallel task model: segment-level synchroniza-
tion and thread-level parallelism. All the threads belonging to
the same segment are released at the same time and are not

restricted to run simultaneously with at most m degree of par-
allelism, where m is the number of available cores. Segments
are subject to synchronization rules between two consecutive
segments. All the threads belonging to one segment must com-
plete their own execution in order to move onward to the next
segment. A good example is the fork-join programming model,
which has been increasingly employed in many programming
environments, such as Java [3], OpenMP [4], and Cilk [5].

A shift from uni-core to multi-core processors allows
inter-task parallelism, where several applications (tasks) can
execute simultaneously on multi-core processors. In addition,
a shift from single-thread to multi-thread tasks allows intra-
task parallelism, where even a single task can have multiple
threads running simultaneously to take full advantage of multi-
core processing. Despite the growing importance of intra-task
parallelism, most real-time multiprocessor scheduling studies
are focused on inter-task parallelism of sequential tasks, and
relatively much less attention has been paid to understanding
intra-task parallelism towards the schedulability analysis of
synchronous parallel tasks. For example, a large number of
studies extensively investigated the schedulability analysis of
sequential tasks under EDF (earliest-deadline-first) [6] and
fixed-priority global scheduling [6], producing many influential
results. Such results include the concept of problem window
and interference [7], [8], interference bounding techniques [9],
[10], response time computation methods [8], [11], and optimal
priority assignment [12]. Many other scheduling algorithms
have been proposed for sequential models in order to take ad-
vantage of multiprocessors more effectively, including optimal
algorithms such as pfair [13], DP-Fair [14], and RUN [15]. In
addition, some approaches [16], [17] have been also proposed
for scheduling tasks with pipeline precedence constraints in
distributed real-time systems. However, the insights behind
those successful results are not directly applicable to syn-
chronous parallel tasks, due to the unique characteristics of
thread-level parallelism.

For example, the notion of interference has been well
defined in the sequential task case and serves as the basis
for many schedulability analysis methods [7]–[9]. However,
the current notion of interference does not capture thread-level
parallelism because it assumes that each task has only a single
thread to run at any time instant. Hence, those analysis methods
are not directly applicable or easily extensible to synchronous
parallel tasks.

Recently, a few analysis methods have been proposed
for schedulability of synchronous parallel tasks [18]–[22].



Those methods can broadly fall into two categories: direct and
indirect. Indirect analysis methods [19]–[21] share a principle
of task decomposition. Each single synchronous parallel task
is transformed into multiple independent sequential subtasks
such that each individual subtask is assigned its own inter-
mediate deadline. Schedulability analysis is then performed
over intermediate deadlines after task decomposition at the ex-
pense of potentially incurring some non-trivial decomposition
overheads. On the other hand, direct analysis methods [18],
[22] perform analysis without task decomposition. A recent
study [18] considers only a certain type of intra-task thread-
level parallelism (i.e., gang scheduling), which allows a fixed
degree of parallelism – all threads run or none does. A more
recent study [22] considers a more general parallel task model,
directed acyclic graph (DAG) model, for the single DAG task
case, yet leaving unresolved the multiple synchronous parallel
task case.

Motivated by this, the goal of this paper is direct schedu-
lability analysis for synchronous parallel tasks. The rationale
for this goal is that indirect EDF schedulability analysis
through task decomposition involves the additional overhead
of intermediate deadline assignment and a substantial amount
of pessimism (discussed in Section VI).

Contribution. The main contribution of this paper is to in-
troduce, to the authors’ best knowledge, the first EDF schedu-
lability condition that is directly applicable to synchronous
(malleable) parallel task systems in which parallel tasks are
allowed to execute with any arbitrary degree of thread-level
parallelism up to the number of available processors. To this
end, this paper extends the concept of interference capturing
thread-level parallelism more accurately with novel notions
of critical interference and p-depth critical interference. This
paper provides evaluation results, showing that the proposed
schedulability analysis significantly outperforms the state-of-
the-art approaches available for synchronous parallel tasks.

II. RELATED WORK

There has been an increasing attention to parallel task
models in the context of real-time scheduling [18]–[28]. The
work in [23], [24] considers soft real-time scheduling focusing
on bounding tardiness upon deadline miss, while hard real-time
systems aim at ensuring all deadlines are met. In this paper,
we consider hard real-time scheduling.

In general, a parallel task is said to be (1) moldable if the
task executes on exactly a certain number of processors, which
is determined before execution and remains unchanged, or (2)
malleable if the task can execute on any variable number of
processors, which can be dynamically changing at runtime.

A recent study [18] considers gang scheduling [29] of
moldable parallel tasks, in which a group of threads (e.g., all
threads of the same task) run with a predetermined degree of
parallelism or none do. This work introduces a new notion of
interference (interference rectangle) to characterize inter-task
interference according to such behavior of all-or-none thread
execution. It then derives a schedulability analysis for global
EDF gang scheduling. Since such a new interference notion
does not capture the situation where any arbitrary number of
threads execute in parallel, however, it is difficult to apply the
notion to the malleable parallel task case.

More recent studies [19]–[22] consider malleable parallel
task models, in which threads can execute any arbitrary degree
of parallelism up to the number of available processors. One
of the widely used malleable parallel task models is the fork-
join model [19]. A fork-join task consists of a sequence
of segments such that every odd-numbered segment contains
a single (master) thread and every even-numbered segment
consists of multiple (worker) threads. The master thread that
runs sequentially forks off a number of worker threads which
execute blocks of code in parallel. After the execution of
the parallelized code, the worker threads join back into the
master thread, which continues onward to another parallel
region or the end of the program. Relaxing the requirement of
such parallel/non-parallel alternation of the fork-join model,
a more general synchronous parallel task model [20], [21] is
considered such that each segment can have any number of
threads. In this paper, we consider this task model.

A few studies [19]–[21] share a common principle of task
decomposition for schedulability analysis. They decompose
a single synchronous parallel task into multiple independent
sequential sub-tasks through intermediate deadline assignment.
This approach is safe — satisfying the intermediate deadlines
of all sub-tasks leads to meeting the deadlines of their aggre-
gate synchronous parallel tasks. They then employ existing
schedulability analysis for those sequential sub-tasks. More
specifically, Lakshmanan, et al. [19] propose a partitioned
preemptive fixed-priority scheduling algorithm with a prov-
able performance for fork-join tasks, under the assumption
that all parallel segments have the same number of parallel
threads. Saifullah, et al. [20] decompose a parallel task into
a set of sequential sub-tasks such that the density of each
segment is upper bounded by some value, and this bound is
used to derive a resource augmentation bound. Nelissen, et
al. [21] decompose a parallel task such that the maximum
density among all segments in a parallel task is minimized.
However, such an indirect analysis via task decomposition can
be pessimistic, because task decomposition can incur non-
trivial overheads (discussed in Section VI). Furthermore, it
requires modifications to existing operating systems to support
task decomposition. Thereby, this paper seeks to derive direct
schedulability analysis for synchronous parallel tasks.

Another recent study [22] considers the sporadic DAG
model that is a general form of the synchronous parallel task
model. In the DAG model, each vertex corresponds to a single
thread and each edge represents a precedence constraint. A
thread can execute only after all of its predecessors have
been executed. This work presents a new notion of demand
and load for the sporadic DAG task model and applies it
to derive an efficient EDF schedulability test for the single
sporadic DAG task with a focus on the arbitrary deadline case.
However, this work does not present schedulability analysis for
a case in which multiple DAG tasks share processors, leaving
it as future work. On the other hand, our work considers
scheduling of multiple synchronous parallel tasks and presents
EDF schedulability tests for the case.

III. SYSTEM MODEL

We consider a multi-core platform, where sporadic, syn-
chronous parallel tasks run over m identical processors under
global EDF scheduling. A synchronous parallel task consists
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Fig. 1. A synchronous parallel task τi

of a series of segments, where each segment contains one or
more synchronous threads. A synchronous parallel task has two
major properties in terms of execution mechanism: segment-
level synchronization and thread-level parallel execution. All
threads within a single segment are released simultaneously,
are able to execute in parallel, and must finish their execution
prior to proceeding to the next segment. Thereby, no segments
within a single task can overlap each other.

A set of tasks is denoted by τ . For a sporadic, synchronous
parallel task τi, Ti is the minimum separation, Di is the relative
deadline, si is the number of segments, and σi,j represents
the j-th segment (see Figure 1). Each segment σi,j has its
own internal threads θi,j,k, and mi,j represents the number of
threads in the segment. The maximum parallelism of a task τi
(denoted with mi) is then defined as the maximum value of
mi,j among all segments, i.e., mi = maxjmi,j . In this paper,
there is no restriction on mi,j ; it can be larger than m, the
number of processors.

For an individual thread θi,j,k, Ci,j,k is its worst-case exe-
cution time requirement (WCET). A segment σi,j is associated
with two WCET parameters: Ci,j and LCi,j . Ci,j is defined
as the maximum amount of time to complete the execution of
all the threads within the segment σi,j on a single core. On
the other hand, LCi,j is defined as the minimum amount of
time needed to execute all threads in σi,j assuming that it can
use as many processors as possible for its execution. That is,

Ci,j =

mi,j∑
k=1

Ci,j,k and LCi,j = max
1≤k≤mi,j

{Ci,j,k}. (1)

Similarly, Ci and LCi represent the maximum and minimum
execution times of a task τi, respectively. We then define them
as

Ci =

si∑
j=1

Ci,j and LCi =

si∑
j=1

LCi,j . (2)

A sporadic, synchronous parallel task τi invokes a series
of jobs, each separated from its predecessor by a minimum
of Ti time units. We consider a constrained deadline Di such
that Di ≤ Ti. It should be LCi ≤ Di but not necessarily
Ci ≤ Di. Let Ui denote the utilization of τi and be defined as
Ui = Ci/Ti.

We denote the k-th job of a task τi with Jki . We will
omit the superscript in the notation for simplicity when no
ambiguity arises. For a job Jki , rki and dki are its release time
and deadline. The execution window of a job Jki is then defined
as interval [rki , d

k
i ). In this paper, every single job Ji is assigned

its own priority under EDF scheduling. Thereby, different jobs
have different priorities, but all threads within a single job have
the same priority, breaking ties arbitrarily.

In this paper, we assume quantum-based time and without
loss of generality, let one time unit denote the quantum length.
All task parameters are assumed to be specified as multiples
of this quantum length.

IV. INTERFERENCE-BASED SCHEDULABILITY ANALYSIS
FOR SYNCHRONOUS PARALLEL TASKS

In this section, we derive schedulability analysis of global
EDF scheduling for sporadic synchronous parallel task systems
with constrained deadlines. In the real-time scheduling liter-
ature, the notion of interference has been employed in many
schedulability analysis methods [8], [9], [30]–[32], using the
following definitions:

• Interference Ik(a, b): the sum of all intervals in which
τk is ready for execution but cannot execute due to
other higher-priority tasks in [a, b).

• Interference Ii,k(a, b): the sum of all intervals in
which τi is executing and τk is ready to execute but
not executing in [a, b).

With the above definitions, the relation between Ik(a, b) and
Ii,k(a, b) serves as an important basis for deriving schedula-
bility analysis. In the single-thread task case, it is intuitive to
construct such a relation on m processors as follows [8]:

Ik(a, b) =
1

m

∑
∀τi∈τ

Ii,k(a, b). (3)

However, it is not straightforward to build such a relation in the
multi-thread task case, as illustrated in the following example.

Example 4.1: As an example, suppose that two threads of
higher-priority τi and one thread of lower-priority τk are ready
for execution on two processors at time t. Then, the two threads
of τi will run on two processors in [t, t + 1), delaying the
execution of τk. According to the above definitions, τi imposes
interference on τk in [t, t + 1), yielding Ik(t, t + 1) = 1 and
Ii,k(t, t + 1) = 1. However, Eq. (3) no longer supports such
definitions.

The above example suggests a need for extending the
concept of interference for the parallel task model, and this
raises three problems: (1) how to calculate the interference on
τk when only some (but not all) threads of τk are interfered,
(2) how to calculate the interference of τi on τk when only
some (but not all) threads of τi interfere with τk, and (3) how
to calculate the interference of threads of task τk on other
threads of the same task τk.

To address problem (1), we introduce a new concept called
critical interference. A thread is said to be a critical thread if
it finishes last among all the threads belonging to the same
segment. With the notion of critical threads, we can now
extend the traditional definition of interference towards the
synchronous parallel task model as follows:

• Critical interference Ik(a, b): the sum of all intervals
in which a critical thread of τk is ready for execution



but cannot execute due to other higher-priority threads
in [a, b).

• Critical interference Ii,k(a, b): the sum of all intervals
in which at least one thread of τi is executing and
the critical thread of τk is ready to execute but not
executing in [a, b).

Note that when all tasks have a single thread, then the single
thread is equal to the critical thread and our definition is the
same as the traditional definition of interference.

To address problem (2), we introduce a new concept called
p-depth critical interference. The p-depth critical interference
of a task τi on τk characterizes not only the length of the delay
τi causes to τk but also the number of threads of τi that cause
the delay.

To address problem (3), we incorporate the notion of intra-
task interference into both the critical interference and the p-
depth critical interference such that they include interference
on a critical thread by other non-critical threads of the same
task.

A. Interference-based Schedulability Analysis

We first seek to identify a necessary condition for any
synchronous parallel task to miss a deadline on m processors.
In synchronous parallel tasks, all the threads belonging to the
same segment σk,u are released at the same time, but they
can complete execution at different time instants depending
on their execution behavior. A thread of a segment σk,u is
said to be a critical thread (denoted as θk,u,v∗ ) if it finishes
last among all the threads of the segment. A segment is
then considered as complete as soon as its critical thread
completes execution. We define interference on a critical thread
θk,u,v∗ over interval [a, b) (denoted as Ik,u,v∗(a, b)) as the
cumulative length of all intervals in which the critical thread
is ready to execute but not executing due to the execution
of higher-priority threads belonging to other tasks as well as
belonging to the same task. To avoid any confusion, it is worth
noting that Ik,u,v∗(a, b) includes intra-task interference that a
critical thread θk,u,v∗ receives from other threads θk,u,x of the
same task τk. According to our definition, Ik(a, b) is a total
interference imposed collectively on all the critical threads of
τk, i.e.,

Ik(a, b) =
∑

∀σk,u∈τk

Ik,u,v∗(a, b). (4)

We let J∗k denote the job instance of a synchronous parallel
task τk that receives the maximum critical interference among
all the jobs of τk. For J∗k , r∗k and d∗k are its release time and
deadline. Suppose J∗k missed a deadline. Then, one can see
that at least one critical thread of J∗k must not execute for
Ck,u,v∗ time units, and all critical threads do not execute for
LCk time units in total. On the other hand, when J∗k receives
the amount of interference smaller than or equal to Dk−LCk,
every job of τk has sufficient time to complete the execution
of all critical threads prior to a deadline under any work-
conserving scheduling. This observation yields the following
lemma.
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Fig. 2. An example of synchronous parallel task τi on 3 processors. (a) Task
τi has 4 segments with Ti = 9, Di = 8, and LCi = 6. (b) Task τi misses
a deadline at 8. Here, critical threads are θi,1,1, θi,2,2, θi,3,2, and θi,4,1,
because they finish last among all threads in the same segment. Two critical
threads, θi,2,2 and θi,3,2, were blocked for 3 time units (i.e., [1,2), [3,4), and
[5,6)), yielding Ii(0, 8) > Di − LCi.

Lemma 1: A set of synchronous parallel tasks (denoted by
τ ) is schedulable on m processors if

∀τk ∈ τ, Ik(r∗k, d∗k) ≤ Dk − LCk. (5)

Figure 2 shows an example that we will consider through-
out this paper. Figure 2(a) shows the thread structure of task
τi and its parameters. In Figure 2(b), a job of τi is released
at 0 with a deadline of 8. The figure shows that the execution
of two critical threads, θi,2,2 and θi,3,2, were delayed for 3
time units collectively, resulting in Ii(0, 8) > Di −LCi. This
makes it infeasible for the last thread θi,4,1 to fully execute
for Ci,4,1 time units before the deadline of 8. This leads to the
deadline miss of task τi.

As shown in Example 4.1, it is not as straightforward as
Eq. (3) to build the relation between Ik(a, b) and Ii,k(a, b).
This is mainly because Ii,k(a, b) does not capture how many
threads of τi interfere with the critical threads of τk. We
thereby introduce a new concept of p-depth critical interference
that characterizes the number of interfering threads, and this
new notion will bridge Ik(a, b) and Ii,k(a, b) effectively for
synchronous parallel tasks. Let us define the p-depth critical
interference Ii,k(p, a, b) of task τi on task τk during interval
[a, b) as the cumulative length of all intervals in which (1) a
critical thread of τk is ready to execute but does not execute
and (2) exactly p number of threads of τi are executing
(see Figure 3). It is worth noting that when it comes to the
intra-task interference case, Ik,k(p, a, b) corresponds to a case
where a critical thread of τk is not executing while exactly p
number of other non-critical threads of τk are executing. The p-
depth critical interference enables to represent the behavior of
parallel execution in more detail, allowing to figure out exactly
how many threads of a task τi are executing simultaneously
when τi delays the execution of another task τk. A total critical
interference Ii,k(a, b) can be decomposed into individual p-
depth critical interferences as follows:
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executes two threads in intervals [a + 2, a + 3) and [a + 4, a + 5), leading
to Ii,k(2, a, b) = 2. And Ii,k(3, a, b) = 1.

Ii,k(a, b) =
m∑
p=1

Ii,k(p, a, b). (6)

The p-depth critical interference also makes it easy to
constitute a total interference Ik(a, b) out of individual inter-
ferences of each task on task τk on m processors as follows.

Lemma 2: For any work-conserving algorithm, the total
critical interference Ik(a, b) imposed on task τk in interval
[a, b) is equal to the total amount of contribution of individual
threads to the interference on θk,u,v∗ divided by the number
of processors, i.e.,

Ik(a, b) =
1

m

∑
∀τi∈τ

m∑
p=1

Ii,k(p, a, b)× p. (7)

Proof: Since the scheduling algorithm is work-conserving,
in the time instants in each of which a critical thread of a task
is ready but not executing, each processor must be occupied
by all the other threads of another task and including itself.
The total amount of the contribution to the critical interference
on τk is

∑
∀τi∈τ

∑m
p=1 Ii,k(p, a, b)× p. If it is divided by the

number of processors, we can get the length of cumulative
intervals in which a critical thread of τk is ready to execute
but cannot in an interval [a, b).

For notational convenience, we define at least p-depth crit-
ical interference I+i,k(p, a, b) as the sum of intervals in which
at least p number of threads of τi execute simultaneously
delaying the execution of the critical thread of τk in [a, b).
By definition, we have

I+i,k(p, a, b) =
m∑
q=p

Ii,k(q, a, b). (8)

In the example shown in Figure 3, at least 2-depth critical
interference of τi on τk is calculated as the sum of all intervals
in which two or more threads of τi are executing impos-
ing interference on τk. Then, I+i,k(2, a, b) = Ii,k(2, a, b) +
Ii,k(3, a, b) = 3. We note that Ii,k(a, b) is equal to I+i,k(1, a, b)
by definition.

Building upon the notion of at least p-depth critical
interference, the following theorem derives a schedulability

condition. Note that it is possible to upper bound the value
of I+i,k(p, r∗k, d∗k) by Dk − LCk for all 1 ≤ p ≤ m in
the schedulability analysis of τk. This serves as a basis for
workload bound techniques, which will be shown in the next
section.

Theorem 1: A task set τ is schedulable under any work-
conserving algorithm on m identical processors if for each task
τk ∈ τ ,

∑
∀τi∈τ

m∑
p=1

min(I+i,k(p, r
∗
k, d
∗
k), Dk − LCk)

< m(Dk − LCk). (9)

Proof: The proof is by contraposition. We
wish to prove that if a task set τ is not
schedulable under any work-conserving algorithm,
∃τk ∈ τ,

∑
∀τi∈τ

∑m
p=1 min(I+i,k(p, r∗k, d∗k), Dk − LCk) ≥

m(Dk − LCk). Suppose task τk misses a deadline. Then, by
Lemma 1,

Ik(r∗k, d∗k) > Dk − LCk. (10)

We note that, by Lemma 2 and Eq. (8),

Ik(r∗k, d∗k) =
1

m

∑
∀τi∈τ

m∑
p=1

Ii,k(p, r∗k, d∗k)× p

=
1

m

∑
∀τi∈τ

m∑
p=1

I+i,k(p, r
∗
k, d
∗
k). (11)

Let α denote {(i, p) | ∀τi ∈ τ, 1 ≤ p ≤
m, I+i,k(p, r∗k, d∗k) ≥ Dk −LCk}, and |α| denotes the number
of elements in α.

If |α| ≤ m,

∑
∀τi∈τ

m∑
p=1

min(I+i,k(p, r
∗
k, d
∗
k), Dk − LCk)

= |α| · (Dk − LCk) +
∑

∀(i,p)/∈α

I+i,k(p, r
∗
k, d
∗
k)

= |α| · (Dk − LCk) +m · Ik(r∗k, d∗k)−
∑

∀(i,p)∈α

I+i,k(p, r
∗
k, d
∗
k)

(∵ by Eq.(11))

≥ |α| · (Dk − LCk) +m · Ik(r∗k, d∗k)− |α| · Ik(r∗k, d∗k)
(∵ by I+i,k(p, r

∗
k, d
∗
k) ≤ Ik(r∗k, d∗k))

= |α| · (Dk − LCk) + (m− |α|) · Ik(r∗k, d∗k)
> |α| · (Dk − LCk) + (m− |α|) · (Dk − LCk) (∵ by Eq.(10))

= m · (Dk − LCk).

Otherwise, |α| > m,

∑
∀τi∈τ

m∑
p=1

min(I+i,k(p, r
∗
k, d
∗
k), Dk − LCk)

≥ |α| · (Dk − LCk) > m · (Dk − LCk).



V. WORKLOAD-BASED SCHEDULABILITY TEST

Note that Theorem 1 includes the interference terms of
I+i,k(p, r∗k, d∗k), but it is generally difficult to calculate those
values precisely. Most existing approaches [8], [10], [31]–[33]
instead seek to derive upper bounds on interference based
on workload: the workload Wi(a, b) of τi is the sum of
all intervals in which τi is executing in interval [a, b). This
section derives a schedulability test using a workload-based
interference bound. To this end, we seek to derive a bound on
the whole sum of such individual bounded interferences, i.e.,∑m
p=1 min(I+i,k(p, r∗k, d∗k), Dk − LCk).

Let us first restrict our discussion to a case where the
number of threads in each segment σi,j is smaller than or
equal to the number of processors (mi ≤ m), and we will
relax this restriction later.

A. The number of threads in any segment is not larger than
the number of processors (m ≥ mi) for all i.

Along with the notion of p-depth critical interference,
we introduce the notion of p-depth workload. The p-depth
workload Wi,k(p, a, b) of task τi is the sum of all intervals
in which exactly p number of threads of τi are executing in a
way that those p number of threads are all of higher priority
than that of a critical thread of τk in interval [a, b). Similarly to
I+i,k(p, a, b), we define the notion of at least p-depth workload
W+
i,k(p, a, b) as follows:

W+
i,k(p, a, b) =

m∑
q=p

Wi,k(q, a, b). (12)

By definition, we have that Ii,k(p, a, b) ≤ Wi,k(p, a, b)
and that I+i,k(p, a, b) ≤ W+

i,k(p, a, b). Thus, the following
inequality hold for any Jk of τk:

m∑
p=1

min(I+i,k(p, rk, dk), Dk − LCk)

≤
m∑
p=1

min(W+
i,k(p, rk, dk), Dk − LCk)

def.
= Ŵ+

i,k. (13)

According to Inequality (13), an upper-bound on the inter-
ference term can be obtained by finding the maximum possible
value of Ŵ+

i,k in any scheduling window of a job of τk.
For the traditional single-thread task model, it requires us to
identify the worst-case release pattern of τi. For this multi-
thread task model, in addition to the worst-case release pattern,
we also need to identify the worst-case execution pattern
in a segment, which characterizes the execution of parallel
threads in the same segment. Note that the equation of Ŵ+

i,k
contains the min operation (see Inequality (13)), which does
not allow W+

i,k(p, rk, dk) to contribute to Ŵ+
i,k any greater than

Dk−LCk. The worst-case release and execution patterns thus
should maximize Ŵ+

i,k in the presence of the min operation.

We next consider two cases to discuss worst-case release
and execution patterns for maximizing Ŵ+

i,k: inter-task (i 6= k)
and intra-task cases (i = k).

rk dk 

Dk 

d’i r’i 

W+
i,k(1, rk, dk) =16 W+

i,k(2, rk, dk) = 8 W+
i,k(3, rk, dk) = 5 

Jk 

J’i 

Fig. 4. The worst-case release pattern in which Ŵ+
i,k is maximized.

LCi 
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 σi,3 
 σi,4 

 

L’ 

di 
ri 

Fig. 5. The worst-case situation in which the carry-in is maximized

1) Inter-Task Workload: To simplify the presentation, we
use the following terms. A job is said to be a carry-in job of
an interval [a, b) if it is released before a but has a deadline
within [a, b), or a body job if its release time and deadline are
both within [a, b).

Worst-case release pattern. Under a given execution
pattern, we can now determine the worst-case release pattern.
Figure 4 shows the worst-case release pattern, in which task
τi has the maximum amount of Ŵ+

i,k that interferes with job
Jk over interval [rk, dk) under EDF scheduling. As shown in
the figure, all the jobs of τi are released periodically, and its
last body job (J ′i) of the interval [rk, dk) has a deadline equal
to that of Jk (i.e., d′i = dk). For the carry-in job, we consider
the worst-case situation in which all threads of the carry-in
job are executed as late as possible (see Figure 5). With this
release pattern we can include the largest number of segments
of τi having higher priority than Jk in the interval [rk, dk),
thus maximizing the value of Ŵ+

i,k. We recapitulate the above
result in the following lemma:

Lemma 3: Under a given execution pattern, the release pat-
tern of task τi that maximizes Ŵ+

i,k is: (1) jobs are minimally
separated, (2) a deadline of a job of τi aligns with the deadline
of the job of τk, and (2) all threads of the carry-in jobs are
executed as late as possible (right before the deadline).

Worst-case execution pattern. If at all time instants, task
τi executes all of its available threads (that are released and do
not finish), then τi is said to execute with the maximum degree
of parallelism. Note that since the number of processors is
larger than or equal to the number of threads in a segment,
there are enough processors to execute all released threads of
τi simultaneously.

Lemma 4: For a given release pattern, when task τi ex-
ecutes with the maximum degree of parallelism, Ŵ+

i,k is
maximized.

Proof: Note that by the assumption m ≥ mi for all task



τi, it is possible for τi to execute with the maximum degree
of parallelism. The proof is constructed by induction on the
maximum degree of parallelism mi of task τi:

Base case: mi=1, the hypothesis is trivially true.

Now suppose the hypothesis is true for all tasks τj with
the maximum degree of parallelism mj = x. We will prove
that the hypothesis is true for all tasks τi with the maximum
degree of parallelism mi = x+1. First we construct a task τ ′i
by deleting one thread from every segment of τi. Then τ ′i has
m′i = x. Thus the hypothesis is true for τ ′i .

Now we add one thread to every segment of τ ′i . The extra
workload caused by the additional threads can contribute to
some W+

i,k(p, rk, dk). In the presence of the min operation, the

contribution of this extra workload to Ŵ+
i,k can be maximized

when it is added to as many smallest W+
i,k(p, rk, dk)s as possi-

ble (i). By the definition of W+
i,k(p, rk, dk), W

+
i,k(p, rk, dk) ≤

W+
i,k(q, rk, dk) when p > q (ii). From (ii), (i) can be satisfied

when all x+1 threads are executed with the maximum degree
of parallelism. Thus the hypothesis is satisfied for mi = x+1.
The lemma is proven.

Note that in the worst-case execution pattern defined above,
all segment σi,j execute only for LCi,j .

Calculating worst-case workload. By using the worst-
case execution pattern and the worst-case release pattern, we
can now determine the interval of length Dk which maximizes
Ŵ+
i,k. Define W ∗i,k(p,Dk) as the value of W+

i,k(p, rk, dk) in
such an interval. Figure 5 shows how to compute the maximum
amount of carry-in workload. Let us denote by L′ the length
of a carry-in interval. In the figure, when L′ = 4, the last
three segments of σi,2, σi,3, and σi,4 are considered as carry-in
workloads, since their execution can fully/partially fit into the
carry-in interval. If σi,3 executes only for a duration smaller
than Ci,3, then in order to guarantee the schedulability for
task τi in the worst case, σi,2 still needs to finish before di −
(LCi,3 +LCi,4), leaving enough room for σi,3 to execute for
Ci,3. Thus we can consider all threads to execute for their
WCET to calculate the carry-in jobs.

Let us consider a bound BD+
i,k(p,Dk) on the at least p-

depth body-job workload in any interval of length Dk and
another bound CI+i,k(p, L

′) on the at least p-depth carry-in
workload in any carry-in interval of length L′. The maximum
number of body jobs of τi over an interval of length Dk is⌊
Dk

Ti

⌋
. Then, BD+

i,k(p,Dk) and CI+i,k(p, L
′) are calculated as

follows:

BD+
i,k(p,Dk) =

⌊Dk
Ti

⌋
·

∑
∀j:mi,j≥p

LCi,j , (14)

CI+i,k(p, L
′)

def.
=



0, if L′ ≤ 0,∑si
j=h:mi,j≥p

LCi,j , else if 0 < L′ ≤ LCi and

mi,h−1 < p,∑si
j=h:mi,j≥p

LCi,j+ else if 0 < L′ ≤ LCi and

(L′ −
∑si
j=h LCi,j), mi,h−1 ≥ p,∑

∀j:mi,j≥p LCi,j , otherwise,

where h indicates the earliest segment that is fully included
in the carry-in interval. Then, the (h − 1)-th segment can
execute partially within the carry-in interval. In the exam-
ple in Figure 5, h indicates the 3rd segment, and the 2nd
segment (the (h − 1)-th segment) partially contributes to
CI+i,k(p, L

′), for each p, by 1. Then, the at least p-depth
workload W+

i,k(p, rk, dk) that will contribute to the worst case,
for i 6= k, is expressed as follows:

W ∗i,k(p,Dk) = BD+
i,k(p,Dk) + CI+i,k(p,Dk%Ti). (15)

We can then compute bounds on the amount of inter-task
interference as follows:

Ŵ+
i,k ≤

mi∑
p=1

min(W ∗i,k(p,Dk), Dk − LCk). (16)

2) Intra-Task Workload: The critical threads of task τk can
get interference from the other threads belonging to the same
task. For the intra-task interference, the worst-case release
pattern is already determined as the execution window of a job
of τk. Then, threads within a single job can interfere with each
other if they belong to the same segment, but not otherwise. For
each segment, all threads except the critical thread can interfere
on the critical thread, and it is clear that the interference of
a single thread θk,u,v on the critical thread θk,u,v∗ is upper
bounded by Ck,u,v . With the same reasoning for the inter-

task interference case, Ŵ+
k,k is maximized under the worst-

execution pattern where the maximum possible number of
threads of task τk execute in parallel as much as possible.
Then, W+

k,k(p, rk, dk) that will contribute to the worst case is
calculated as follows:

W ∗k,k(p,Dk)
def.
=

∑
∀j:mk,j≥p+1

LCk,j . (17)

We can compute bounds on the amount of intra-task
interference as

Ŵ+
k,k ≤

mk∑
p=1

min(W ∗k,k(p,Dk), Dk − LCk). (18)

3) Total Workload:

Lemma 5: When m ≥ mi for all task τi, a task set τ
is schedulable under global EDF scheduling on m identical
processors if for each task τk ∈ τ ,

∑
i 6=k

mi∑
p=1

min(W ∗i,k(p,Dk), Dk − LCk)

+

mk∑
p=1

min(W ∗k,k(p,Dk), Dk − LCk)

≤ m(Dk − LCk). (19)

Proof: From Lemmas 3 and 4, and Inequality (13),
the left-hand side is an upper bound of all the inter-task
interferences of all tasks τi on task τk, where i 6= k, and the
intra-task interference of task τk on itself. Then, by Theorem 1,
if Eq. (19) is satisfied for all tasks in a task set τ , the task set
is schedulable under global EDF scheduling on m identical
processors.



B. The number of processors is smaller than the number of
threads in some segments (m < mi) for some i

We now remove the restriction of mi,j ≤ m for each
segment σi,j such that mi can be larger than m.

Lemma 6: When m < mi for some tasks τi, Inequality
(19) still holds.

Proof: Let M = max
i
{mi}. Suppose we have M proces-

sors. Then, from Lemmas 3 and 4, the following holds for any
job Jk of τk:

M∑
p=1

min(W+
i,k(p, rk, dk), Dk − LCk)

≤
∑
i 6=k

mi∑
p=1

min(W ∗i,k(p,Dk), Dk − LCk)

+

mk∑
p=1

min(W ∗k,k(p,Dk), Dk − LCk). (20)

When m < M , the value of W+
i,k(p, rk, dk) may change

because the execution pattern changes. However, we will prove
that:

m∑
p=1

min(W+
i,k(p, rk, dk), Dk − LCk)

≤
M∑
p=1

min(W+
i,k(p, rk, dk), Dk − LCk). (21)

When we have M processors, the workload in the p-th
processor can be considered as the at least p-depth workload
W+
i,k(p, a, b). Since we decrease the number of processors from

M to m < M , we have to re-distribute the workload in M−m
processors to the remaining m processors. Choose M − m
smallest value of W+

i,k(p, a, b). Let W(M−m) be the largest
value among them and

∑
W(M−m) be the sum of them. There

are two cases.

Case 1. (W(M−m) < Dk − LCk). Then
min(W+

i,k(p, a, b), Dk − LCk) = W+
i,k(p, a, b) for all the

(M − m) chosen values. Hence the amount subtracted from
the left-hand side of Inequality (20) is exactly

∑
W(M−m).

The amount then added to the remaining m processors can
be at most

∑
W(M−m). Hence Inequality (21) holds.

Case 2. (W(M−m) ≥ Dk − LCk). Then
min(W+

i,k(p, a, b), Dk − LCk) = Dk − LCk for all the
m non-chosen values. Hence when we add the M −m chosen
workloads to the remaining m workloads, all will be dropped
because the original workload already exceed Dk − LCk.
Thus some amount may be subtracted from the left-hand side
of the Inequality (20) and none is added. Hence Inequality
(21) holds.

From Inequality (20) and (21), Lemma 6 holds.

C. Schedulability Test

From Lemmas 5 and 6, we have the following theorem.

Theorem 2: A task set τ is schedulable under global EDF
scheduling on m identical processors if for each task τk ∈ τ ,

∑
i 6=k

mi∑
p=1

min(W ∗i,k(p,Dk), Dk − LCk)

+

mk∑
p=1

min(W ∗k,k(p,Dk), Dk − LCk)

≤ m(Dk − LCk). (22)

Complexity. We denote the number of tasks in a task set by
n. Note that it requires O(n) to calculate Eq. (22) for a given
τk. Therefore, the schedulability test in Theorem 1 requires
O(n2).

It is worth noting that W ∗i,k(p,Dk) in Eq. (15) is a
generalization of a workload-based interference bound for the
single-thread task case [30]. They are equivalent when task τi
has a single segment with a single thread.

VI. EVALUATION

The goal of this paper is to develop global EDF schedula-
bility analysis that is directly applicable to a set of synchronous
parallel tasks, and this section presents simulation results for
the evaluation of our proposed analysis.

Simulation Environment. In order to understand how the
proposed analysis behaves to synchronous parallel tasks, we
employ a simulation parameter in task set generation. This
parameter controls the ratio of the number of synchronous
parallel tasks to the number of entire tasks in each task set
from 0% to 100%. We generate task sets by adapting the
technique proposed for the sequential task model in [33]. For
both sequential and parallel tasks τi, their task parameters are
determined as follows: period and deadlines (Ti = Di)1 are
uniformly chosen in [100, 1000]. For the parallel task case,
the number of segments (si) and the number of threads within
each segment σi,j (mi,j) are uniformly distributed in [1, 5] and
[1, 3m/2], respectively, where m is the number of processors.
All threads within the same segment share the same WCET,
and the WCET is uniformly chosen in [1, Ti/si]. For the
sequential task case, Ci = LCi are uniformly chosen in [1, Ti].
We generate 40,000 task sets for m = 4 and m = 8 with the
parallel task ratio from 0% to 100%.

According to the parameters determined as described
above, we first generate a set of m tasks and then keep creating
an additional new task set by adding a new task into the old set
until the system utilization (i.e., Usys =

∑
τi∈τ Ui) becomes

greater than m. Table I characterizes the task sets generated.
In the table, the parallelism index of a task τi (denoted by
PFi) is defined as the ratio of its WCET upper-bound Ci to
its WCET lower-bound LCi (i.e., PFi = Ci/LCi), and it
indicates how much a given task can be allowed to exploit
intra-task parallelism. It is intuitive that PFi grows as the ratio
of parallel tasks becomes larger.

For the generated task sets, we perform simulations for
our schedulability test in Theorem 2 (denoted by OUR). We

1In this section, we only show the results of implicit deadline tasks due to
space limitation, but the behaviors of constrained deadline tasks are similar
to those of implicit ones.
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Fig. 6. Schedulability under different system utilizations
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Fig. 7. Schedulability under different parallel task ratios

TABLE I
CHARACTERISTICS OF GENERATED TASK SETS FOR SIMULATION

Avg. m
Parallel task ratio

0.1 0.3 0.5 0.7 0.9

Number of Tasks
4 4.4 4.7 4.9 5.2 5.6
8 8.4 8.6 9.2 9.7 10.5

Usys
4 2.9 2.8 2.7 2.7 2.7
8 6.0 5.7 5.6 5.5 5.5

PFi
4 1.3 1.9 2.4 2.8 3.2
8 1.7 2.9 4.0 5.0 5.9

compare our tests with two other related approaches [20], [21]
(referred to as SAL and NBG, respectively).2

In those approaches, a single parallel task is decomposed
into multiple sequential sub-tasks such that each sub-task
corresponds to a thread and is assigned its own offset and dead-
line. Then, sub-tasks belonging to different segments within
the same task are separated by their offsets and deadlines.
This way, sub-tasks are subject to experiencing interference
from sub-tasks belonging to other parallel tasks and the sub-
tasks belonging to the same segment. While those approaches
are not designed for deadline-based analysis, we employ an
existing deadline-based schedulability test [8], upon which our

2Other related analysis techniques are not included in our evaluation,
because those in [18], [19] are applicable to more restrictive parallel task
models and the one in [22] is applicable only to the single DAG task case,
while the multiple parallel task case is of our interest.

proposed schedulability tests are built, for the decomposed
sequential sub-tasks.3 We note that the schedulability tests used
for SAL and NBG have the same time complexity of O(n2)
as our proposed schedulability test, but SAL and NBG require
additional computations for assigning the deadlines of sub-
tasks.

Simulation Results. In Figure 6, we plot the number
of task sets deemed schedulable by each schedulability test,
with different system utilizations for m = 4 and m = 8.
The figure shows that OUR significantly outperforms other
schedulability tests. In both cases of m = 4 and m = 8, OUR
finds 81% and 134% more schedulable task sets which are
deemed schedulable by neither NBG nor SAL, respectively.
We can interpret such a consistent gap as the benefit of using
direct schedulability analysis for synchronous parallel tasks,
compared to indirect approaches based on task decomposition.

Figure 7 plots the same simulation results presented in
Figure 6 from a different angle, showing them over different
parallel task ratios from 0% to 100%. Note that when the ratio
is 0% (i.e., there are only sequential tasks in task sets), all the

3Those decomposition-based approaches can work with other schedulability
analysis, such as response time analysis (RTA) [9]. As demonstrated in the
literature [8], [9], it is possible to extend the concept and technique behind
deadline-based analysis toward response time analysis. Thereby, our proposed
notion of parallelism-aware interference can be extended toward response time
analysis and it will be possible to compare our approach with others according
to response time analysis. However, this is beyond the scope of this paper due
to the limit of space.



analyses (OUR, SAL and NBG) yield the same results. This
is because task decomposition is no longer necessarily applied
to sequential tasks and our schedulability test is reduced to the
existing one [8] for the sequential task case.

One interesting observation is that task decomposition-
based approaches find less task sets deemed schedulable as the
parallel task ratio increases, while our approach finds a larger
number of such tasks on average. This can be interpreted that
the overheads of task decomposition are accumulated with a
growing number of parallel tasks. On the other hand, OUR is
relatively much insensitive to the parallel task ratio, implying
that it is effectively dealing with the thread-level parallelism
and segment-level synchronization of the synchronous parallel
task model.

More technically, Table I shows that when the parallel task
ratio grows, the parallelism index increases and thereby the
WCET lower-bound LCk of a task τk generally decreases. This
gives task τk more room to accommodate larger interference
from other tasks, leading to better schedulability. However,
it can be interpreted that such a potential for schedulability
improvement is not well exploited in NBG and SAL since
they do not consider intra-task parallelism directly. In those
approaches, the entire execution window of a synchronous
parallel task is divided into smaller intervals of its sub-tasks
through intermediate deadlines, and this seems to severely limit
the flexibility in executing subtasks; they now need to execute
only within their own artificial execution windows while corre-
sponding threads have flexibility in running even outside such
artificial windows in our approach. Such a difference leads to a
significant gap between schedulability for synchronous parallel
tasks.

VII. CONCLUSION

The motivation for our work was the desire to understand
the thread-level parallelism and segment-level synchronization
of synchronous parallel tasks in the context of hard real-time
multi-core scheduling. In this paper, we extended the notion
of interference formalizing it at a finer-grained thread level
and building a connection to the notion at a task level. We
then generalized interference-based analysis methods accord-
ing to the new proposed notion of interference, introducing
the first global EDF schedulability conditions that are directly
applicable to a set of synchronous (malleable) parallel tasks.
Our evaluation results showed that it significantly improves the
state-of-the-art analysis techniques available for synchronous
parallel tasks.

This paper incorporated thread-level parallelism directly
into schedulability analysis focusing on the EDF algorithm.
However, we believe the schedulability of synchronous parallel
tasks can be advanced much more significantly if thread-level
parallelism is directly reflected into scheduling algorithms as
well. Hence, a direction of our future work includes developing
new real-time scheduling algorithms that support intra-task
parallelism and synchronization directly.
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