
Scalable Path and Time Coordination for Robot Formation†

Hoon Sung Chwa, Andrii Shyshkalov, Kilho Lee, and Insik Shin

Dept. of Computer Science, KAIST, South Korea
insik.shin@cs.kaist.ac.kr

Abstract—In this paper, we consider several CPS challenges
(e.g., responsiveness, scalability, adaptability) in multi-robot
formation. In general, the response time of multi-robot for-
mation task involves two parts: the computation time for path
and time coordination to avoid any collision among robots
and the actuation time for the control of the robots to actually
move to their destinations. In terms of responsiveness, a shorter
response time provides a higher quality of responsiveness.
However, it is complicated to reduce the response time since
reducing computation time and reducing robot actuation time
are conflicting objectives, and such a trade-off varies over
environment. We present a scalable optimization framework
that explores such a trade-off dynamically and exploits it in
a feedback manner to find efficient trajectory schedules. Our
simulation results show that our framework successfully finds
a shorter response time by adapting to various environments
compared to a commercial optimization tool, and it is scalable
for a large number of robots.

I. INTRODUCTION

In the last decade, multi-robot formation [2], [3] has
experienced a rise of attention along with the advances in
multi-robot systems [4]. As the applications of the multi-
robot formation become broader, several CPS challenges
(e.g., responsiveness, scalability, adaptability) arise let alone
typical challenges (e.g., collision avoidance, formation trans-
formation). For example, multiple navigation robots with
rescue missions not only need to arrive at target location
safely but also need to arrive as soon as possible. In this
case, it is necessary to reduce the response time to improve
responsiveness. Generally, the response time of multi-robot
formation task involves two parts: the computation time for
the assignment of robots to goal locations (i.e., trajectory
scheduling for given paths) to visualize given input patterns
and the actuation time for the control of the robots to actually
establish the goal locations (i.e., actual robot movement). It
is straightforward that the better trajectory scheduling can
introduce the shorter robots traveling time. However, it often
takes longer to find the better trajectory scheduling, so it
is complicated to reduce the response time by taking into
consideration of the trade-off between the computation time
and the actuation time.

In this paper, we present a “scalable” optimization frame-
work that supports “responsiveness” for a multi-robot for-

†A preliminary version of this paper was published in the proceedings
of the 1st International Workshop on Large-Scale Cyber-Physical Systems
(LCPS 2011) [1].

mation. Generally, trajectory scheduling problem is to find
timing synchronizations for robots to avoid collision when
paths are given. In the framework, trajectory scheduling
aiming at minimizing the actuation time is the key problem
since it significantly affects the response time. However,
finding an optimal solution (i.e., minimizing the maximum
robot traveling time in our case) to trajectory scheduling is
known as NP-hard [5]. Hence, it is necessary to develop
an approximation algorithm that can explore a trade-off
between reducing computation time and reducing traveling
time effectively for sub-optimal solutions.

Figure 1 shows an example of such a trade-off from an
iterative approximation algorithm. It is shown in the figure
that the computation time is accumulated as the number
of iteration steps grows, but the actuation time becomes
decreased since the algorithm works better with repetitions.
Here, an optimal point, which minimizes the response time,
can be found around 60 iterations. It is generally complicated
to find such an optimal point in advance since it is often
sophisticated to predict how the robot actuation time is
varied by environmental parameters (i.e., the number of
robots, robot kinematics, robot deployment) on which the
maximum robot traveling time significantly depends.

Several existing studies [6], [7], [8], [9] have been fo-
cusing on computation of optimal solution or sub-optimal
solution with reduced complexity. However, little works have
been considering on the trade-off between the computation
time and the actuation time for response time minimization.
This paper presents a scalable optimization framework that
explores such a trade-off dynamically and exploits it in a
feedback manner to find an optimal trajectory scheduling
which minimizes response time.

Our framework consists of two components: (1) scalable
priority assignment policy, and (2) priority-based trajec-
tory scheduling for collision-free trajectory generation. A
priority ordering is defined as a priority ordered list of
all participating robots, and it determines the collision-
free trajectories of individual robots in a decreasing order
of priority. Hence, the priority ordering directly indicates
which robots to have higher priorities (i.e., which robots
to move first) in potential collision resolution. Similar to
prioritized planning [8], [9], the proposed priority-based
trajectory scheduling is scalable. Different priority orderings
generally produce different actuation times, and thus many
trials of different priority orderings increase a chance to



0

500

1000

1500

2000

2500

3000

0 50 100 150 200 250

T
im

e

The number of iterations

Response time

Actuation time

Computation time

Figure 1. A trade-off between the actuation time and the computation
time according to the number of iterations

decrease actuation time at the expense of increasing com-
putation time. Aiming at minimizing the response time, the
proposed framework effectively balances such a trade-off in
a feedback manner. By the use of a priority ordering as a
unit of computation in trajectory scheduling, the framework
adaptively controls the trade-off by deciding whether to try
a new priority ordering or not.

We evaluate the proposed framework from the viewpoints
of scalability, responsiveness and adaptability. Our simula-
tion results show that the commercial optimization tool is
not scalable, then the computation time increases rapidly
with a growing number of robots. However, the proposed
framework successfully finds a sub-optimal response time in
a scalable manner by dynamically adjusting the number of
iterations in consideration of the trade-off between actuation
and computation time.

Organization. The reminder of this paper is organized
as follows. Section II introduces our system model, as-
sumptions and notations. Section III proposes a scalable re-
sponse time minimization framework. Section IV develops a
priority-based trajectory scheduling algorithm that efficiently
finds an actuation time under a given priority ordering of
robots. Section V discusses a priority assignment policy that
determines how many priority orderings and which priority
orderings should be tried for minimizing the response time.
Section VI evaluates the proposed framework. Section VII
finally concludes this paper.

II. SYSTEM MODEL

This paper considers N robots on a two-dimensional plane
Z. Each robot Bi is configured as

• Robot Bi has the shape of a circle with radius ri.
• Pi, a path of Bi, is specified as a continuous sequence

of two-dimensional points from its starting location
Li,S to its ending location Li,E .

• There are two kinematic constraints which limit Bi’s
maximum speed (by V max

i ) and acceleration (by
Amax

i ) respectively. In addition, all robots are not
allowed to move backwards.

Each point on a path Pi can be uniquely determined by
traveling distance d which Bi has traveled along its path
from Li,S to the point. For example, when Bi has the same
traveling distance with its path length (denoted by Di),
which is the maximum traveling distance for Bi, it is located
on the ending location Li,E . Then, we can represent the path
Pi as a function of the traveling distance li(d), where d ∈
[0, Di].

The traveling time of each robot Bi (denoted by Ri) is
defined as the time at which the robot arrives at its ending
location Li,E . For convenience, we assume that all robots
start their movement at a time instant 0. Then, for each time
t between 0 and Ri, we define di(t) as the distance robot
Bi has traveled during the time interval [0, t].

Based on the above two functions, a trajectory of each
robot Bi, i.e., its location at a given time t (denoted by
Li(t)), can be obtained as follows:

Li = li ◦ di : [0, Ri]→ Pi.

III. SCALABLE RESPONSE TIME MINIMIZATION
FRAMEWORK

In this section, we formally describe the major prob-
lems of this paper. We then propose the scalable trajectory
scheduling framework, which is designed to address them.

A. Problem Statement

A key goal of this paper is to determine collision-free tra-
jectories of robots for doing user-interactive functionalities
such as multi-robot formation. To enhance user experience, it
is required to perform the interactive tasks as fast as possible.
In other words, it is essential to minimize the system
response time RT . From user’s perspective, RT includes the
following two kinds of time; 1) the computation time RC

for determining trajectories of all robots, 2) the actuation
time RA for moving all robots to their destination. We then
define the system response time minimization problem as
the problem of determining the location of each robot for
every time instant as follows:

When paths {Pi}1≤i≤N are given, we seek to
determine trajectories {Li(t)}1≤i≤N , such that
RC +RA is minimized, and there is no collision,
subject to {V max

i , Amax
i }1≤i≤N .

It is difficult to solve the above problem analytically since
it considers both RC and RA simultaneously, while RC is
not well defined as a closed-form formula. Furthermore, it
is challenging to define an accurate model for a trade-off
between RC and RA at design time. This entails run-time
estimation for such a trade-off.

B. The Proposed Framework

We propose a framework to dynamically make a decision
for trajectory scheduling by exploiting the trade-off between



RC and RA at run-time. It achieves to minimize the
system response time based on two key techniques; the
priority-based trajectory scheduling (PTS) algorithm and the
scalable priority assignment policy.

The PTS algorithm effectively reduces RA for a given
priority ordering, which is a basic unit of computation, by
scheduling the trajectory of individual robots one by one in
the order of their priorities. For such an individual schedule,
we develop an individual robot trajectory generation algo-
rithm that produces the minimum traveling time of a robot,
when the higher-priority robots’ trajectories are given, within
polynomial time of the number of robots.

Once the PTS algorithm is finished for a given priority
ordering, the scalable priority assignment policy estimates
an impact of additional scheduling computation on RT

and determines how many priority orderings to try. If the
additional computation is expected to reduce RT , it re-
schedules trajectories of robots with a new priority ordering.
We propose a heuristic to choose a “good” priority ordering
that produces shorter RA.

IV. PRIORITY-BASED TRAJECTORY SCHEDULING

This section presents a Priority-based Trajectory Schedul-
ing (PTS) algorithm to compute the minimum system trav-
eling time (RA) for a given priority ordering. We present
a structure of the PTS algorithm in Section IV-A and an
individual robot trajectory generation algorithm in Section
IV-B as a sub-routine of the PTS algorithm.

A. Priority-based Trajectory Scheduling Algorithm

Algorithm 1 shows the PTS algorithm to decide trajecto-
ries of all robots with the minimum system traveling time
for a given priority ordering of robots. According to the
priority ordering, it sequentially generates trajectory of an
individual robot when higher-priority robots are determined
(Lines 2-7). In Line 5, a sub-routine generates collision-free
trajectory for an individual robot. Its details are explained
in Section IV-B.

Algorithm 1 PTS algorithm
Input: a priority ordering of robots Q
Output: trajectory for the priority ordering

1: W := ∅
2: while Q 6= ∅ do
3: Bi := the head of Q
4: Remove Bi from Q
5: Individual-robot-trajectory-algorithm(Bi, W )
6: Insert Bi into W
7: end while

B. Individual Robot Trajectory Generation Algorithm

As a sub-routine of the PTS algorithm, we present an algo-
rithm to generate collision-free trajectory with the minimum
traveling time for an individual robot when the trajectories
of higher-priority robots are given.

Robot Bk

Radius rk

Bi

Bj

Moving direction

Starting location Li,S

Ending location Li,E

Cj,i
(1)

Ck,i
(1)

Ci,k
(1)

Robot Bj’s Conflict Interval with robot Bi

Ci,j
(1)

Figure 2. Conflict zone: a dotted line is a robot’s path, and a solid one is
a conflict zone

0 Time

Distance

Conflict zone

Collision

Figure 3. Finding collision-free trajectory for robot Bi with minimum
Ri

To analyze collision-free trajectory, we introduce a notion
of potential conflict zone of robots, which is the minimum
geometric region to be checked for collision occurrence
(Figure 2).

We can consider robot Bi’s traveling distance di(t) for
time t on two-dimensional plane with time as X-axis and
traveling distance as Y-axis, as shown in Figure 3. The
function di(t) is a continuous curve from (0, 0) to (Ri,Di).

We now analyze collision-free trajectory of robot Bi.
For a given Di, naturally, the steeper the function di(t)
is, the lower Ri is. However, we need to consider some
constraints. First, the trajectory from this curve must satisfy
the kinematic constraints of the robot (Figure 4). Second,
the curve must be monotonically non-decreasing from the
constraint that any robot cannot move backwards. Finally,
the trajectory from this curve must be collision-free.

Consider the third constraint with conflict zone. Conflict

Time

Distance

ddi(t)
dt = V max

i

ddi(t)
dt < V max

i

Deceleration

ddi(t)
dt = 0

∆dmin d2di(t)
dt2 = −Amax

i

Time

Distance

ddi(t)
dt < V max

i

d2di(t)
dt2 = Amax

i

ddi(t)
dt = 0

∆dmin

ddi(t)
dt = V max

i

Acceleration

Figure 4. Kinematic constraints impose a limit on the minimal traveling
distance ∆dmin that robot must travel to accelerate from 0 to the maximum
speed or to decelerate back to 0.



zone of robot Bi corresponding to robot Bj (denoted by
Ci,j) is formally defined as a set of traveling distances di
in [0,Di] at which Euclidean distance between Bi and Bj

is less than or equal to the sum of two robots’ radius as
follows:

Ci,j ={di ∈ [0,Di] | ∃dj ∈ [0,Dj ] such that
‖li(di)− lj(dj)‖ ≤ ri + rj}. (1)

We can find each member of conflict zone Ci,j . We denote
the z-th member of Ci,j by C

(z)
i,j , which is represented by a

rectangle. Its projection onto the traveling distance axis is
an interval

[
C
(z)
i,j .d

S ,C
(z)
i,j .d

E
]
, and that onto the time axis is

an interval of time (denoted by
[
C
(z′)
j,i .tS ,C

(z′)
j,i .tE

]
) during

which the other robot Bj may collide with robot Bi. Once
the trajectory of the robot Bj is known, collision zone Ci,j

can be computed as shown in Figure 2.
Now, we can generate collision-free trajectory for the

robot. We assume that conflict zones are given. If two robots
collide, then it must satisfy that one robot’s di(t) must
intersect at least one conflict zone’s rectangle. Therefore, in
order to avoid collision for robot or Bi, it suffices to make
sure that the curve di(t) does not intersect any of collision
zone rectangles. Then, finding a collision-free trajectory
for a robot becomes a geometric problem of finding di(t)
with minimum Ri among all continuous curves subject to
the limitations of no intersection with its collision zone
rectangles and kinematic constraints as shown in Figure 3.

Algorithm 2 describes the individual robot trajectory
algorithm, which takes robot Bi and a set of other robots
with given trajectories (denoted as W ) as input parameters
and returns collision-free trajectory of robot Bi. In Line 1, it
divides the robot’s path into a set of segments (denoted as S)
as shown in Figure 3 to make search for the curve efficient.
For each segment Sm ∈ S, the minimum traveling time
(denoted as tmin

m ) is pre-computed according to kinematic
constraints and a set of free time intervals (denoted by
Fm) consisting of intervals F k

m between collision zones is
computed (Line 2-4). In Line 5, we execute a depth first
search (DFS) on the first segment’s earliest free time interval.
DFS recursively tries to find the earliest free interval in the
next segment that the curve can “reach” from the current
free interval until the last segment’s end is reached. At the
end of the DFS process, we can find the time it takes for
the robot Bi to pass through each segment Sm, which can
compute the whole curve di(t).

Algorithm 2 Individual Robot Trajectory Algorithm
Input: Bi, W
Output: collision-free trajectory for robot Bi

1: S← Split [0,Di] into segments
2: for all Sm ∈ S do
3: Fm ← FreeIntervals(Sm, W )
4: end for
5: DFS(F 1

1 , 0, S1)

Complexity. The worst-case time complexity of the PTS
algorithm depends on two parameters: the number of robots
N and the maximum number of conflict zones per robot M .
In the individual robot trajectory optimization, computation
of free time intervals takes O(M2 · logM). Therefore, time
complexity of PTS algorithm (Algorithm 1) is O(N ·M2 ·
logM).

V. SCALABLE PRIORITY ASSIGNMENT POLICY

As explained in the previous section the PTS algorithm
produces the possible minimum value of RA for a given
single priority ordering. To minimize RA with the PTS
algorithm, we have to iterate all the priority orderings which
can induce large computation time, RC . As the number of
priority orderings increases, RC also increases in proportion.
Therefore, to achieve our goal of minimizing RT , we should
selectively deal with a subset of priority orderings only. In
order to construct the subset properly, we need to address
two questions: (i) how many priority orderings are included
in the subset, and (ii) which priority orderings are added
to the subset. This section explains how to resolve those
two questions to adaptively produce the priority orderings
resulting in the least RT .

A. The number of priority orderings to consider

To accomplish our goal of minimizing RT , we have to
keep trying an additional priority ordering until the new it-
eration is not beneficial to the goal anymore. In other words,
we should attempt a next priority ordering if the additional
computation time is less than the expected decrement of RA.
We arrange this scheme in the following lemma.

Lemma 1: When the k-th iteration step is done, the sys-
tem response time for k+1-th step can be reduced compared
to that for k-th step if the following inequality holds:

R
(k+1)
C −R

(k)
C < R

(k)
A −R

(k+1)
A , (2)

where R
(k)
C indicates the total computation time for k

iterations, and R
(k)
A indicates the minimum system traveling

time among k iterations. With the definitions, R(k)
T is then

defined to be R
(k)
C +R

(k)
A .

To apply Lemma 1, estimations of R(k+1)
C and R

(k+1)
A are

required. It is relatively easy to approximate R
(k+1)
C , since

the computation time of the PTS algorithm is stable over
different priority orderings. Hence, R(k+1)

C is estimated to
be k+1 times as much as the average computation time of
the PTS algorithm. On the other hand, estimation of R(k+1)

A
is more difficult since it can vary over different input priority
orderings. Since Fig 1 shows that R(k)

A has an exponentially
decreasing trend as the number of iteration steps increases,
we hypothesize that the R

(k)
A can be approximated as an

exponential function of the variable k, the number of steps.



We apply a linear regression model to approximate such an
exponential form of R(k)

A as follows:

x = a+ bk, (3)

where x is log(R
(k)
A ), and both a and b are unknown

coefficients that we should find the estimation formula.
We have to determine such a formula with applying linear
regression model based on {R(j)

A } for all j ≤ k. Then, from
estimated values of R

(k+1)
A and R

(k+1)
C , Lemma 1 decides

whether we should try one more priority ordering or not.

B. Selection of priority ordering in each iteration

In the previous sub-section we introduce a method that
finds the number of iterations in order to minimize RT .
However, the output value RT for a given number of
iterations (or equivalently given RC) depends on a set of
tried priority orderings. Hence, we propose a heuristic to
choose better priority orderings that produce a shorter RA.
First, we explain how to choose an initial priority ordering
and then how to evolve the initial priority ordering based on
the result of the initial priority ordering.

First step. The system traveling time RA depends on
the largest traveling time among all robots, and therefore
we can reduce RA by decreasing the traveling time of the
robot with the maximum Ri. However, we cannot identify
which robot has the maximum Ri unless a specific priority
ordering is given. This entails the need of expecting the
traveling time of each robot without any priority ordering. As
a heuristic, we estimate traveling time of robot Bi (denoted
by Ri) as the summation of the static traveling time and
the waiting time. The static traveling time is defined as the
amount of time consumed when robot Bi travels along its
path at earliest without delay for collision avoidance, and the
waiting time is the sum of the amount of time consumed by
all the other robots {Bj} to pass the conflict zones {Cj,i}
with their maximum velocity.

Considering the kinematic constraints, the static traveling
time of robot Bi (denoted by Rs

i ) can be simply calculated
as follows:

Rs
i =

Di

V max
i

+
V max
i

Amax
i

, (4)

where Di is the total traveling distance of Bi, and V max
i

and Amax
i are the maximum velocity and the maximum

acceleration of robot Ri, respectively.
The waiting time of robot Bi at C(z)

i,j when robot Bj passes

a corresponding element of its collision zone C
(z′)
j,i (denoted

by Rw
i (z)) is simply calculated as follows:

Rw
i (z) =

C
(z′)
j,i .dE − C

(z′)
j,i .dS

V max
j

. (5)

Then, the estimated traveling time of robot Ri is given as
follows:

Ri = Rs
i +

N∑
j=1

∑
C
(z′)
j,i ∈Cj,i

Rw
i (z). (6)

We sort robots by descending order of the estimated
traveling time, and we use this priority ordering as an initial
priority ordering.

Iteration. We first run the PTS algorithm, then we can
find the robot that determines the system traveling time.
Here, we denote such a robot by Bmax, and Bmax decides
RA. So, Bmax needs to be assigned a new priority to reduce
its traveling time. We first identify a set of robots (denoted
as H(Bmax)) that have higher priority than Bmax and share
the conflict zones with Bmax. After that, we set the priority
of Bmax to be the highest priority among robots in the
set, and decrease the priority of robots in the set by one.
By iterating this priority ordering evolution, we can have
successive priority orderings, and two characteristics: (i) if
the size of H(Bmax) is zero, the current priority ordering is
one of the best priority orderings in terms of minimizing
RA, and (ii) if the current priority ordering is equal to
one of the priority orderings that appear before, our priority
ordering evolution cannot find shorter RA.

With Lemma 1, there properties can be also the halting
condition of next iteration. We immediately stop the next if
any of the properties is satisfied.

VI. EVALUATION

In this section, we present performance and scalability
evaluation of our priority-based trajectory scheduling frame-
work. We first present simulation environment and then
discuss simulation results.

A. Simulation Environment

We compare two algorithms with our framework: mixed
integer linear programming, the priority-based trajectory
scheduling with an initial priority ordering only. These
algorithms are respectively annotated as MILP and STSF(1).
Our scalable trajectory scheduling framework is annotated
as STSF(n).

For MILP implementation, we use MILP formulation
presented in [7]. For the MILP solver, we use a commercial
optimization tool, CPLEX [10] in JAVA.

We generate 50 test sets for each combination of the
number of robots. We use a commercial computer with 4
core CPU with 4 GB memory. Each computation has been
done in one thread.

B. Simulation Results

For evaluating the benefits of using our framework,
STSF(n), we conducted a rigorous simulation by varying
the number of robots. Figure 5 shows the results of this
simulations. As the number of robots is increasing, the
response times of all algorithms are also increasing. One
of the most noticeable feature is that response time of



Figure 5. The system response time. For these test cases, environment size is 50m × 50m, average path length is 25m, average radius is 30cm, average
speed is 15cm/sec.

MILP increases sharply from 150 robots because computa-
tion time becomes the major part of the system response
time. For example, the portion of computation time in the
system response time increases from 2% with 120 robots to
70% with 240 robots. This indicates that when the system
response time is important as in multi-robot formation,
MILP may not be a desirable solution though it produces an
optimal actuation time. On the other hand, our framework
(STSF(1) and STSF(n)) yields the system response time
linearly proportional to the number of robots. This is because
the total computation time takes a small part of response
time. For example, the total computation time of STSF(n) is
only 8 seconds (2% of the system response time) for 240
robots which is less than 1% of MILP.

Now we compare the response times of STSF(1), and
STSF(n). Compared STSF(n) to STSF(1), response time of
STSF(n) is much smaller than STSF(1). This shows that
even though STSF(n) takes more time for computation,
STSF(n) can find more efficient way for trajectory schedul-
ing. Therefore, STSF(n) is suitable for a large number of
robots; it is scalable in terms of response time.

These simulation results indicate that our STSF(n) algo-
rithm can be successfully used for multi-robot formation
since it approximately minimizes system response time
adapting to environments, and it is scalable for a large
number of robots.

VII. CONCLUSION

In this paper, we develop the scalable trajectory schedul-
ing framework that minimizes the system response time to
support multi-robot formation with responsiveness, scalabil-
ity, and adaptability. Our aim is to get a smaller response
time by using the trade-off between the system traveling time
and the total computation time at run time. Our framework

dynamically iterates the priority-based trajectory scheduling
algorithm for different priority orderings to reduce the
response time efficiently. Our simulation results show that
the framework is suitable for multi-robot formation in that
it can produce a near optimal solution in a scalable manner
by adapting well to various environments.

ACKNOWLEDGEMENT

This work was supported in part by BSRP (NRF-
2010-0006650, NRF-2012R1A1A1014930), NCRC (2012-
0000980), KEIT (2011-10041313), RCPSR (14-824-09-013)
and KIAT (M002300089) funded by the Korea Government
(MEST/MSIP/MOTIE).

REFERENCES

[1] H. S. Chwa, A. Shyshkalov, J. Lee, H. Back, and I. Shin, “Adaptive
trajectory coordination for scalable multiple robot control,” in LCPS,
2011.

[2] M. M. Zavlanos and G. J. Pappas, “Dynamic assignment in dis-
tributed motion planning with local coordination,” IEEE Transaction
on Robotics, vol. 24, no. 1, pp. 1173–1178, 2008.

[3] The Flyfire Project at MIT. - http://senseable.mit.edu/flyfire/.
[4] J. Alonso-Mora, A. Breitenmoser, M. Rufli, R. Siegwart, and

P. Beardsley, “Multi-robot system for artistic pattern formation,” in
ICRA, 2011.

[5] S. Akella and S. Hutchinson, “Coordinating the motions of multiple
robots with specified trajectories,” in ICRA, 2002.

[6] T. Simeon, S. Leroy, and J.-P. Laumond, “Path coordination for
multiple mobile robots: A resolution-complete algorithm,” IEEE
Transactions on Robotics and Automation, vol. 18, no. 1, pp. 42–
49, 2002.

[7] J. Peng and S. Akella, “Coordinating multiple robots with kinody-
namic constraints along specified paths,” The International Journal
of Robotics Research, vol. 24, no. 4, pp. 295–310, 2005.

[8] M. Erdmann and T. Lozano-Perez, “On multiple moving objects,”
Algorithmica, vol. 2, no. 4, pp. 477–521, 1987.

[9] J. P. van den Berg and M. H. Overmars, “Prioritized motion planning
for multiple robots,” in IROS, 2005.

[10] IBM ILOG CPLEX V12.1 User’s Manual for CPLEX. IBM ILOG
CPLEX, 2009.


