
The Journal of Systems and Software 101 (2014) 15–29

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Capturing urgency and parallelism using quasi-deadlines for real-time

multiprocessor scheduling ✩

Hoon Sung Chwa a, Hyoungbu Back a, Jinkyu Lee b, Kieu-My Phan c, Insik Shin a,∗

a Department of Computer Science, KAIST, Daejeon, South Korea
b Department of Computer Science and Engineering, Sungkyunkwan University, Suwon, South Korea
c PRECISE Center, University of Pennsylvania, Philadelphia, PA 19104, USA

a r t i c l e i n f o

Article history:

Received 20 December 2013

Revised 7 November 2014

Accepted 9 November 2014

Available online 20 November 2014

Keywords:

Real-time systems

Multiprocessor scheduling

Quasi-deadline

a b s t r a c t

Recent trends toward multi-core architectures in real-time embedded systems pose challenges in designing

efficient real-time multiprocessor scheduling algorithms. We believe that it is important to take into consid-

eration both timing constraints of tasks (urgency) and parallelism restrictions of multiprocessor platforms

(parallelism) together when designing scheduling algorithms. Motivated by this, we define the quasi-deadline

of a job as a weighted sum of its absolute deadline (capturing urgency) and its worst case execution time

(capturing parallelism) with a system-level control knob to balance urgency and parallelism effectively. Us-

ing the quasi-deadline to prioritize jobs, we propose two new scheduling algorithms, called EQDF (earliest

quasi-deadline first) and EQDZL (earliest quasi-deadline until zero laxity), that are categorized into job-

level fixed-priority (JFP) scheduling and job-level dynamic-priority (JDP) scheduling, respectively. This paper

provides a new schedulability analysis for EQDF/EQDZL scheduling and addresses the problem of priority

assignment under EQDF/EQDZL by determining a right value of the system-level control knob. It presents

optimal and heuristic solutions to the problem subject to our proposed EQDF and EQDZL analysis. Our simu-

lation results show that EQDF and EQDZL can improve schedulability significantly compared to EDF and EDZL,

respectively.

© 2014 Elsevier Inc. All rights reserved.

1

c

f

i

f

2

g

e

d

i

t

t

s

E

p

c

h

0

. Introduction

Multi-core architectures have been increasingly adopted in safety-

ritical, real-time embedded systems to address ever-increasing per-

ormance requirements. For example, multi-cores have been grow-

ngly deployed in a variety of robots, and AUTOSAR has added support

or multi-core architectures in the automotive domain (AUTOSAR,

009). As a result, real-time scheduling research has been steadily

aining importance. Real-time scheduling determines the order of

xecution of jobs in order to satisfy their own timing constraints (i.e.,

eadlines). Two fundamental problems are the focus of most research

n this area: algorithm design that aims to derive task and job priori-

ies so as to satisfy all deadlines, and schedulability analysis that aims

o provide guarantees of deadline satisfaction.

Over several decades, real-time scheduling has been extensively

tudied over various scheduling categories. In general, priority-driven
✩ This paper is an extended version of the RTAS 2012 (the 18th IEEE Real-Time and

mbedded Technology and Applications Symposium) paper (Back et al., 2012).
∗ Corresponding author. Tel.: +82 42 350 3524.

E-mail address: insik.shin@cs.kaist.ac.kr, insik.shin@gmail.com (I. Shin).

u

H

a

ttp://dx.doi.org/10.1016/j.jss.2014.11.019

164-1212/© 2014 Elsevier Inc. All rights reserved.
reemptive scheduling algorithms fall into one of the following three

ategories:

• A task-level fixed-priority (TFP) algorithm assigns the same pri-

ority to all the jobs in each task, and the priority of each

task is fixed relative to other tasks. Good examples include RM

(rate-monotonic) (Liu and Layland, 1973) and DM (deadline-

monotonic) (Leung and Whitehead, 1982).
• A job-level fixed-priority (JFP)1 algorithm can assign different pri-

orities to the individual jobs in each task, but the priority of each

individual job is fixed relative to other jobs. A typical example is

EDF (earliest deadline first) (Liu and Layland, 1973).
• A job-level dynamic-priority (JDP) algorithm assigns to a job a pri-

ority that can change dynamically during the job’s execution. A

good example is LST (least-slack-time first) (Leung, 1989).

In the uniprocessor case, real-time scheduling has been well

nderstood in each of the above three categories with successful
1 This category is also called task-level dynamic-priority in the literature (Liu, 2000).

owever, we use the term JFP in order to emphasize the static nature of the priority of

n individual job.

http://dx.doi.org/10.1016/j.jss.2014.11.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2014.11.019&domain=pdf
mailto:insik.shin@cs.kaist.ac.kr
mailto: insik.shin@gmail.com
http://dx.doi.org/10.1016/j.jss.2014.11.019

16 H.S. Chwa et al. / The Journal of Systems and Software 101 (2014) 15–29

Fig. 1. A set of three tasks is feasible on two processors, but EDF fails to schedule

them successfully: τ1 = τ2 = (4, 2, 4), and τ3 = (8, 7, 8), where (Ti, Ci, Di) specifies the

minimum separation, the worst-case execution time, and the relative deadline, respec-

tively.

k

s

l

i

s

t

p

a

c

l

a

t

n

s

r

t

w

t

e

r

t

h

1

m

fi

r

e

l

l

a

t

t

t

c

c

t

2

t

t

p

f

(

l

a

a

o

r

h

h

s

o

m

a

r

c

r

a

E

q

g

f

w

r

results, including the optimality of DM, EDF, and LST in each cate-

gory, respectively. However, such successful results do not simply

extend to the multiprocessor case. For example, EDF is no longer op-

timal but exhibits significantly lower performance in multiprocessor

scheduling (Baker, 2003; Goossens et al., 2003), yet with little work re-

ported to explore JFP scheduling beyond EDF on multiprocessors. Un-

der JDP scheduling, several optimal scheduling algorithms have been

proposed for a basic task model (i.e., for periodic implicit-deadline

tasks in which deadlines are equal to periods). However, such op-

timality results do not hold for general task models (i.e., for peri-

odic/sporadic constrained-deadline tasks in which deadlines are no

larger than periods). This motivates the research described in this

paper to design new scheduling algorithms that advance the state-

of-the-art in JFP and JDP multiprocessor scheduling, in particular, for

sporadic constrained-deadline tasks.

Quasi-deadline. We believe that deadline-based scheduling al-

gorithms (e.g., EDF) perform poorly on multiprocessors because they

assign priority with a sole focus on deadline constraints (or “urgency”)

but neglecting “parallelism” restrictions on multiprocessor platforms.

The parallelism restriction makes a task unable to run simultaneously

on more than one processor, therefore the task cannot fully use all

processors even though more than one are available at the same time.

This can lead to a deadline miss of a task even though a total amount

of available processor capacity is larger than what the task requires,

as shown in Fig. 1(a). Such a parallelism restriction naturally becomes

more severe with a growing execution time requirement. On the other

hand, a task with unitary minimum execution time requirement is

free from such a parallelism restriction. For example, EDF becomes

optimal even on multiprocessors if all tasks have the execution time

requirement of one unit (Lee et al., 2011b). A few studies (Andersson

and Jonsson, 2000; Davis and Burns, 2009; Erickson and Anderson,

2012; Lee et al., 2011b) show that assigning higher priorities to jobs

with larger execution time requirements helps to mitigate parallelism

restrictions. For non-real-time tasks, the LEF (largest execution time

first) scheduling policy is proven to minimize the makespan thus

offering the maximum room for future execution. As such, the exe-

cution time requirement is considered as effective in capturing the

parallelism restriction, and it entails scheduling policies that can con-

sider both urgency and parallelism simultaneously. Inspired by this,

we define the quasi-deadline (qi) of an individual job (Ji) as a weighted

sum of its absolute deadline (di) and its worst-case execution time

(Ci) such that qi = di − k · Ci, where k is a real number (i.e., k ∈ IR) that

the system statically configures for a given task set. The parameter k

allows efficient balancing between urgency (captured by di) and par-

allelism (captured by Ci). We then present two new algorithms, EQDF

(earliest quasi-deadline first) and EQDZL (earliest quasi-deadline until

zero laxity), that assigns priorities based on quasi-deadlines. We note

that the quasi-deadline is a metric that is only used for prioritizing

jobs and it does not change any of the original task specification, i.e.,

jobs are still required to complete by their original deadlines.

EQDF. We first introduce a new job-level fixed-priority schedul-

ing algorithm, called EQDF (earliest quasi-deadline first), that assigns

priority to jobs according to their quasi-deadlines. EQDF is a general-

ization of EDF; EQDF becomes EDF with k = 0. Then, EQDF is able to

yield better schedules than EDF by properly assigning the parameter
; for example, a task set in Fig. 1, which is not schedulable by EDF, is

chedulable by EQDF with k = 1, as shown in Fig. 1(b).

For the proposed EQDF scheduling, this paper derives new schedu-

ability conditions and addresses quasi-deadline assignment, which

s critical to the effectiveness of EQDF. In particular, this paper con-

iders the k-controlled quasi-deadline assignment that determines

he value of k to cause a task set to become feasible according to the

roposed EQDF schedulability test. A naive approach of examining

ll possible values of k is prohibitively expensive and even inappli-

able to continuous values of k. We thereby present an optimal so-

ution algorithm, called OQDA-k, that finds a feasible value for k, if

ny exists. Our empirical results show that the proposed EQDF op-

imal solution not only dominates EDF but also outperforms it sig-

ificantly. Our EQDF solutions find 40–45% more schedulable task

ets than the state-of-the-art EDF analysis. Our empirical results also

eveal that the OQDA-k algorithm employs a considerable running

ime, leaving the algorithm only suitable for design time. Thereby,

e present a heuristic solution to the problem as well. A key factor

o performance is where and how densely the heuristic algorithm

xamines k values. Based on thorough understanding of empirical

esults, we are able to reduce the search space of the heuristic solu-

ion quite effectively. Our simulation results show that the proposed

euristic algorithm can find a solution close to optimal (less than

% loss of optimality) while reducing running time by two orders of

agnitude. It is also shown that the heuristic algorithm is able to

nd 34–37% more schedulable task sets than EDF with a comparable

unning time.

EQDZL. Building upon such EQDF results, this paper also seeks to

xplore the effectiveness of quasi-deadline under deadline-based job-

evel dynamic-priority scheduling. EDZL (earliest deadline until zero

axity) (Lee, 1994) has been introduced as an extension of EDF. Laxity

t time t is defined as remaining time to deadline at t (Di(t)) minus

he amount of remaining execution at t (Ci(t)). EDZL assigns priorities

o jobs according to EDF if those jobs do not reach zero laxity or gives

he highest priority to a job if it goes to zero laxity. This way, EDZL

onsiders only urgency when no job reaches zero laxity, but starts

onsidering both urgency and parallelism together when a job enters

he zero laxity state. Several studies (Baker et al., 2008; Lee et al.,

011b; Lee, 1994) reported that such a zero-laxity-based extension

oward EDZL brings significant improvement in schedulability. Given

he superiority of EDZL, a question is naturally raised whether incor-

orating quasi-deadlines into EDZL can improve schedulability any

urther. To answer the question, this paper extends EDZL to EQDZL

earliest quasi-deadline until zero laxity) and derives EQDZL schedu-

ability tests from EQDF tests. It then considers the problem of finding

n optimal value of k subject to the proposed EQDZL test and presents

n optimal solution, called OQDAZL-k, reflecting the unique features

f zero laxity. Our simulation results show that the OQDAZL-k algo-

ithm can improve schedulability by 10% compared to EDZL. Given the

igh time-complexity of the OQDAZL-k algorithm, we also present a

euristic solution. According to our simulation results, the heuristic

olution is quite effective in finding sub-optimal solutions (1% loss of

ptimality) while reducing running time by three to four orders of

agnitude.

Contribution. This paper extends our work presented earlier in

conference publication (Back et al., 2012). First, this paper elabo-

ates on the concept of quasi-deadline by explaining how the concept

aptures urgency and parallelism, the most two important aspects of

eal-time multiprocessor scheduling. Second, in addition to the EQDF

lgorithm proposed in Back et al. (2012), this paper proposes a new

QDZL algorithm, demonstrating and evaluating the applicability of

uasi-deadline in real-time multiprocessor scheduling. The EQDZL al-

orithm is able to bring a significant improvement in schedulability

or general task models. Third, this paper also broadens the related

ork discussion and expands the evaluation with more simulation

esults.

H.S. Chwa et al. / The Journal of Systems and Software 101 (2014) 15–29 17

r

o

E

c

c

a

v

e

c

2

t

s

2

2

h

t

o

(

(

p

o

s

a

l

q

o

w

o

D

i

S

t

2

B

v

m

a

a

b

d

a

i

b

v

s

m

2

p

t

s

s

s

i

d

(
i

t

i

l

a

e

e

d

e

i

o

e

s

a

m

i

n

l

l

e

s

q

c

3

a

a

t

(

t

U

T

δ
a

a

a

d

i

[

w

l

(

g

o

p

l

o

e

m

a

c

h

c

o

p

j

i

a

i

r

s

z

2 The system density (δsys) often serves as a measure of the overall processing de-

mands of the systems, which will be formally defined in Section 3.
The rest of this paper is organized as follows. Section 2 presents

elated work, and Section 3 describes system models and terminol-

gy. Section 4 derives new, interference-based schedulability tests for

QDF and EQDZL scheduling based on the understanding of worst-

ase inter-task interference scenarios. Section 5 formulates the k-

ontrolled quasi-deadline assignment problem and proposes optimal

nd heuristic solutions. Section 6 provides empirical results with in-

estigation of the characteristics of optimal solutions thoroughly and

valuates the effectiveness of our EQDF and EQDZL solutions. Section 7

oncludes and points out future work.

. Related work

A considerable amount of work has been made to study TFP mul-

iprocessor scheduling. Many policies were proposed for priority as-

ignment in this category, including RM-US{θ} (Andersson et al.,

001), DM-DS{θ} (Bertogna et al., 2005b), and SM-US{θ} (Andersson,

008). Those policies share the same principle that they assign the

ighest priority to tasks with utilization (or density) greater than a

hreshold θ . They then differ from each other in that they assign pri-

rities to the other tasks according to the rules of rate-monotonic

RM-US{θ}), deadline-monotonic (DM-DS{θ}), and slack-monotonic

SM-US{θ}), respectively. Audsley (1991, 2001) developed an optimal

riority assignment (OPA) policy for some given schedulability test

n uniprocessor platforms. Davis and Burns (2009) showed that Aud-

ley’s OPA algorithm is applicable to the multiprocessor case when

given test satisfies some conditions. There have been some task-

evel priority assignment schemes that are related to our notion of

uasi-deadline. Andersson and Jonsson (2000) designed the TkC pri-

rity assignment policy which assigns priorities based on (Ti − k · Ci),

here Ti is a task period and k is a real value computed on the basis

f the number of processors. Davis and Burns (2009) developed the

-CMPO policy that assigns priorities according to Di − Ci, where Di

s a task’s relative deadline.

EDF is the most studied and well-known JFP scheduling algorithm.

everal schedulability tests for global EDF scheduling of sporadic

ask systems have been developed (Baker, 2003; Baker and Baruah,

009a; Baruah, 2007; Baruah et al., 2009; Bertogna and Cirinei, 2007;

ertogna et al., 2005a, 2009; Goossens et al., 2003). Baker (2003) de-

eloped a general strategy using the notion of processor load for deter-

ining the schedulability of sporadic task sets. Baker’s test computes

necessary amount of processor load to cause a deadline to be missed

nd takes the contraposition of this to derive a sufficient schedula-

ility test. Building upon Baker’s work, Bertogna et al. (2005a, 2009)

eveloped a sufficient schedulability test for any work-conserving

lgorithms based on bounding the maximum workload in a given

nterval. Bertogna et al. extended this test via an iterative schedula-

ility test that calculates a slack value for each task, and then uses this

alue to limit the amount of carry-in workloads. In addition to these

tudies, many studies have reduced the pessimism of calculating the

aximum workload using their own techniques (Baker and Baruah,

009a; Baruah, 2007; Baruah et al., 2009; Goossens et al., 2003). Em-

irical schedulability performance of the existing EDF schedulability

ests has been evaluated in Bertogna and Baruah (2011). A recent

tudy (Erickson and Anderson, 2012) introduces a priority assignment

cheme that is closely related to our notion of quasi-deadline, con-

idering both deadline and execution time together for JFP schedul-

ng. This study suggests that each task τi is assigned the priority of

i − ((m − 1)/m) · Ci, which uses a particular value for k (i.e., equal to

m − 1)/m) for all task set instances. It shows that the proposed prior-

ty assignment brings a maximum tardiness bound that is no greater

han that of global EDF scheduling for soft real-time systems.

There has been a growing attention to JDP multiprocessor schedul-

ng. In the implicit-deadline task systems, where each task has a dead-

ine equal to task period, a class of optimal algorithms (Anderson

nd Srinivasan, 2000; Baruah et al., 1996; Cho et al., 2006; Funaoka
t al., 2008; Levin et al., 2010; Regnier et al., 2011) is proposed. How-

ver, such optimality does not extend to more general, constrained-

eadline task systems, where a task has a deadline larger than or

qual to a task period. For example, those optimal algorithms in the

mplicit-deadline task case no longer guarantee the schedulability

f the constrained-deadline task systems, when the system density2

xceeds the number of processors (Lee et al., 2012). Recent studies

howed that zero-laxity based algorithms (Lee et al., 2011b), which

ssign the highest priority to zero-laxity jobs, are quite effective in

ultiprocessor scheduling and able to guarantee the schedulabil-

ty of the system even when the system density is greater than the

umber of processors. These algorithms include EDZL (EDF until zero

axity) (Baker et al., 2008; Lee, 1994), FPZL (fixed-priority until zero

axity) (Davis and Kato, 2012; Davis and Burns, 2011), and LST (Lee

t al., 2010; Leung, 1989). In general, JDP algorithms incur relatively

ignificant runtime scheduling overheads, for examples, with fre-

uent context switches and/or with keeping track of laxity dynami-

ally, compared to TFP and JFP algorithms.

. System model and terminology

Task model. In this paper, we assume a sporadic task model, where

task τi ∈ τ is specified as (Ti, Ci, Di)such that Ti is the minimum sep-

ration, Ci is the worst-case execution time requirement, and Di is

he relative deadline. Further, we focus our attention on constrained

Ci ≤ Di ≤ Ti) deadline tasks. Let n denote the number of tasks in τ . A

ask utilization Ui of τi is defined as Ci/Ti, and the system utilization

sys is defined as the total utilization of a task set, i.e., Usys = ∑
τi∈τ Ui.

he density of a task is defined as δi = Ci/Di, and the system density

sys is given by
∑

τi∈τ δi. A task τi invokes a series of jobs, each sep-

rated from its predecessor by at least Ti time units. A single job is

unit of execution that can only be allocated to a single processor

t a time. When a job Jh
i

of task τi has a release time rh
i

, its absolute

eadline dh
i

is given as dh
i

= rh
i

+ Di. The scheduling window of a job Jh
i

s then defined as the interval between its release time and deadline

rh
i
, dh

i
). We define the quasi-deadline qh

i
of a job Jh

i
as qh

i
= dh

i
− k · Ci,

here k is a knob that controls the ratio of execution time to dead-

ine. We assume that the quasi-deadline control knob k is a real number

i.e., k ∈ IR), and the system statically configures the value of k for a

iven task set. We also assume quantum-based time and without loss

f generality, let one time unit denote the quantum length. All task

arameters are assumed to be specified as multiples of this quantum

ength.

Multiprocessor scheduling. We assume that the system consists

f m identical unit-capacity processors, and we consider global pre-

mptive scheduling on multiprocessors. In particular, we focus on two

ultiprocessor scheduling algorithms with quasi-deadlines: EQDF

nd EQDZL.

First, the EQDF scheduling algorithm assigns the priority of jobs ac-

ording to their quasi-deadlines; a job with an earlier quasi-deadline

as a higher priority. Compared to EDF, EQDF requires only one extra

alculation of quasi-deadline per job (i.e., qi = di − k · Ci). Thereby, the

perating cost of EQDF is comparable to that of EDF. When it comes to

reemption, it has been reported that a single job can preempt other

obs at most once under EDF scheduling (Liu, 2000). In fact, this bound

s applicable to all task-level and job-level fixed-priority scheduling

lgorithms. This is because a single job can preempt another when it

s released and is unable to preempt any more as long as its priority

emains the same. Hence, EQDF, which is a JFP algorithm, has the

ame preemption bound as that of EDF.

Second, we consider the EQDZL scheduling algorithm, which is a

ero-laxity based extension of EQDF; zero-laxity jobs have the highest

18 H.S. Chwa et al. / The Journal of Systems and Software 101 (2014) 15–29

L

l

i∑

a

i

m

w

a

t

s

l

t

d

p

i

c

f

w

t

b

v

k

4

n

s

i

a

c

c

o

b

a

l

m

j

o

s

e

s

i

c

w

b

n

i

d

priority, and other jobs are prioritized by EQDF. Then, similar to the

relationship between EQDF and EDF, EQDZL is comparable to EDZL in

terms of operating cost and preemption overhead. Like EDZL (Baker

and Baruah, 2009b), EQDZL may incur at most one more preemption

per job than EQDF when the job enters the zero-laxity state.

In this paper, the costs of job preemption and migration are not

directly incorporated into schedulability conditions, as in many other

multiprocessor scheduling studies (for example, see Baruah et al.,

1996; Cho et al., 2006; Levin et al., 2010; Regnier et al., 2011)3.

4. Schedulability analysis of EQDF and EQDZL

In this section, we first derive schedulability conditions for the

EQDF and EQDZL scheduling algorithms and then present how to

exploit slack values for better schedulability of EQDF and EQDZL.

4.1. EQDF schedulability analysis

4.1.1. Interference-based schedulability condition

Existing studies (Baker, 2003; Baker et al., 2008; Bertogna et al.,

2005a, 2009; Lee et al., 2010) on multiprocessor global schedulabil-

ity analysis investigate what happens when the first deadline miss

occurs and derive schedulability conditions using the concept of

interference—how long the execution of a job of interest can be de-

layed due to the execution of other higher-priority jobs. The total

interference on a task τj in an interval [a, b) is defined by the cumu-

lative length of all intervals in which τj is ready to execute but is not

executing due to higher priority jobs of other tasks. We denote such

interference with Ij(a, b). We also define the interference Ij←i(a, b)of a

task τi on a task τj over an interval [a, b), as the cumulative length of

all intervals in which τj is ready to execute but it is not executing since

τi is executing instead. The relation between Ij(a, b) and Ij←i(a, b) is

as follows (Bertogna et al., 2005a):

Ij(a, b) =
∑

i �=j Ij←i(a, b)

m
. (1)

The basic strategy used in Baker (2003) and Bertogna et al. (2009)

is identifying necessary conditions for a job to miss its deadline. Gen-

erally, a deadline miss happens since there is a large amount of higher-

priority execution that blocks the remaining execution of a job until

its deadline. Let us assume that a job of a task τj is the first job that

misses its deadline. In order for the job to miss its deadline, it is nec-

essary for the job to be blocked for strictly more than its slack time

(Dj − Cj time units) in its scheduling window. On the other hand, a job

of a task τj always meets its deadline, if the total interference on task

τj over the job’s scheduling window is less than or equal to Dj − Cj.

Let J∗
j

denote the job instance that receives the largest amount of in-

terference among all jobs invoked by τj, and Ij denote the amount of

interference that J∗
j

receives. Then, notice that by definition

Ij = max
h

(
Ij(r

h
j , dh

j)
) = Ij(r

∗
j , d∗

j). (2)

For notational convenience, we also define

Ij←i = Ij←i(r
∗
j , d∗

j). (3)

If we are able to precisely calculate Ij←i, the necessary and suf-

ficient schedulability condition of global multiprocessor scheduling

algorithms is then derived as follows (Bertogna et al., 2005a, 2009).
3 In the uniprocessor scheduling case, some studies (Bertogna et al., 2010, 2011)

are introduced to incorporate preemption cost into schedulability analysis. However,

little work has been made to incorporate preemption and migration costs directly

into schedulability analysis for multiprocessor scheduling, and this issue is beyond the

scope of this paper. Preemption and migration overhead measurements can be accom-

modated into the worst-case execution time requirements, as mentioned in Levin et al.

(2010) and Regnier et al. (2011).

a

φ

t

J

emma 1 (from Bertogna et al., 2005a, 2009). A task set τ is schedu-

able on a multiprocessor composed of m identical processors, if and only

f the following condition holds for each task τj ∈ τ :

i �=j

min(Ij←i, Dj − Cj + 1) < m · (Dj − Cj + 1). (4)

A key intuition behind Lemma 1 is as follows. By definition, when

job of τj is executing in an interval, it cannot be interfered with dur-

ng the interval. If τj misses its deadline, the total interference on τj is

ore than or equal to Dj − Cj + 1, and all processors should be busy

ithin each interval where τj is not executed. Then, it is sufficient for

task τj to miss its deadline if the interfering contribution Ij←i of each

ask τi is at least Dk − Ck + 1 time units based on the assumption that a

ingle job cannot be executed upon more than one processor in paral-

el. Conversely, if the sum of the interfering contributions of the other

asks τi is strictly less than m · (Dj − Cj + 1), task τj does not miss its

eadline, which yields the schedulability condition shown in Eq. (4).

Note that it is difficult to compute Ij←i precisely, so existing ap-

roaches (Bertogna et al., 2005a, 2009) use an upper bound on the

nterference, and therefore the test derived is changed to only a suffi-

ient condition. Then, it is necessary to identify the worst-case inter-

erence scenario in which a task τi has the largest workload to interfere

ith a job of task τj. In the following two sub-sections, we identify

wo types of worst-case interference scenarios and derive an upper-

ound on the interference under EQDF scheduling according to the

alue of k, which serves as a basis for assigning a schedulable value of

for a given task set (shown in Section 5).

.1.2. Worst-case interference scenarios

In this sub-section, we identify the worst-case interference sce-

arios in which the interference of a task τi on the job J∗
j

over the

cheduling window of J∗
j

is maximized under EQDF scheduling.

To simplify the presentation, a job is said to be a carry-in job of an

nterval [a, b) if it has a release time before a but a deadline after a,

body job if it has a release time and a deadline within [a, b), and a

arry-out job if it has a release time within [a, b)but a deadline after b.

Under EDF scheduling, the underlying principle behind its worst-

ase interference scenario is that only the carry-in and body jobs of τi

ver [r∗
j
, d∗

j
)can interfere with J∗

j
and the interference of those jobs can

e maximized when they are periodically released and they execute

s late as possible (i.e., moving their deadlines as late as possible), as

ong as their deadlines are in the scheduling window. This is because

oving their deadlines later does not affect the interference of body

obs, but it can only increase (and cannot decrease) the interference

f a carry-in job (Baker, 2003). Therefore, the worst-case interference

cenario of τi is the one where one of its jobs has a deadline at the

nd of the scheduling window of J∗
j
.

However, the above principle is not directly applicable to EQDF

cheduling. Unlike EDF scheduling, even the carry-out job of τi can

nterfere with J∗
j

under EQDF scheduling if the quasi-deadline of the

arry-out job is earlier than or equal to that of J∗
j
. Furthermore, the

orst-case interference scenarios vary depending on the relationship

etween J∗
j

and the carry-out job.

Let J+
i

denote the last job of τi which interferes with J∗
j
. By defi-

ition, the quasi-deadline of J+
i

is smaller than or equal to that of J∗
j
,

mplying, d+
i

− k · Ci ≤ d∗
j

− k · Cj. The difference φ between the two

eadlines can be upper bounded in only k and their execution times

s follows:

= d+
i

− d∗
j

≤ k · Ci − k · Cj. (5)

Under the EDF scheduling, if the deadlines of jobs J+
i

and J∗
j

align,

hen J+
i

can fully contribute its execution time to the interference on
∗
j
. However under the EQDF scheduling, when the quasi-deadlines

H.S. Chwa et al. / The Journal of Systems and Software 101 (2014) 15–29 19

Fig. 2. EQDF worst-case scenarios with k = 1.

o

i

d

J

o

w

c

e

F

T

r

q

a

t

J

F

i

J

b

l

n

o

i

4

t

F

u

i

U

e

t

s

t

t

s

i

w

o

|

t

t

�

m

f

I

w

b

d

o

b

I

4

f

I

i

f J+
i

and J∗
j

align, J+
i

may not necessarily fully contribute Ci into the

nterference on J∗
j

because J+
i

has to execute for at least δ > 0 after the

eadline of J∗
j

as shown in Fig. 2(c). In other words, some execution of
+
i

can be performed outside the scheduling window of J∗
j
. Depending

n whether or not J+
i

can perform its full execution (amount to Ci)

ithin the scheduling window of J∗
j
, we consider the following two

ases:

Worst-case scenario I. J+
i

fully contributes Ci to the interfer-

nce on τj when its quasi-deadline aligns with that of J∗
j

(shown in

ig. 2(a) and (b)). This case happens when (k · Ci − k · Cj) ≤ (Di − Ci).
he worst-case interference scenario is that the jobs of τi are pe-

iodically released in a way that one of the jobs has the same

uasi-deadline as that of J∗
j

(i.e., identical with quasi-deadline

lignment).

Worst-case scenario II. J+
i

does not fully contribute Ci into the in-

erference on τj when its quasi-deadline aligns with that of J∗
j

because
+
i

has to execute for at least δ > 0 after the deadline of J∗
j

(shown in

ig. 2(c)). This case happens when (k · Ci − k · Cj) > (Di − Ci). By mov-

ng task τi to the left by δ, we can increase the interference of job
+
i

by exactly δ while decreasing the interference of the carry-in job

y at most δ. Thus the total amount of interference increases or at

east stays the same. In this case, the worst-case interference sce-

ario is that the jobs of τi are periodically released in a way that one

f its jobs is released exactly Ci before the deadline of J∗
j

(depicted

n Fig. 2(d)).

.1.3. Bounding interference

Define the interference window IWi,j of τi on J∗
j

as the interval from

he release time of J∗
j

to the deadline of J+
i

, implying IWi,j = [r∗
j
, d+

i
).

ig. 2 shows the interference window in each scenario. Note that

nder EDF scheduling, since the worst-case interference scenario

s the one satisfying d+
i

= d∗
j
, IWi,j is exactly the same as [r∗

j
, d∗

j
).

nder EQDF scheduling, however, d+
i

can be before or after, or

qual to d∗
j
.

The interference Ij←i is then bounded by the largest workload of

ask τi in its interference window on J∗
j

according to the worst-case

cenarios.

In the worst-case scenario I, J+
i

has the same quasi-deadline as

hat of J∗
j
, so the deadline d+

i
is determined by d∗

j
− k · Cj + k · Ci. If
he deadline of J+
i

is before the release time of J∗
j

(i.e., d+
i

≤ r∗
j
), no

ingle job of τi can interfere with J∗
j

and the interference of τi on J∗
j

s thereby zero. Otherwise, all the jobs of τi within the interference

indow [r∗
j
, d+

i
) can actually interfere with J∗

j
. In this case, the length

f the interference window IWi,j is computed as

IWi,j| = d+
i

− r∗
j = d∗

j − k · Cj + k · Ci − r∗
j

= Dj − k · Cj + k · Ci. (6)

We denote by �i(L) the maximal number of τi’s jobs that con-

ribute with the entire execution times (Ci) to the workload within

he interval of length L, and it is described as

i(L) =
⌊

L

Ti

⌋
. (7)

The contribution of the carry-in job can then be bounded by

in(Ci, L − �i(L) · Ti). (8)

Therefore, under the worst-case interference scenario I, the inter-

erence Ij←i is bounded by

j←i ≤ [
�i(Dj − k · Cj + k · Ci) · Ci

+ min(Ci, Dj − k · Cj + k · Ci − �i(Dj − k · Cj + k · Ci) · Ti)
]

0
,

(9)

here [X]Y � max(X, Y), meaning that the RHS of Eq. (9) is bounded

y zero when Dj − k · Cj + k · Ci < 0.

In the worst-case scenario II, J+
i

is released such that its deadline
+
i

is equal to d∗
j

− Ci + Di. Then, the length of the interference window

f τi on J∗
j

is equal to Dj − Ci + Di. Therefore, the interference Ij←i is

ounded by

j←i ≤ �i(Dj − Ci + Di)

· Ci + min(Ci, Dj − Ci + Di − �i(Dj − Ci + Di) · Ti). (10)

.1.4. EQDF schedulability analysis

In the previous sub-sections, we identified the worst-case inter-

erence scenarios and computed the upper bound on the interference

j←i based on them.

We denote by IEQDF
j←i

(L, k) an upper bound on the interference Ij←i

n any interval of length L under the EQDF scheduling policy with a

20 H.S. Chwa et al. / The Journal of Systems and Software 101 (2014) 15–29

4

w

i

z

a

i

p

a

L

τ
u

f∑

t

t

s

u

e

c

p

e

b

q

A

c

d

t

i

t

d

w

w

b

e

s

f

i

I

I

system-wide variable k and described as

IEQDF
j←i

(L, k)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[�i(L − k · Cj + k · Ci) · Ci + min(Ci, L − k · Cj + k · Ci

−�i(L − k · Cj + k · Ci) · Ti)]0,

if(k · Ci − k · Cj) ≤ (Di − Ci),
�i(L + Di − Ci) · Ci + min(Ci, L + Di − Ci

−�i(L + Di − Ci) · Ti), otherwise.

(11)

We note that IEQDF
j←i

(Dj, k) becomes zero when the value of k is
Dj

Cj−Ci
, and IEQDF

j←i
(Dj, k) has the maximum value when the value of k is

Di−Ci
Ci−Cj

(i.e., the worst-case scenario II). Between those two values of k,

IEQDF
j←i

(Dj, k) is monotonically non-decreasing with k.

A schedulability test for EQDF immediately follows.

Theorem 1. A task set τ is schedulable under EQDF scheduling with

a system-wide variable k on a multiprocessor composed of m identical

processors, if the following condition holds for each task τj ∈ τ :∑
i �=j

min
(
IEQDF
j←i

(Dj, k), Dj − Cj + 1
)

< m · (Dj − Cj + 1). (12)

Proof. By Lemma 1, τ is schedulable under EQDF if Eq. (4) holds.

We now prove that Ij←i in Eq. (4) is upper-bounded by IEQDF
j←i

(Dj, k) in

Eq. (12).

By the definition of interference, a job can interfere with another

job only when the interfering job is executed; more formally, the

amount of interference of τi on a job of τj in an interval is upper-

bounded by the amount of execution of jobs of τi having a higher

priority than the job of τj in the interval. Therefore, the maximum

amount of interference of τi on τj among all intervals of length Dj

is also upper-bounded by the maximum amount of execution of τi

among all intervals of length Dj. As shown in Eq. (11), Ij←i is upper-

bounded by IEQDF
j←i

(Dj, k) in any interval of length Dj under the EQDF

scheduling policy with a system-wide variable k.

Therefore, by Lemma 1, if Eq. (12) is satisfied for all tasks in a task

set τ , the task set is schedulable under global EQDF scheduling on m

identical processors.

Note that the above EQDF schedulability test is a generalization

of the existing EDF schedulability test (Bertogna et al., 2005a) in that

the condition is equivalent to the EDF test when k = 0.

Example 4.1. Let τ = {τ1 = (6, 2, 3), τ2 = τ3 = (2, 1, 2)} and m = 2.

τ is not deemed schedulable under EDF by Theorem 1 when k = 0,

but it is deemed schedulable under EQDF with k = 1 by the EQDF

schedulability test in Theorem 1. As shown in Fig. 3(a), in the EDF case

(when k = 0), IEQDF
1←2 (D1, 0) = IEQDF

1←3 (D1, 0) = 2, and Eq. (12) does not

hold for τ1. However, as shown in Fig. 3(b), in the EQDF schedulability

test with k = 1, IEQDF
1←2 (D1, 1) = IEQDF

1←3 (D1, 1) = 1, and Eq. (12) holds for

τ1. When k = 1, carry-in jobs of τ2 and τ3 cannot interfere with a job of

task τ1, which yields τ1 deemed schedulable under EQDF scheduling.
Fig. 3. Illustration of Example 4.1.

b

T

a

p∑
.2. EQDZL schedulability analysis

In this sub-section, we extend the EQDF schedulability analysis to-

ard EQDZL. In order to derive an efficient EQDZL schedulability test,

t is necessary to incorporate properties specific to zero-laxity. Under

ero-laxity based scheduling, a job entering the zero-laxity state is

ssigned the highest priority. Thereby, a job misses its deadline, only

f there are at least m + 1 zero-laxity jobs at the same time. Using this

roperty, the following schedulability test has been introduced for

ny zero-laxity based algorithms.

emma 2 (from Baker et al., 2008; Lee et al., 2010, 2011b). A task set

is schedulable on a multiprocessor composed of m identical processors

nder a zero-laxity based algorithm, if at most m tasks τj ∈ τ violate the

ollowing conditions:

i �=j

min(Ij←i, Dj − Cj) < m · (Dj − Cj). (13)

A key intuition behind Lemma 2 is as follows. If Eq. (13) holds, a

ask τj cannot reach the zero-laxity state. So, as long as at most m

asks reach the zero-laxity state (violating Eq. (13)), the entire task

et remains schedulable under any zero-laxity based algorithm.

In order to apply Lemma 2 to EQDZL, it is necessary to calculate an

pper-bound on the interference Ij←i under EQDZL scheduling. To this

nd, we seek to define IEQDZL
j←i

(L, k) similarly to the EQDF case with a

ertain degree of difference to accommodate the zero-laxity-specific

roperties.

The priority of jobs under EQDZL is the same as that under EQDF,

xcept the priority promotion of zero-laxity jobs. This way, a job can

e interfered by zero-laxity jobs, in addition to the jobs with earlier

uasi-deadlines. We consider two cases:

When φ ≤ 0, the carry-out job has larger quasi-deadline than J∗
j
.

s shown in Fig. 2(a), the carry-out job, having larger quasi-deadline,

annot interfere with J∗
j

under EQDF although its scheduling win-

ow overlaps with that of J∗
j
. However, the carry-out job may en-

er the zero-laxity state as shown in Fig. 4(a), and some parts of

ts execution (that are within the scheduling window of J∗
j
) can in-

erfere with J∗
j

under EQDZL. By aligning J∗
j
’s deadline (not quasi-

eadline) and the carry-out job’s deadline as shown in Fig. 4(b),

e increase the total amount of interference. Then, IEQDZL
j←i

(L, k)

hen φ ≤ 0 (or, equivalently k · Ci ≤ k · Cj by Eq. (5)) is calculated

y �i(L) · Ci + min
(
Ci, L − �i(L) · Ti

)
, which is calculated in Bertogna

t al. (2005a) and Baker et al. (2008) for EDF and EDZL.

When 0 < φ ≤ (Di − Ci) and φ > (Di − Ci), the carry-out job has

maller quasi-deadline than J∗
j
. The carry-out job already inter-

eres under with J∗
j

under EQDF. Therefore, the worst-case scenar-

os for EQDF can be also applied to EQDZL, implying IEQDZL
j←i

(L, k) =
EQDF
j←i

(L, k).

To summarize, IEQDZL
j←i

(L, k) can be calculated as follows.

EQDZL
j←i

(L, k)

=

⎧⎪⎨
⎪⎩

�i(L) · Ci + min(Ci, L − �i(L) · Ti),

if k · Ci ≤ k · Cj, andτi can enter the zero-laxity state,

IEQDF
j←i

(L, k), otherwise.

(14)

Incorporating Eq. (14) into Lemma 2, we now present a schedula-

ility test of EQDZL in the following theorem.

heorem 2. A task set τ is schedulable under EQDZL scheduling with

system-wide variable k on a multiprocessor composed of m identical

rocessors, if at most m tasks τj ∈ τ violate the following conditions:

i �=j

min
(
IEQDZL
j←i

(Dj, k), Dj − Cj

)
< m · (Dj − Cj). (15)

H.S. Chwa et al. / The Journal of Systems and Software 101 (2014) 15–29 21

Fig. 4. EQDZL worst-case scenarios with k = 1.

P

s

i

a

o

w

o

e

i

s

a

(

c

I

z

k

n

w

o

c

E

t

t

a

2

l

b

t

δ
S

2

t

f

E

τ
c

u

b

s

s

τ

4

p

t

B

e

S

w

u

S

w

I

d

I

p

m

5

u

k

p

e

C

s

p

f

a

a

t

o

o

a

b

5

t

s

w

p

roof. The proof is similar to that of Theorem 1. By Lemma 2, τ is

chedulable under EQDZL if Eq. (13) holds.

Similar to the proof of Theorem 1, we can prove that Ij←i in Eq. (13)

s upper-bounded by IEQDZL
j←i

(Dj, k) in Eq. (15).

Therefore, by Lemma 2, if Eq. (15) is violated for at most m tasks in

task set τ , the task set is schedulable under global EQDZL scheduling

n m identical processors.

We note that the zero-laxity state of a task τi may be unknown

hen the schedulability of another task τj is checked by Eq. (15). In

rder to deal with such ambiguity, we check the schedulability of

ach task in a certain order. According to the definition of IEQDZL
j←i

(L, k)

n Eq. (14), if k · Ci > k · Cj, it does not have to identify the zero-laxity

tate of τi. So we check schedulability in an increasing order of k · Cj.

For presentational convenience, without loss of generality, let us

ssume tasks are sorted in an increasing order of k · Ci for all tasks τi

i.e., k · Ci ≤ k · Ci+1). A task with the smallest value of k · C1 (i.e., τ1)

annot satisfy k · Ci < k · C1 for any task τi ∈ τ . That is, IEQDZL
1←i

(L, k) =
EQDF
1←i

(L, k) holds regardless of other tasks’ capability of entering the

ero-laxity state. Therefore, we can test Eq. (15) for τ1, and then we

now whether τ1 can enter the zero-laxity state (if Eq. (15) does

ot hold) or not (if Eq. (15) holds). Next, we test Eq. (15) for a task

ith the second smallest value of k · C2 (i.e., τ2). In this case, τ1 is the

nly task that may satisfy k · C1 < k · C2, and we already identified τ1’s

apability of entering the zero-laxity state. Therefore, we can compute

q. (15) for τ2. This procedure is sequentially applied to tasks with

he third, fourth, . . . , nth smallest value of k · Cn, and finally, we finish

esting Eq. (15).

We note that the above EQDZL schedulability test in Theorem 2 is

generalization of the existing EDZL schedulability test (Baker et al.,

008). In other words, the condition is equivalent to the EDZL schedu-

ability condition when k = 0.

The following example shows that the proposed EQDZL schedula-

ility test can be used to guarantee the schedulability of τ , even when

he system density is greater than the number of processors (i.e.,

sys > m). We note that a class of optimal algorithms (Anderson and

rinivasan, 2000; Baruah et al., 1996; Cho et al., 2006; Funaoka et al.,

008; Levin et al., 2010; Regnier et al., 2011) for implicit-deadline

ask systems is not able to guarantee the schedulability of τ in the

ollowing example, since δsys > m.

xample 4.2. Let τ = {τ1 = (4, 1, 4), τ2 = (4, 1, 2), τ3 = (5, 1, 1),

4 = (7, 4, 7)} and m = 2. The system density of τ is 2.32 which ex-

eeds the number of processors (m = 2). τ is not deemed schedulable

nder EDZL by Theorem 2 when k = 0, but it is deemed schedula-

le under EQDZL with k = 1 according to Theorem 2. In the EQDZL

chedulability test with k = 1, τ2 and τ3 can enter the zero-laxity

tate, but, in the EDZL case (when k = 0), more than m tasks (i.e.,

, τ , and τ) violate Eq. (15).
2 3 4 c
.3. Slack-based iterative test

In general, bounding interference involves much pessimism,

articularly, in computing the workload of a carry-in job. Hence,

he slack-based iterative approaches (Bertogna and Cirinei, 2007;

ertogna et al., 2009) are introduced to reduce such pessimism

ffectively. Let Sj denote the slack of a task τj and is defined as

j � Dj − Cj −
⌊∑

i �=j min(Ij←i, Dj − Cj + 1)

m

⌋
, (16)

hen (16) is positive. A lower bound Slb
j

on the slack Sj of a task τj

nder EQDF is then given by

lb
j � Dj − Cj −

⌊∑
i �=j min(IEQDF

j←i
(Dj, k), Dj − Cj + 1)

m

⌋
, (17)

hen this term is positive. Note that if the scheduler is EQDZL,
EQDF
j←i

(Dj, k) in Eq. (17) is replaced by IEQDZL
j←i

(Dj, k).

Fortunately, the iterative test exploiting a slack value can be

irectly adopted into our EQDF and EQDZL schedulability tests.

n this paper, the iterative test can be easily incorporated by re-

lacing the bound of the carry-in job’s contribution (Eq. (8)) with

in(Ci, L − Slb
i

− �i(L) · Ti).

. Quasi-deadline assignment for EQDF and EQDZL

In this section, we consider the problem of priority assignment

nder global EQDF (EQDZL) scheduling. Specifically, we examine the

-controlled quasi-deadline assignment problem; given a task set, this

roblem finds a value of the quasi-deadline control knob k such that

ach individual job Jh
i

is assigned a quasi-deadline qh
i

equal to dh
i

− k ·
i and the task set is deemed schedulable under global EQDF (EQDZL)

cheduling by the schedulability test in Theorem 1 (Theorem 2). For

resentational convenience, a value of k is referred to as schedulable

or a given task set τ if τ is deemed schedulable with this k value

ccording to Theorem 1 for EQDF (Theorem 2 for EQDZL). A solution

lgorithm to the k-controlled quasi-deadline assignment is referred

o as optimal, if the solution algorithm can find any schedulable value

f k for a task set τ if and only if there exists some schedulable value

f k for τ .

Section 5.1 presents an optimal solution of EQDF to the problem,

nd Section 5.2 explains how to derive the optimal solution of EQDZL

ased on that of EQDF. Then, Section 5.3 discusses heuristic solutions.

.1. Optimal quasi-deadline assignment under EQDF

In this sub-section, we present an algorithm, called OQDA-k (op-

imal quasi-deadline assignment by k) that finds a set of all the

chedulable values of k for a given task set. A brute-force approach

ould examine all possible values of k for schedulability. This ap-

roach is prohibitively expensive, and it is not even applicable to the

ase of continuous values of k. Instead, we seek to identify a finite

22 H.S. Chwa et al. / The Journal of Systems and Software 101 (2014) 15–29

k

l

I

b

b

i

t

f

c

C

k

j

r

h

o

I

T

a

T

C

b

I

n

s

t

r

e

f

c

i

v

p

i

E

u

c

(

t

b

set of k values that guarantees the discovery of all the schedulable

values of k.

The OQDA-k algorithm first carries out efficient discovery of a

finite number of certain k values (denoted by Aj←i), taking advantage

of interference patterns between every two tasks τi and τj (step A1).

It then aggregates those k values into a single set (denoted by Aj) per

each task τj (step A2) and constructs a set of intervals (denoted by

Sj) from Aj for each task τj such that each interval represents a set

of continuous schedulable values of k for an individual τj (step A3).

Finally, the algorithm generates a set of intervals (denoted by S) such

that each interval contains the continuous schedulable values of k

for an entire task set (step A4). Algorithm 1 summarizes the OQDA-k

algorithm, and we describe each step in more details as follows.

Algorithm 1 OQDA-k (τ).

1: for each task τj do

2: for each task τi do

3: if τj �= τi, construct Aj←i

4: end for

5: Aj ← ⋃
∀τi

Aj←i

6: construct Sj from Aj

7: end for

8: S ← ⋂
∀τj

Sj

9: if S is empty, return unschedulable

10: return S

A1. In the first step A1, the algorithm generates a number of dis-

crete k values for all possible pairs of tasks, exploiting the relation-

ship between k and the interference between two tasks (i.e., line 3 in

Algorithm 1). The interference of a task τi with a job of task τj varies

with k (i.e., IEQDF
j←i

(Dj, k) in Eq. (11)), and k makes a different impact on

the interference depending on the relationship between τi and τj.

It is easy to see that each job is assigned an earlier quasi-deadline

as k increases. In particular, when a task τi has a greater execution

time requirement than another τj has (i.e., Ci > Cj), an increase on k

results in a larger reduction to the quasi-deadline of τi than that of τj.

In this case, τi is then likely to have a higher priority and thus impose a

greater amount of interference on τj. This leads to IEQDF
j←i

(Dj, k)mono-

tonically non-decreasing with k when Ci > Cj. Likewise, IEQDF
j←i

(Dj, k) is

monotonically non-increasing as k increases if Ci < Cj. When Ci = Cj,

on the other hand, IEQDF
j←i

(Dj, k) remains constant because the quasi-

deadlines of τi and τj and their priorities remain relatively the same

even though k varies.

Fig. 5 illustrates the impact of k on IEQDF
j←i

(Dj, k). A value of k is said to

be a turning point of IEQDF
j←i

(Dj, k) if IEQDF
j←i

(Dj, k)changes its slope at this
Fig. 5. Example graph representing interference made by higher priority tasks accord-

ing to value k under EQDF.

t

(

l

(

p

p

u

b

t

(

c

w

a

w

value. The formula IEQDF
j←i

(Dj, k)defined in Eq. (11) is a combination of

inear and constant shape functions as shown in Fig. 5. By definition,
EQDF
j←i

(Dj, k) is lower-bounded by zero, and it is also upper-bounded

y the amount of the interference in the worst-case scenario II. This is

ecause the condition of k · Ci − k · Cj ≤ (Di − Ci) in Eq. (11) makes the

nterference in the worst-case scenario I always lower than or equal

o that in the worst-case scenario II.

When IEQDF
j←i

(Dj, k) is a monotonically increasing function, it starts

rom the lower-bound point increasing linearly as k increases. It stays

onstant while the contribution of the carry-in job is bounded by

i and the number of body and carry-out jobs does not change as

increases. It resumes increasing linearly again when a new body

ob comes in. The process of increasing linearly and staying constant

epeats until it reaches the upper-bound point. Therefore, IEQDF
j←i

(Dj, k)

as a finite number of turning points.

We can easily calculate all turning points with the understanding

f the dynamics of IEQDF
j←i

(Dj, k). According to Eq. (11), the value of
EQDF
j←i

(Dj, k) is dependent on the length of interference window |IWi,j|.
he lower-bound point of IEQDF

j←i
(Dj, k) is placed when |IWi,j| is zero,

nd the value of such k can be calculated as
Dj

Cj−Ci
according to Eq. (6).

he upper-bound point of IEQDF
j←i

(Dj, k) is placed when |IWi,j| is Dj −
i + Di (i.e., the worst-case scenario II), and the value of such k can

e computed as
Di−Ci
Ci−Cj

. Between those two points, a turning point of

EQDF
j←i

(Dj, k) is placed at every |IWi,j| of x · Ti + Ci or x · Ti where x is

on-negative integer until it reaches the upper-bound point.

Let Aj←i denote a set of all turning points of IEQDF
j←i

(Dj, k). In this

tep, the OQDA-k algorithm constructs Aj←i for all tasks τi and τj.

A2. The previous step looked at the relationship between k and

he interference of a single task τi on τj, and this step explores the

elationship between k and a total interference imposed on τj by an

ntire task set. Let us define Ij(Dj, k) as the sum of individual inter-

erences (= ∑
i �=j IEQDF

j←i
(Dj, k)). It is also a combination of linear and

onstant shape functions. Then, Ij(Dj, k) also has a sequence of turn-

ng points. Let Aj denote a set of whole turning points of Ij(Dj, k). If a

alue of k is a turning point of IEQDF
j←i

(Dj, k), then it is also a turning

oint of Ij(Dj, k).4 So we can construct Aj as the union of all the turn-

ng points of IEQDF
j←i

(Dj, k) for all tasks i �= j (i.e., line 5 in Algorithm 1).

ven though Ij(Dj, k) is a combination of linear and constant functions,

nlike IEQDF
j←i

(Dj, k), Ij(Dj, k)does not increase (or decrease) monotoni-

ally over all k values. However, Ij(Dj, k)remains constant or increases

or decreases) linearly within an interval between two consecutive

urning points.

A3: How to find schedulable k. Recall that a value of k is schedula-

le for a task τj if τj is deemed schedulable with this k value according

o Eq. (12). The third step finds out all the schedulable values of k

denoted by Sj) out of a set of turning points (Aj) for each task τj (i.e.,

ine 6 in Algorithm 1). Consider two consecutive turning points of τj

ph
j

∈ Aj and ph+1
j

∈ Aj). That is, there does not exist p′ ∈ Aj such that

h
j

< p′ < ph+1
j

. We consider four cases in constructing Sj with ph
j

and

h+1
j

according to their schedulability.

Firstly, if both ph
j

and ph+1
j

are schedulable for τj, then all the val-

es of k within the interval [ph
j
, ph+1

j
] are also schedulable. This is

ecause Ij(Dj, k) remains constant or moves linearly within the two
4 There exists one exceptional case of the statement, where two different interfering

asks (τi and τi′) have the same slopes but different signs in IEQDF
j←i

(Dj, k)and IEQDF
j←i′ (Dj, k)

i.e., one with a positive slope and one with a negative slope). In this case, each task’s

ontribution to Ij(Dj, k)between two consecutive turning points cancels out each other,

hich leads to excluding those turning points from Aj . However, this case rarely occurs,

nd including those points to Aj does not hurt the correctness of the algorithm. Thereby,

e do not handle this exceptional case.

H.S. Chwa et al. / The Journal of Systems and Software 101 (2014) 15–29 23

c

S

l

i

k

k

t

i

i

v

t

τ

T

d

i

P

c

i

d

I

o

T

i

S

a

e

s

p

t

t

l

i

t

T

t

O

	
|
n

2

T

a

O

e

e

L

1

t

5

v

E

h

a

d

I

t

v

d

o

T

o

s

k

k

i

A

1

1

1

1

1

1

1

1

1

T

i

a

s

a

k

Fig. 6. Example graph representing interference made by higher priority tasks accord-

ing to value k under EQDZL.
onsecutive turning points. So, the interval [ph
j
, ph+1

j
] is added into Sj.

econdly, if neither ph
j

nor ph+1
j

is schedulable, there is no schedu-

able value of k within the interval [ph
j
, ph+1

j
] and nothing is added

nto Sj. Thirdly, if ph
j

is schedulable but ph+1
j

is not, there must exist

′ ∈ [ph
j
, ph+1

j
] such that [ph

j
, k′] is the interval of schedulable values of

but (k′, ph+1
j

] is not. We note that the value of k′ can be easily iden-

ified since Ij(Dj, k) has a steady slope over [ph
j
, ph+1

j
]. Then, [ph

j
, k′] is

nserted into Sj. In the fourth case where ph
j

is not schedulable but ph+1
j

s, another interval is added into Sj in a similar way to the third case.

A4. The fourth step finally constructs a set of all the schedulable

alues of k (denoted by S) for a given task set τ . The set S is indeed

he intersection of all Sj; each element s ∈ S satisfies s ∈ Sj for all tasks

j ∈ τ (i.e., line 8 in Algorithm 1).

Then, we record the optimality of OQDA-k as follows.

heorem 3. The OQDA-k algorithm in Algorithm 1 is an optimal quasi-

eadline assignment policy with respect to the EQDF schedulability test

n Theorem 1.

roof. We show this theorem by contradiction. Suppose the set S

omputed by the OQDA-k algorithm is empty even though there ex-

sts a schedulable value of k (denoted as k∗). We consider two cases

epending on whether k∗ is a turning point.

Suppose k∗ is a turning point of the interference function
EQDF
j←i

(Dj, k) for tasks τi and τj. By definition of a schedulable value

f k, a given task set τ is deemed schedulable with this k∗ value by

heorem 1. According to the OQDA-k algorithm, k∗ is then placed

nto Aj←i (i.e., line 3 in Algorithm 1) and subsequently included in Aj,

j, and S (i.e., lines 5, 6, and 8 in Algorithm 1). This contradicts the

ssumption that S is empty.

Consider the other case where k∗ is not a turning point. Then, there

xist two consecutive turning points of Aj (denoted as ph
j

and ph+1
j

)

uch that ph
j

< k∗ < ph+1
j

. From the assumption that S is empty, neither

h
i

nor ph+1
j

is schedulable by Theorem 1. Otherwise, any schedulable

urning point should be added into Sj and thereby into S, contradicting

he assumption of the empty S. So, ph
i

and ph+1
j

must be not schedu-

able. Then, k∗ should not be schedulable either, since IEQDF
j←i

(Dj, k)

s constant or linear within the interval [ph
i
, ph+1

j
]. This contradicts

he assumption that k is schedulable. This concludes the proof of

heorem 3.

Time-complexity. Recall that we denote the number of tasks in a

ask set by n. In step A1, identifying Aj←i for given τi and τj requires

(Dj+Di−Ci

Ti

)operations since the number of turning points in Aj←i is

Dj+Di−Ci

Ti

 × 2. As discussed in A1, each turning point is placed from

IWi,j| = 0 to |IWi,j| = Dj + Di − Ci at every x · Ti + Ci or x · Ti where x is

on-negative integer. In step A2, |Aj| is calculated as
∑

i �=j	 Dj+Di−Ci

Ti

 ×

, and it is bounded by (n − 1) · 	 2Dmax−Cmin
Tmin

 × 2 where Dmax, Cmin,

min represent the largest Di, the smallest Ci and the smallest Ti among

ll tasks τi ∈ τ , respectively. Then, calculating Aj for all tasks requires

(n2 · 	 2Dmax−Cmin
Tmin

) operations for step A2. For step A3, Eq. (12) for

ach task τj is tested for all points in Aj. Since testing Eq. (12) for

ach task τj itself requires O(n), step A3 requires O(n3 · 	 2Dmax−Cmin
Tmin

).
astly, step A4 simply requires O(

∑
τj∈τ |Sj|). Since |Sj| ≤ |Aj|and |Aj| ≥

hold for every τj ∈ τ , the running time of the OQDA-k algorithm is

hereby O(n3 · 	 2Dmax−Cmin
Tmin

).
.2. Optimal quasi-deadline assignment under EQDZL

In Section 5.1, OQDA-k for EQDF efficiently finds all schedulable

alues of k. Similarly, we now develop the OQDAZL-k algorithm for
QDZL, which finds all schedulable values of k such that Theorem 2

olds. The overall structure of OQDAZL-k is similar to that of OQDA-k,

nd therefore we focus on explaining their major differences. The first

ifference is caused by the interference upper-bound functions, i.e.,
EQDZL
j←i

(Dj, k) and IEQDF
j←i

(Dj, k). The second one comes from the struc-

ure of the two theorems; instead of finding a set of all schedulable

alues of k which prevent all tasks from causing a deadline miss un-

er EQDF (from Theorem 1), we find a set of all schedulable values

f k such that at most m tasks can enter the zero-laxity state (from

heorem 2).

As shown in Eq. (14), IEQDZL
j←i

(Dj, k) is different from IEQDF
j←i

(Dj, k)

nly when k · Ci ≤ k · Cj holds and τi is able to enter the zero-laxity

tate. Since it varies with k’s sign (+/−) that determines whether

· Ci ≤ k · Cj holds or not, we consider two intervals: k ∈ (−∞, 0) and

∈ (0, ∞). It is trivial that we need not care for k = 0 since IEQDZL
j←i

(L, 0)

s the same as IEDZL
j←i

(L, 0) for any pair of τi and τj.

lgorithm 2 OQDAZL-k (τ).

1: for each task τj, largest Cj first do

2: for each task τi do

3: if τj �= τi, construct AN
j←i

4: end for

5: AN
j

← ⋃
∀τi

AN
j←i

6: construct SN
j

from AN
j

7: end for

8: for each task τj, smallest Cj first do

9: for each task τi do

0: if τj �= τi, construct AP
j←i

1: end for

2: AP
j

← ⋃
∀τi

AP
j←i

3: construct SP
j

from AP
j

4: end for

5: Sj ← SN
j

∪ SP
j

6: construct S from {Sj}∀τj

7: if S is empty, return unschedulable

8: return S

In case of k ∈ (−∞, 0), k · Ci ≤ k · Cj holds only when Ci ≥ Cj holds.

hen, as shown in Fig. 6, there may exist a turning point pZL
j←i

which

s derived by the difference between IEQDZL
j←i

(Dj, k) and IEQDF
j←i

(Dj, k),

nd this turning point occurs only when τi can enter the zero-laxity

tate. To identify each task’s capability of being zero-laxity, Section 4.2

lready showed that we need a particular order: the smallest value of

· Cj, the earlier test. This can be also applied to OQDAZL-k. Since a task

24 H.S. Chwa et al. / The Journal of Systems and Software 101 (2014) 15–29

5

t

k

f

r

t

A

g

t

s

i

c

m

d

y

a

k

A

6

E

a

n

m

2

n

t

a

p

a

o

m

w

F

l

6

b

b

m

i

5 For a given bimodal parameter p, a value for Ci/Ti is uniformly chosen in [0, 0.5) with

probability p, where p = 0.1, 0.3, 0.5, 0.7, or 0.9. For a given exponential parameter 1/λ,

a value for Ci/Ti is chosen according to the exponential distribution whose probability

density function is 0.5 · λ·exp(−λ · x), where λ = 0.1, 0.3, 0.5, 0.7 or 0.9.
with the smallest value of k · C1 (i.e., τ1) cannot satisfy k · Ci ≤ k · C1

for any other task τi, the steps A1, A2 and A3 for τ1 can be successfully

performed regardless of other tasks’ capability of entering the zero-

laxity state. Then, we obtain S1, a set of all k [values] which satisfy

Eq. (15) for τ1 (i.e., a set of all k such that τ1 cannot enter the zero-

laxity state under EQDZL). Next, for a task with the second smallest

value of k · C2 (i.e., τ2), τ1 is the only task τi (�= τj) that may satisfy

k · Ci ≤ k · C2, and we knew a set of all k such that τ1 can enter the zero-

laxity state (i.e., SC
1 : the absolute complement set of S1). Therefore,

we can perform the steps A1, A2 and A3 for τ2, obtaining S2. We can

calculate all the other Sj by applying this procedure to tasks with the

third, fourth, . . . , nth largest value of k · Cj, in a sequential manner

(i.e., lines 1–7 in Algorithm 2). Then, we obtain AN
j←i

, AN
j

and SN
j

, which

correspond to negative elements of Aj←i, Aj and Sj respectively.

For k ∈ (0, ∞), k · Ci ≤ k · Cj holds only when Ci ≤ Cj. Therefore,

the order of executing individual tasks’ steps A1, A2 and A3 is the

opposite; the same procedure is sequentially applied to tasks with

the first, second, . . . , and nth smallest value of k · Cj (i.e., lines 8–14

in Algorithm 2). Then, we obtain AP
j←i

, AP
j

and SP
j
, which correspond to

positive elements of Aj←i, Aj and Sj respectively.

Finally, we successfully finish calculating Sj for all τj ∈ τ by per-

forming steps A1, A2 and A3 of individual tasks in a particular order.

Then, using Sj for all τj ∈ τ , we can perform the final step A4 as fol-

lows: a set of all k which makes the task set schedulable (denoted by

S) is a set of all elements s such that s belongs to Sj for at least n − m

tasks τj ∈ τ (i.e., lines 15–16 in Algorithm 2).

Similar to OQDA-k, we now present the optimality of OQDAZL-k in

the following theorem.

Theorem 4. The OQDAZL-k algorithm in Algorithm 2 is an optimal quasi-

deadline assignment policy with respect to the EQDZL schedulability test

in Theorem 2.

Proof. The proof is similar to that of Theorem 3. We show this theo-

rem by contradiction. Suppose the set S computed by the OQDAZL-k

algorithm is empty even though there exists a schedulable value of

k (denoted as k∗) according to Theorem 2. We consider two cases

depending on whether k∗ is a turning point.

Suppose k∗ is a turning point of the interference function

IEQDZL
j←i

(Dj, k) for tasks τi and τj. By definition of a schedulable value

of k, a given task set τ is deemed schedulable with this k∗ value by

Theorem 2. According to the OQDAZL-k algorithm, k∗ is then placed

into AN
j←i

or AP
j←i

for at least n − m tasks τj (i.e., line 3 or 10 in

Algorithm 2) and subsequently included in AN
j

(or AP
j
), Sj, and S (re-

spectively by lines 5 and 6 (or 12 and 13), 15, and 16 in Algorithm 2).

This contradicts the assumption that S is empty.

Similar to the proof of Theorem 3, we can derive a contradiction

for the other case where k∗ is not a turning point. This concludes the

proof of Theorem 4.

Time-complexity. Compared to OQDA-k, OQDAZL-k additionally

needs to sort tasks by their execution time, which requires O(n log n)
computations. Therefore, the total time complexity of OQDAZL-k is

the same as OQDA-k: O(n3 · 	 2Dmax−Cmin
Tmin

).

Algorithm 3 HQDA-k (τ , K1, K2, Ks).

1: S ← ∅
2: for k = K1 to K2 step Ks do

3: if τ is schedulable with k according to Theorem 1 then

4: S ← S ∪ {k}
5: return S

6: end if

7: end for

8: return unschedulable
.3. Heuristic priority assignment

The OQDA-k and OQDAZL-k algorithms identify and explore all the

urning points of an entire task set to find out all optimal values of

. As the number of tasks increases, the optimal algorithms have a

ast growing number of turning points to explore and thereby their

unning time also increases rapidly.

Therefore, we introduce a heuristic algorithm (HQDA-k) for EQDF

hat finds a schedulable value of k in a sub-optimal but efficient way.

lgorithm 3 summarizes this heuristic algorithm. This algorithm is

iven a set of k values and repeats the process of examining whether

here exists a schedulable value of k in the given set until it finds any

olution or there is no more element in the set to examine. The set

s given as an interval [K1, K2] with a step size Ks, and the algorithm

hecks with k = K1, K1 + Ks, K1 + 2Ks, . . . , K2. To increase the perfor-

ance of the heuristic algorithm, the interval and the step size are

etermined by analyzing the property of our interference-based anal-

sis in the next section. The evaluation of this heuristic algorithm is

lso provided in the next section.

HQDAZL-k, a heuristic algorithm for EQDZL, is the same as HQDA-

, except that Theorem 2 is used instead of Theorem 1 in line 3 of

lgorithm 3.

. Evaluation

This section presents simulation results to evaluate the proposed

QDF and EQDZL schedulability tests and quasi-deadline assignment

lgorithms.

Simulation environment. Task sets are generated based on a tech-

ique proposed earlier (Baker, 2005), which has also been used in

any previous studies (e.g., see Andersson et al., 2008; Bertogna et al.,

009; Lee et al., 2011a). We have two input parameters. One is the

umber of processors (m = 4 or 8), and the other is a task utiliza-

ion parameter. For each task τi, Ti is uniformly chosen in [100, 1000],

nd Ci is chosen based on a bimodal or exponential task utilization

arameter.5 Although our proposed EQDF and EQDZL analyses are

pplicable to both implicit and constrained deadline models, because

f page limit, we only show the results of the constrained deadline

odel: Di is set less than or equal to Ti. For each task utilization model,

e repeat the following procedure to generate 1000 task sets.

1. Initially, we generate a set of m + 1 tasks.

2. We check whether the generated task set can pass a necessary

feasibility condition (Baker and Cirinei, 2006; Baruah et al., 2009).

3. If it fails to pass the feasibility test, we discard the generated

task set and return to Step 1. Otherwise, we include this set for

evaluation. Then, this set is used as a basis for the next task set; we

create a new set by adding a new task into the old set and return

to Step 2.

or any given m, we create 1000 task sets for an individual task uti-

ization model, resulting in 10,000 task sets in total.

.1. Deadline vs. quasi-deadline

Our first simulations were performed to evaluate the maximum

enefit that can be achieved by the use of quasi-deadlines in deadline-

ased scheduling. To this end, we compare the schedulability perfor-

ances of EQDF and EQDZL with that of EDF and EDZL respectively,

n terms of how many task sets are deemed schedulable by their

H.S. Chwa et al. / The Journal of Systems and Software 101 (2014) 15–29 25

 0

 500

 1000

 1500

 2000

 2 4 6 8

T
he

 n
um

be
r

of
 d

ed
ic

at
ed

 s
et

s

System Utilization

TOT

I-EQDF*

EQDF*

I-EDF

EDF

(a) EDF vs. EQDF

 0

 500

 1000

 1500

 2000

 2 4 6 8

T
he

 n
um

be
r

of
 d

ed
ic

at
ed

 s
et

s

System Utilization

TOT

I-EQDZL*

EQDZL*

I-EDZL

EDZL

(b) EDZL vs. EQDZL

Fig. 7. Schedulability of algorithms when m = 8.

o

i

k

O

w

s

s

l

t

p

F

p

u

I

s

s

T

r

s

p

b

s

s

I

n

o

b

o

t

s

a

a

s

c

a

c

a

6

t

t

a

s

w

t

wn schedulability tests. In order to find the maximum schedulabil-

ty performance of EQDF and EQDZL, the quasi-deadline control knob

is set to an optimal value for each task set through the OQDA-k and

QDAZL-k algorithms, respectively. The following schedulability tests

ere used in simulation:

• the EDF test in Bertogna et al. (2009) (EDF);
• the iterative EDF test in Bertogna et al. (2009) (I-EDF);
• our EQDF test in Theorem 1 with an optimal value k∗ (EQDF∗);
• our iterative EQDF test in Eq. (17) with an optimal value k∗

(I-EQDF∗);
• the EDZL test in Baker et al. (2008) (EDZL);
• the iterative EDZL test in Baker et al. (2008) (I-EDZL);
• our EQDZL test in Theorem 4 with an optimal value k∗ (EQDZL∗);
• our iterative EQDZL test in Eq. (17) with IEQDF

j←i
(Dj, k) replaced with

IEQDZL
j←i

(Dj, k) for an optimal value k∗ (I-EQDZL∗).

Fig. 7 compares EDF vs. EQDF and EDZL vs. EQDZL on the basis of

chedulability with m = 8. Each line represents the number of task

ets deemed schedulable by one specific test, except for the curve

abeled with TOT which represents an upper bound on the feasible

ask sets. Fig. 7 shows the use of quasi-deadlines can significantly im-

rove the schedulability of deadline-based scheduling. It is shown in

ig. 7(a) that I-EQDF∗ dominates all the other tests, substantially out-

erforming the EDF schedulability tests particularly when the system

tilization is between m/3 and 2m/3. Similarly, Fig. 7(b) shows that

-EQDZL∗ also outperforms the other tests.

Table 1 also shows that EQDF∗ finds 160–300% more task sets

chedulable than EDF does, and I-EQDF∗ detects 40–45% more task

ets schedulable than I-EDF does on 4 and 8 processors, respectively.

able 2 also shows that EQDZL∗ and I-EQDZL∗ outperform the cor-

esponding EDZL schedulability tests, finding at least 10% more task
Table 1

EDF and EQDF tests.

m EDF I-EDF EQDF∗ I-EQDF∗

Schedulability 4 11.3 25.4 28.9 35.8

(%) 8 6.1 18.3 18.1 26.4

Running 4 0.3 2.1 5.54 × 102 1.42 × 104

Time (μs) 8 0.8 4.7 2.89 × 103 1.85 × 105

Table 2

EDZL and EQDZL tests.

m EDZL I-EDZL EQDZL∗ I-EQDZL∗

Schedulability 4 45.1 46.7 51.3 51.7

(%) 8 39.4 40.9 44.7 45.1

Running 4 0.5 3.1 1.84 × 103 2.01 × 105

Time (μs) 8 1.1 7.9 2.09 × 104 2.41 × 106

E

p

r

d

a

F

a

t

a

i

i

o

r

a

(

ets schedulable. We note that unlike EDF, EDZL already has a good

erformance in multiprocessor scheduling since it is able to consider

oth urgency and parallelism via zero laxity. The figure indicates that

chedulability can be even improved when quasi-deadlines are con-

idered together with zero laxity. Unlike significant improvement by

-EQDF∗ over EQDF∗, the performance improvement of I-EQDZL∗ is

ot significant compared to EQDZL∗. However, this behavior is widely

bserved by zero-laxity based algorithms (Lee et al., 2012).

Our simulation results indicate that the schedulability of deadline-

ased scheduling can improve significantly when the quasi-deadlines

f individual jobs are well assigned. That is, it is important to de-

ermine a good value of k for the effectiveness of EQDF and EQDZL

cheduling. The OQDA-k and OQDAZL-k algorithms are able to find

n optimal value of k. However, as shown in Tables 1 and 2, they

re computationally expensive. Their running times are four to

ix orders of magnitude greater compared to the EDF and EDZL

ases, leaving the OQDA-k and OQDAZL-k algorithms inappropri-

te for online priority assignment. This complexity calls for good,

ost-effective, and alternative solutions to online quasi-deadline

ssignment.

.2. Understanding the effect of quasi-deadline assignment

We seek to understand the impact of k on schedulability in order

o gain good insights toward online quasi-deadline assignment.

To simplify the presentation, we define N(a, b) as the number of

ask sets in which there exists a schedulable value k∗ ∈ [a, b]. We

lso define F(a, b) as the ratio of the number of task sets that have a

chedulable value k∗ ∈ [a, b] to the number of schedulable task sets

ith any schedulable value k∗ ∈ [−∞,∞]. That is, F(a, b) is defined as

he ratio of N(a, b) to N(−∞, ∞).
Figs. 8 and 9 respectively show how schedulable values k∗ of I-

QDF∗ and I-EQDZL∗ are distributed over k on m = 4 and m = 8

rocessors. More specifically, Figs. 8(a) and 9(a) plot F(−∞, k′), rep-

esenting the cumulative distribution of schedulable k values in a

irection from −∞ to the value of k′. On the other hand, Figs. 8(b)

nd 9(b) plot F(k′, ∞) in the other direction from k′ to ∞. As shown in

ig. 8, there is a sharp increase in a short range of k′ values before and

fter one, reaching at the 95th percentile or higher. Fig. 9 also shows

he same trend before and after zero. This implies that we can find

schedulable value k∗ with a high probability by looking at a small

nterval of k values, instead of exploring the whole range of [−∞, ∞],

f any schedulable value k∗ exists.

This motivates investigation into how likely a schedulable value

f k belongs to an interval of length L. For a given length L, we find a

eal value t∗ such that N(t∗, t∗ + L) is maximized. We define EQDF(L)
nd EQDZL(L) as I-EQDF∗ and I-EQDZL∗ tests with values of k∗ ∈
t∗, t∗ + L) respectively.

26 H.S. Chwa et al. / The Journal of Systems and Software 101 (2014) 15–29

 40

 50

 60

 70

 80

 90

 100

-20 -15 -10 -5 0 5 10 15 20

 C
um

ul
at

iv
e

ra
tio

(%
)

k

m=4
m=8

(a) F (−∞, k)

 40

 50

 60

 70

 80

 90

 100

-20 -15 -10 -5 0 5 10 15 20

 C
um

ul
at

iv
e

ra
tio

(%
)

k

m=4
m=8

(b) F (k,∞)

Fig. 8. Cumulative distribution of schedulable k values of EQDF.

 70

 80

 90

 100

-20 -15 -10 -5 0 5 10 15 20

 C
um

ul
at

iv
e

ra
tio

(%
)

k

m=4
m=8

(a) F (−∞, k)

 70

 80

 90

 100

-20 -15 -10 -5 0 5 10 15 20

 C
um

ul
at

iv
e

ra
tio

(%
)

k

m=4
m=8

(b) F (k,∞)

Fig. 9. Cumulative distribution of schedulable k values of EQDZL.

Table 3

Intervals ([t∗, t∗ + L]).

m Interval length (L) (EQDF)

1 2 4 8 16

4 [0.2,1.2] [−0.7,1.3] [−2.0,2.0] [−5.4,2.6] [−10.1,5.9]

8 [0,1.0] [−0.7,1.3] [−2.6,1.4] [−5.2,2.8] [−11.2,4.8]

Table 4

Intervals ([t∗, t∗ + L]).

m Interval length (L) (EQDZL)

1 2 4 8 16

4 [−1.0,0] [−1.8,0.2] [−1.8,2.2] [−4.5,3.5] [−8.3,7.7]

8 [−1.0,0] [−1.3,0.7] [−1.4,2.6] [−3.4,4.6] [−8.7,7.4]

i

O

s

i

d

s

u

a

e

l

a

6

w

g

Fig. 10 plots the number of task sets deemed schedulable under

EQDF(L) and EQDZL(L) with different values of L with m = 4 and

m = 8, and Tables 3 and 4 show corresponding intervals [t∗, t∗ + L].

As shown in Fig. 10(a) and Table 3, even when length of L is one, such

as [0.2,1.2] on m = 4 and [0,1.0] on m = 8, EQDF(L) finds higher than

84% and 86% schedulable task sets of those of I-EQDF∗ respectively.

Fig. 10(b) and Table 4 also show that when length of L is one, such

as [−1.0,0] on m = 4 and m = 8, EQDZL(L) finds higher than 97% and

96% schedulable task sets of those of I-EQDZL∗ respectively. Such a

ratio increases sharply with a small value of L and grows slowly going

beyond the 99th percentile when L is close to 20. This presents a good

intuition into how long an interval of interest should be enough to

include a schedulable value of k with a certain degree of probability.

Tables 3 and 4 show where those intervals [t∗, t∗ + L] are located,

and these provide an idea into which interval of k should be exam-

ined for the efficient discovery of schedulable k value. We are then
nterested in how densely to sample a given interval. Recall that the

QDA-k and OQDAZL-k algorithms generate a set S that contains all

chedulable values of k for a given task set. Each element s ∈ S is an

nterval that holds a series of continuous k schedulable values. Let us

efine S(L)as a subset of S such that S(L) includes s ∈ S if |s| ≥ L. Fig. 11

hows the ratio of the size of S(L) to the size of S. As shown in the fig-

re, every interval s ∈ S has a length greater than or equal to 0.001,

nd more than 99% of the intervals of S have a length greater than or

qual to 0.005. The percentage drops significantly when L becomes

arger than 0.1. This gives an insight into how densely our heuristic

lgorithm samples a given interval to locate a schedulable value of k.

.3. Optimal vs. heuristic solutions

Based on understanding of the characteristics of optimal solutions,

e determine where and how densely the HQDA-k and HQDAZL-k al-

orithms examine k values. Tables 5 and 6 show the interval that

H.S. Chwa et al. / The Journal of Systems and Software 101 (2014) 15–29 27

 2000

 2500

 3000

 3500

 4000

 4500

 0 1 2 4 6 8 10 12 14 16 18 20

T
he

 n
um

be
r

of
 d

ed
ic

at
ed

 s
et

s

L

m=4,I-EQDF*
m=4,EQDF(L)

m=8,I-EQDF*
m=8,EQDF(L)

(a) EQDF

 4000

 4500

 5000

 5500

 6000

 0 1 2 4 6 8 10 12 14 16 18 20

T
he

 n
um

be
r

of
 d

ed
ic

at
ed

 s
et

s

L

m=4,I-EQDZL*
m=4,EQDZL(L)

m=8,I-EQDZL*
m=8,EQDZL(L)

(b) EQDZL
Fig. 10. The number of schedulable task sets with [t∗, t∗ + L] and those with [−∞,∞].

 60

 70

 80

 90

 100

 0.0001 0.001 0.01 0.1 1 10

R
at

io
 (

%
)

L

m=4
m=8

(a) EQDF

 85

 90

 95

 100

 0.0001 0.001 0.01 0.1 1 10

R
at

io
 (

%
)

L

m=4
m=8

(b) EQDZL
Fig. 11. Ratio of the size of S(L) to the size of S.

Table 5

The ratio of heuristics to optimal (EQDF).

m Length (L) and interval

1 4 16 32 64

[0,1] [−2,2] [−8,8] [−16,16] [−32,32]

Schedulability 4 83.1 94.7 97.9 98.9 99.2

Ratio (%) 8 85.1 95.3 97.5 98.6 99.0

Running time 4 1.5 5.3 19.4 36.1 79.7

Ratio (10−3) 8 0.2 1.0 3.7 9.0 17.7

H

s

i

r

o

n

a

o

b

t

w

w

t

b

Table 6

The ratio of heuristics to optimal (EQDZL).

m Length (L) and interval

1 4 16 32 64

[−1,0] [−2,2] [−8,8] [−16,16] [−32,32]

Schedulability 4 95.7 98.1 99.3 99.6 99.8

Ratio (%) 8 95.5 97.7 99.1 99.4 99.7

Running time 4 2.0 7.4 24.5 50.6 93.4

Ratio (10−4) 8 0.3 1.5 5.9 9.4 17.1

s

t

6

m

s

j

i

w

n

t

QDA-k and HQDAZL-k examine for a given value of L, and we set the

ampling step to 0.1. For example, when L = 1, HQDA-k examines the

nterval [0, 1] with the step size of 0.1. This way, we can effectively

educe the search space of HQDA-k. Tables 5 and 6 also show the ratio

f heuristic solutions to optimal in terms of schedulability and run-

ing time. As shown in Table 5, when L = 4, HQDA-k algorithm finds

solution 95% close to optimal with a shorter running time by three

rders of magnitude. This translates into that HQDA-k has a compara-

le running time with EDF analysis but produces 34–37% better results

han EDF. Table 6 describes similar trend of HQDAZL-k algorithm. Even

hen L = 4, HQDAZL-k algorithm finds a solution 98% close to optimal

ith a shorter running time by four orders of magnitude. This implies

hat HQDAZL-k has a comparable running time with EDZL analysis

ut produces 8%–9% better results than EDZL. When L = 32, heuristic
olutions have only less than 1% loss of optimality reducing running

ime by two to four orders of magnitude.

.4. Preemption and migration overheads

Under the EDF scheduling, a single job can preempt other jobs at

ost once when released (Liu, 2000); it cannot preempt after that

ince its priority remains the same. Following the same reasoning, a

ob can preempt at most once when released under the EQDF schedul-

ng. Under the EQDZL scheduling, a job can preempt at most twice

hen released and when entering the zero-laxity state. Since the

umber of migrations is upper-bounded by the number of preemp-

ions, the upper-bounds of the number of preemptions a job can cause

28 H.S. Chwa et al. / The Journal of Systems and Software 101 (2014) 15–29

B

B

B

B

B

B

B

B

B

B

B

C

D

D

D

E

F

G

L

L

L

L

L

L

L

L

L

L

R

H

2
S

K
a

H

(
N

H

(

under EQDF and EQDZL can be used for those of the number of mi-

grations.

7. Conclusion

This paper introduced a new concept of the quasi-deadline which

can serve as a more effective scheduling parameter than deadline

on multiprocessors. We proposed two new scheduling algorithms,

EQDF (categorized into JFP scheduling) and EQDZL (categorized into

JDP scheduling), that assign priority to jobs according to their quasi-

deadlines (di − k · Ci), and the control knob k allows to balance

efficiently between urgency and parallelism in quasi-deadline assign-

ment. We also presented an optimal solution to the quasi-deadline as-

signment subject to the proposed EQDF (EQDZL) schedulability analy-

sis for design time, and a heuristic solution for runtime. We performed

an extensive empirical study to gain good insights into how the search

space of the heuristic solution can be effectively reduced. Based on

our understanding of empirical results, we can reduce the running

time of our proposed heuristic algorithm significantly (two to three

orders of magnitude) at the expense of 1–5% optimality loss.

Incorporating such a balanced consideration into job-level prior-

ity assignment offers a significant improvement over the state-of-

the-art deadline-based scheduling algorithms. However, there could

exist some other effective ways of capturing urgency and parallelism

than quasi-deadlines. This suggests our future research direction of

advancing understanding of real-time multiprocessor scheduling and

translating new understanding into better scheduling strategies.

Acknowledgments

This work was supported in part by BSRP (NRF-2010-

0006650, NRF-2012R1A1A1014930), NCRC (2012-0000980), IITP

(2011-10041313, 14-824-09-013) and KIAT (M002300089) funded

by the Korea Government (MEST/MSIP/MOTIE). This work was also

supported by Basic Science Research Program through the National

Research Foundation of Korea (NRF) funded by the Ministry of Science,

ICT & Future Planning (NRF-2014R1A1A1035827).

References

AUTOSAR, 2009. AUTOSAR Release 4.0 Specification.
Anderson, J.H., Srinivasan, A., 2000. Early-release fair scheduling. In: Proceedings of

Euromicro Conference on Real-Time Systems (ECRTS), pp. 35–43.
Andersson, B., 2008. Global static-priority preemptive multiprocessor scheduling with

utilization bound 38%. In: Proceedings of International Conference on Principles of
Distributed Systems, pp. 73–88.

Andersson, B., Baruah, S., Jonsson, J., 2001. Static-priority scheduling on multiproces-

sors. In: Proceedings of IEEE Real-Time Systems Symposium (RTSS), pp. 193–202.
Andersson, B., Bletsas, K., Baruah, S., 2008. Scheduling arbitrary-deadline sporadic task

systems on multiprocessor. In: Proceedings of IEEE Real-Time Systems Symposium
(RTSS), pp. 385–394.

Andersson, B., Jonsson, J., 2000. Fixed-priority preemptive multiprocessor scheduling:
to partition or not to partition. In: Proceedings of IEEE International Conference

on Embedded and Real-Time Computing Systems and Applications (RTCSA), pp.

337–346.
Audsley, N., 1991. Optimal priority assignment and feasibility of static priority tasks

with arbitrary start times: Technical Report YCS164. Department of Computer
Science, University of York.

Audsley, N., 2001. On priority assignment in fixed priority scheduling. Inf. Process. Lett.
79, 39–44.

Back, H., Chwa, H.S., Shin, I., 2012. Schedulability analysis and priority assignment for

global job-level fixed-priority multiprocessor scheduling. In: Proceedings of IEEE
Real-Time Technology and Applications Symposium (RTAS), pp. 297–306.

Baker, T., 2005. An analysis of EDF schedulability on a multiprocessor. IEEE Trans.
Parallel Distrib. Syst. 16, 760–768.

Baker, T.P., 2003. Multiprocessor EDF and deadline monotonic schedulability analysis.
In: Proceedings of IEEE Real-Time Systems Symposium (RTSS), pp. 120–129.

Baker, T.P., Baruah, S., 2009a. An analysis of EDF schedulability for arbitrary sporadic
task systems. Real-Time Syst. 43, 3–24.

Baker, T.P., Baruah, S.K., 2009b. Sustainable multiprocessor scheduling of sporadic task

systems. In: Proceedings of Euromicro Conference on Real-Time Systems (ECRTS),
pp. 141–150.

Baker, T.P., Cirinei, M., 2006. A necessary and sometimes sufficient condition for the
feasibility of sets of sporadic hard-deadline tasks. In: Proceedings of IEEE Real-Time

Systems Symposium (RTSS), pp. 178–190.
aker, T.P., Cirinei, M., Bertogna, M., 2008. EDZL scheduling analysis. Real-Time Syst.
40, 264–289.

aruah, S., 2007. Techniques for multiprocessor global schedulability analysis. In: Pro-
ceedings of IEEE Real-Time Systems Symposium (RTSS), pp. 119–128.

aruah, S., Bonifaci, V., Marchetti-Spaccamela, A., Stiller, S., 2009. Implementation of
a speedup-optimal global EDF schedulability test. In: Proceedings of Euromicro

Conference on Real-Time Systems (ECRTS), pp. 259–268.
aruah, S., Cohen, N.K., Plaxton, C.G., Varvel, D.A., 1996. Proportionate progress: a notion

of fairness in resource allocation. Algorithmica 15, 600–625.

ertogna, M., Baruah, S., 2011. Tests for global EDF schedulability analysis. J. Syst. Archit.
57, 487–497.

ertogna, M., Buttazzo, G., Marinoni, M., Caccamo, M., 2010. Preemption points place-
ment for sporadic task sets. In: Proceedings of Euromicro Conference on Real-Time

Systems (ECRTS), pp. 251–260.
ertogna, M., Cirinei, M., 2007. Response-time analysis for globally scheduled symmet-

ric multiprocessor platforms. In: Proceedings of IEEE Real-Time Systems Sympo-

sium (RTSS), pp. 149–160.
ertogna, M., Cirinei, M., Lipari, G., 2005a. Improved schedulability analysis of EDF on

multiprocessor platforms. In: Proceedings of Euromicro Conference on Real-Time
Systems (ECRTS), pp. 209–218.

ertogna, M., Cirinei, M., Lipari, G., 2005b. New schedulability tests for real-time task
sets scheduled by deadline monotonic on multiprocessors. In: Proceedings of Inter-

national Conference on Principles of Distributed Systems, pp. 306–321.

ertogna, M., Cirinei, M., Lipari, G., 2009. Schedulability analysis of global schedul-
ing algorithms on multiprocessor platforms. IEEE Trans. Parallel Distrib. Syst. 20,

553–566.
ertogna, M., Marinoni, O.X.M., Esposito, F., Buttazzo, G., 2011. Optimal selection of

preemption points to minimize preemption overhead. In: Proceedings of Euromicro
Conference on Real-Time Systems (ECRTS), pp. 217–227.

ho, H., Ravindran, B., Jensen, E.D., 2006. An optimal real-time scheduling algorithm

for multiprocessors. In: Proceedings of IEEE Real-Time Systems Symposium (RTSS),
pp. 101–110.

avis, R., Burns, A., 2009. Priority assignment for global fixed priority pre-emptive
scheduling in multiprocessor real-time systems. In: Proceedings of IEEE Real-Time

Systems Symposium (RTSS), pp. 398–409.
avis, R., Kato, S., 2012. FPSL, FPCL and FPZL schedulability analysis. Real-Time Syst. 48,

750–788.

avis, R.I., Burns, A., 2011. FPZL schedulability analysis. In: Proceedings of IEEE Real-
Time Technology and Applications Symposium (RTAS), pp. 245–256.

rickson, J.P., Anderson, J.H., 2012. Fair lateness scheduling: reducing maximum late-
ness in G-EDF-like scheduling. In: Proceedings of Euromicro Conference on Real-

Time Systems (ECRTS), pp. 3–11.
unaoka, K., Kato, S., Yamasaki, N., 2008. Work-conserving optimal real-time scheduling

on multiprocessors. In: Proceedings of Euromicro Conference on Real-Time Systems

(ECRTS), pp. 13–22.
oossens, J., Funk, S., Baruah, S., 2003. Priority-driven scheduling of periodic task sys-

tems on multiprocessors. Real-Time Syst. 25, 187–205.
ee, J., Easwaran, A., Shin, I., 2010. LLF schedulability analysis on multiprocessor plat-

forms. In: Proceedings of IEEE Real-Time Systems Symposium (RTSS), pp. 25–36.
ee, J., Easwaran, A., Shin, I., 2011a. Maximizing contention-free executions in multipro-

cessor scheduling. In: Proceedings of IEEE Real-Time Technology and Applications
Symposium (RTAS), pp. 235–244.

ee, J., Easwaran, A., Shin, I., 2012. Laxity dynamics and LLF schedulability analysis on

multiprocessor platforms. Real-Time Syst. 48, 716–749.
ee, J., Easwaran, A., Shin, I., Lee, I., 2011b. Zero-laxity based real-time multiprocessor

scheduling. J. Syst. Softw. 84, 2324–2333.
ee, S.K., 1994. On-line multiprocessor scheduling algorithms for real-time tasks. In:

Proceedings of IEEE Region 10’s Ninth Annual International Conference, pp. 607–
611.

eung, J., Whitehead, J., 1982. On the complexity of fixed-priority scheduling of periodic

real-time tasks. Perform. Eval. 2, 237–250.
eung, J.Y.T., 1989. A new algorithm for scheduling periodic, real-time tasks. Algorith-

mica 4, 209–219.
evin, G., Funk, S., Sadowski, C., Pye, I., Brandt, S., 2010. DP-FAIR: a simple model for

understanding optimal multiprocessor scheduling. In: Proceedings of Euromicro
Conference on Real-Time Systems (ECRTS), pp. 3–13.

iu, C., Layland, J., 1973. Scheduling algorithms for multi-programming in a hard-real-

time environment. J. ACM 20, 46–61.
iu, J., 2000. Real-Time Systems. Prentice Hall.

egnier, P., Lima, G., Massa, E., Levin, G., Brandt, S., 2011. RUN: optimal multiprocessor
real-time scheduling via reduction to uniprocessor. In: Proceedings of IEEE Real-

Time Systems Symposium (RTSS), pp. 104–115.

oon Sung Chwa received B.S. and M.S. degrees in Computer Science in 2009 and

011, respectively, from KAIST (Korea Advanced Institute of Science and Technology),
outh Korea. He is currently working toward the Ph.D. degree in Computer Science from

AIST. His research interests include system design and analysis with timing guarantees
nd resource management in real-time embedded systems and cyber-physical systems.

e won two best paper awards from the 33rd IEEE Real-Time Systems Symposium

RTSS) in 2012 and from the IEEE International Conference on Cyber-Physical Systems,
etworks, and Applications (CPSNA) in 2014.

youngbu Back is a Ph.D. student at the Department of Computer Science at KAIST

Korea Advanced Institute of Science and Technology), South Korea. He received B.S.

http://refhub.elsevier.com/S0164-1212(14)00254-4/bib001
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib002
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib003
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib004
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib005
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib006
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib007
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib008
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib009
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib010
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib011
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib012
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib013
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib014
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib015
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib016
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib017
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib018
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib019
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib020
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib021
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib022
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib023
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib024
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib025
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib026
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib027
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib028
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib029
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib030
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib031
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib032
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib033
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib034
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib035
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib036
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib037
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib038
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib039
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib040
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib041
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib042
http://refhub.elsevier.com/S0164-1212(14)00254-4/bib043

H.S. Chwa et al. / The Journal of Systems and Software 101 (2014) 15–29 29

d
2

S
d

e
t

J

i

r
I

2
o

H
s

s

b
A

K
A

i
i

I

K
a

C

r
o

s
o

w
v

E

R
r

egree in Computer Science and Engineering from Konkuk University, South Korea in
010 and M.S. degree in Computer Science from KAIST (Korea Advanced Institute of

cience and Technology), South Korea in 2012. His research interests include system
esign and analysis with timing guarantees and resource management in real-time

mbedded systems and cyber-physical systems. He won the best paper award from
he 33rd IEEE Real-Time Systems Symposium (RTSS) in 2012.

inkyu Lee is an assistant professor in Department of Computer Science and Engineer-

ng, Sungkyunkwan University (SKKU), Republic of Korea, where he joined in 2014. He

eceived the B.S., M.S., and Ph.D. degrees in computer science from the Korea Advanced
nstitute of Science and Technology (KAIST), Republic of Korea, in 2004, 2006, and

011, respectively. He has been a research fellow/visiting scholar in the Department
f Electrical Engineering and Computer Science, University of Michigan until 2014.

is research interests include system design and analysis with timing guarantees, QoS
upport, and resource management in real-time embedded systems and cyber-physical

ystems. He won the best student paper award from the 17th IEEE Real-Time and Em-

edded Technology and Applications Symposium (RTAS) in 2011, and the Best Paper
ward from the 33rd IEEE Real-Time Systems Symposium (RTSS) in 2012.
ieu-My Phan received B.S. degrees in Computer Science in 2013 from KAIST (Korea
dvanced Institute of Science and Technology), South Korea. Her research interests

nclude system design and analysis with timing guarantees and resource management
n real-time embedded systems and cyber-physical systems.

nsik Shin is currently an associate professor in Department of Computer Science at

AIST, South Korea, where he joined in 2008. He received a B.S. from Korea University,
n M.S. from Stanford University, and a Ph.D. from University of Pennsylvania all in

omputer Science in 1994, 1998, and 2006, respectively. He has been a post-doctoral

esearch fellow at Malardalen University, Sweden, and a visiting scholar at University
f Illinois, Urbana-Champaign until 2008. His research interests lie in cyber-physical

ystems and real-time embedded systems. He is currently a member of Editorial Boards
f Journal of Computing Science and Engineering. He has been co-chairs of various

orkshops including satellite workshops of RTSS, CPSWeek and RTCSA and has served
arious program committees in real-time embedded systems, including RTSS, RTAS,

CRTS, and EMSOFT. He received best paper awards, including Best Paper Awards from

TSS in 2003 and 2012, Best Student Paper Award from RTAS in 2011, and Best Paper
unner-ups at ECRTS and RTSS in 2008.

	Capturing Urgency and Parallelism Using Quasi-Deadlines for Real-Time Multiprocessor Scheduling
	1 Introduction
	2 Related work
	3 System model and terminology
	4 Schedulability analysis of EQDF and EQDZL
	4.1 EQDF Schedulability Analysis
	4.1.1 Interference-based Schedulability Condition
	4.1.2 Worst-Case Interference Scenarios
	4.1.3 Bounding Interference
	4.1.4 EQDF Schedulability Analysis

	4.2 EQDZL Schedulability Analysis
	4.3 Slack-based Iterative Test

	5 Quasi-deadline assignment for EQDF and EQDZL
	5.1 Optimal Quasi-Deadline Assignment under EQDF
	5.2 Optimal Quasi-Deadline Assignment under EQDZL
	5.3 Heuristic Priority Assignment

	6 Evaluation
	6.1 Deadline vs. Quasi-deadline
	6.2 Understanding the effect of quasi-deadline assignment
	6.3 Optimal vs. heuristic solutions
	6.4 Preemption and migration overheads

	7 Conclusion
	Acknowledgments
	References

