
Optimal Real-Time Scheduling on Two-Type
Heterogeneous Multicore Platforms

Hoon Sung Chwa∗, Jaebaek Seo∗, Jinkyu Lee†, Insik Shin∗‡
∗School of Computing, KAIST, Republic of Korea†Department of Computer Science and Engineering, Sungkyunkwan University, Republic of Korea

insik.shin@cs.kaist.ac.kr

Abstract—Motivated by the cutting-edge two-type heteroge-
neous multicore chips, such as ARM’s big.LITTLE, that offer
a practical support for migration, this paper studies the global
(or fully-migrative) approach to two-type heterogeneous multicore
scheduling. Our goal is to design an optimal fully-migrative
scheduling framework. To achieve this goal in an efficient and
simple manner, we break the scheduling problem into two sub-
problems: workload assignment and schedule generation. We
propose a per-cluster workload assignment algorithm, called
Hetero-Split, that determines the fractions of workload of each
task to be assigned to both clusters without losing feasibility
with the complexity of O(n log n), where n is the number of
tasks. Furthermore, it provides a couple of important properties
(e.g., a dual property) that help to generate an optimal schedule
efficiently. We also derive scheduling guidelines to design optimal
schedulers for two-type heterogeneous multicore platforms, called
Hetero-Fair. By tightly coupling the solutions of Hetero-Split and
Hetero-Fair, we develop the first optimal two-type heterogeneous
multicore scheduling algorithm, called Hetero-Wrap, that has the
same complexity (O(n)) as in the identical multicore case. Finally,
concerning a practical point of view, we derive the first bounds on
the numbers of intra- and inter-cluster migrations under two-type
heterogeneous multicore scheduling, respectively.

I. INTRODUCTION

Heterogeneous multicore platforms are composed of dif-
ferent types of cores, each type of which may have spe-
cial capabilities such that execution rates are both core-type
and task-specific. With rapid development in semiconductor
technology, heterogeneous multicore designs are becoming an
attractive solution to fulfill increasing performance demands
while saving energy efficiently. For example, ARM recently
has launched a two-type heterogeneous multicore chip, called
big.LITTLE [1], which has been deployed in the state-of-the-
art smartphones, e.g., Samsung Galaxy S6 and Note 4. The
big.LITTLE architecture consists of two types of cores: one
with high-performance “big” cores and the other with power-
efficient “LITTLE” cores. Since both types of cores share the
same instruction set architecture (ISA), tasks can be migrated
on the fly from one to the other. Meanwhile, differences in
the internal microarchitecture of big and LITTLE cores allow
them to provide different execution rates as well as power
consumption for each task.

Scheduling on such a heterogeneous multicore platform is
much more challenging than scheduling on identical/uniform
platforms1 since the processing speed depends not only on the

‡A corresponding author.
1On identical multicore platforms, all cores have exactly the same computing

capacity. On uniform multicore platforms, different cores may have different
processing speeds, but each individual task executing on a given core has the
same execution rate (speed).

core type, but also on the task executed. Thus, on heteroge-
neous multicore platforms, a decision should be made on which
type of core will execute a task over time.

There has been a growing interest in real-time heteroge-
neous multicore scheduling theories. Approaches to heteroge-
neous multicore real-time scheduling can broadly fall into three
classes: non-migrative, intra-migrative, and fully-migrative.
Under non-migrative scheduling, every task is assigned to a
particular core and execute only on that core. On the other
hand, every task is allowed to execute while migrating between
cores of only the same type under intra-migrative scheduling,
or migrating between cores of different types under fully-
migrative scheduling.

Related Work. Both non-migrative and intra-migrative
approaches divide the heterogeneous multicore scheduling
problem into one of offline task allocation followed by run-
time schedule generation. Once tasks are allocated to cores (for
non-migrative scheduling) or core types (for intra-migrative
scheduling), the scheduling problem is reduced to a collec-
tion of independent unicore or identical-multicore scheduling
problems, which have been well studied with a body of suc-
cessful results. However, the task-to-core and task-to-core-type
assignment problems are known to be NP-hard in the strong
sense [2], [3]. Consequently, much prior work on non-migrative
and intra-migrative scheduling has been based upon heuristic
approaches. For example, targeting non-migrative scheduling,
some task-to-core assignment algorithms with approximation
bounds were proposed for two-type heterogeneous multicore
platforms [4], [5], [6] and for general m-type heterogeneous
multicore platforms (m > 0) [7], [2]. Similarly, under intra-
migrative scheduling, a task-to-core-type assignment approx-
imation algorithm for two-type heterogeneous platforms was
presented by Raravi et al. [8], and this work was later extended
in [9] for m-type heterogeneous platforms.

The fully-migrative scheduling paradigm offers the ben-
efit of enhanced schedulability, compared to the non-
migrative/intra-migrative ones from a theoretical viewpoint.
Correa et al. showed that if a task set can be scheduled by
an optimal algorithm for fully-migrative scheduling, then an
optimal algorithm for non-migrative scheduling needs cores
four times faster [10]. Similarly, Raravi et al. [11] showed that
an optimal algorithm for intra-migrative scheduling needs cores
1+ β

2 times faster, where 0 < β ≤ 1, against for fully-migrative
scheduling on two-type heterogeneous platforms for a special
case. In addition, Baruah [12] introduced a polynomial-time ex-
act feasibility analysis method that is able to determine whether
a task set can be scheduled on a m-type heterogeneous platform
under fully-migrative scheduling via linear programming (LP).
In the process of deriving the exact feasibility condition, he also

2015 IEEE Real-Time Systems Symposium

1052-8725/15 $31.00 © 2015 IEEE

DOI 10.1109/RTSS.2015.19

119

2015 IEEE Real-Time Systems Symposium

1052-8725/15 $31.00 © 2015 IEEE

DOI 10.1109/RTSS.2015.19

119

2015 IEEE Real-Time Systems Symposium

1052-8725/15 $31.00 © 2015 IEEE

DOI 10.1109/RTSS.2015.19

119

showed that such a schedule can be constructed by finding a
maximal bipartite matching with the complexity of polynomial
time. From a practical viewpoint, one of the major concerns
with fully-migrative scheduling is the possibility of generating
excessive migrations between clusters. However, it is shown
that not all but only a bounded number of tasks need to be
fully-migrative [12]. Yet, no bound on the number of migration
has been derived.

This work. Our work is motivated by the advent of two-
type heterogeneous multicore chips, such as big.LITTLE [1]. It
offers a practical support for migration: big and LITTLE cores
share not only the same ISA but also a specially designed
interconnection bus for seamless data transfer between the big
and LITTLE cores. This enables each task to migrate between
cores of different types in the middle of execution with a
practically reasonable cost [13], [14].

Therefore, in this paper, we focus on two-type hetero-
geneous multicore platforms, where a set of cores of the
same type is referred to as a cluster. Our goal is to design
an optimal fully-migrative scheduling framework. The main
challenge on heterogeneous scheduling arises from the fact
that the execution time of a task varies depending on how
much portion of its workload is assigned to each different
cluster, since each task may have a different execution rate on
a different cluster. In order to handle this challenge in an easier
way, we divide the scheduling problem into two sub-problems:
workload assignment and schedule generation. The former sub-
problem determines the amount of partial workload on each
cluster for each individual task while preserving feasibility.
Building upon a solution to the first sub-problem, the second
sub-problem determines an actual schedule where all jobs meet
their deadlines in an optimal manner. To address this problem
with efficiency and simplicity, we view two-type heterogeneous
multicore fully-migrative scheduling as a collection of identical
multicore scheduling for each cluster while cooperatively han-
dling what we call the NPE (No Parallel Execution) restriction
— no single task executes on two clusters at the same time.
Such a perspective makes it easier to develop an optimal
scheduling algorithm efficiently, since it allows to build upon
a body of successful results on identical multicore scheduling
while mostly focusing on the additional issues pertaining to
heterogeneous multicore scheduling.

This paper offers the following contributions. First,
we propose an algorithm, called Hetero-Split, that finds a
feasibility-optimal workload assignment, with the complexity
of O(n log n), where n is the number of tasks. In the workload
assignment, the tasks migrating between clusters hold a dual
property except at most one, while utilizing the total computing
capacities minimally. The dual property of a task plays a critical
role in the second sub-problem of schedule generation, since it
allows to reduce the difficulty of addressing the NPE restriction
as well as provide more rooms to schedule tasks within a
cluster.

Second, we derive simple guidelines to design optimal
schedulers, called Hetero-Fair, by extending existing scheduling
rules for optimal identical multicore scheduling toward two-
type heterogeneous multicore scheduling.

Third, we develop the first optimal two-type heterogeneous
multicore scheduling algorithm, called Hetero-Wrap, which
exploits McNaughton’s wrap-around rule [15], one of the
simplest optimal identical multicore scheduling algorithms, and

handles the NPE restriction with no extra cost mainly due to
the dual property; the dual property of a task represents that
a task can execute on a cluster exactly when it is idle on the
other cluster, and vice versa. Thus, if a task has a dual property,
its schedule on a cluster is simply obtained by reversing the
schedule on the other cluster. Thereby, an optimal schedule on
a two-type heterogeneous multicore platform can be obtained
with the same complexity (O(n)) as in the identical multicore
case. This is made possible by tightly coupling the solutions
of Hetero-Split and Hetero-Fair.

Fourth, with the consideration on the heterogeneity of
computing components, we separate task migration into two
kinds: intra-cluster migration and inter-cluster migration and
derive the first upper-bounds on the numbers of intra- and inter-
cluster migrations under two-type heterogeneous multicore
scheduling, respectively.

Finally, our simulation study demonstrates quantitative
schedulability improvement by the proposed fully-migrative
scheduling framework compared with the state-of-the-art ap-
proaches for intra-migrative and non-migrative scheduling.

II. PROBLEM STATEMENT AND APPROACH OVERVIEW

We consider the problem of scheduling a task set τ of
n implicit-deadline periodic tasks on a two-type heteroge-
neous multicore platform π under fully-migrative scheduling
paradigm.

System model. We consider a two-type heterogeneous
platform π consists of two clusters π1 and π2, where each
cluster πk comprises mk identical cores of type-k (k = 1, 2).
Each task τi ∈ τ is characterized by a period Ti, an execution
requirement Ci, and a pair of execution rates, r1i and r2i . Such
a task τi is assumed to generate a potentially infinite sequence
of jobs every Ti time-units, with each job needing to complete
Ci units of work within a relative deadline of Ti time-units.

Important parameters to describe the execution behavior
of τi on heterogeneous platforms are its execution rates, r1i
and r2i . The value of rki denotes the rate (or speed) at which
work of task τi is completed on a core of type-k, indicating
that executing τi on a core of type-k completes rki units of
work per unit of time. We assume that type-1 and type-2 cores
are unrelated in the sense that r1i and r2i can be assigned any
arbitrary positive real values for all tasks τi ∈ τ .

We assume that tasks are independent and preemptible,
and migrate from one core to another within or across the
cluster boundary during execution. Although our work takes
both intra- and inter-cluster migrations into consideration, we
employ the standard (incorrect) assumption that these occur at
no cost or penalty. In actual systems, measured preemption and
migration overheads can be accommodated by adjusting worst-
case execution time requirements when upper-bounds on the
numbers of preemptions and migrations are available. We also
assume that a single job cannot be executed simultaneously
upon more than one core, regardless of core type.

Two-type heterogeneous multicore scheduling. In this pa-
per, we study the fully-migrative approach to two-type hetero-
geneous multicore scheduling, aiming to address the following
problem, which we call the optimal two-type heterogeneous
multicore fully-migrative scheduling problem:

Definition 1: Given a task set τ running on a two-type
heterogeneous multi-core platform π, determine a schedule, if

120120120

one exists, under the fully-migrative scheduling paradigm such
that all jobs of each task meet their deadlines for all possible
legal job arrival sequences.

Heterogeneous multicore fully-migrative scheduling is
intrinsically a much more difficult problem than identi-
cal/uniform multicore global scheduling due to the simple fact
that each task may have a different execution rate for each core
type. On a heterogeneous multicore platform, the execution
time of a task varies depending on the amount of workload
assigned to each core type. Thus, it is important to decide
the “right” fraction of workload of each task to execute on
each core type. Then, we also need to determine which tasks
run on which types of core at any given instant under the
restriction that no single task can run on multiple cores at the
same time. In order to deal with such issues in a conceptually
easier manner, we break the problem into two sub-problems:
workload assignment and schedule generation. The workload
assignment problem (P1) determines the amount of partial
workload on each core type for each individual task while
preserving feasibility, and the schedule generation problem
(P2) generates an actual schedule where all jobs meet their
deadlines in an optimal manner, when the workload assignment
is addressed properly.

Now, we explain our approach to solve the two-type het-
erogeneous multicore fully-migrative scheduling problem. We
first address the following problem, which we call the feasible
per-cluster task workload assignment problem, with x1

i and x2
i

denoting the fractions of workload Ci of τi that are assigned
to type-1 and type-2 clusters, respectively, where x1

i +x2
i = 1.

Definition 2 (P1): Given a task set τ running on a two-
type heterogeneous multicore platform π under fully-migrative
scheduling, determine x1

i and x2
i for every τi ∈ τ such that

if τ is feasible on π, τ remains feasible on π even with the
workload assignment of {x1

i } and {x2
i }.

In this paper, we propose a feasibility-optimal per-cluster work-
load assignment algorithm, called Hetero-Split, that addresses
Problem P1 correctly without losing feasibility. It is worth to
note that a previous study [12] introduced a feasibility analysis
method that is able to address the same problem for general
m-type heterogeneous platforms (for some arbitrary m > 0)
via linear programming (LP). In this paper, we show that an
exact solution to Problem P1 can be obtained with a much
lower complexity of O(n log n) when tailored to the two-type
heterogeneous platform. In addition, we remark the solution
preserves a couple of important properties that help to solve
Problem P2 efficiently. Specifically, Hetero-Split enforces that
the tasks migrating between clusters hold the dual property
except at most one (Property 1) and bounds the number of
such tasks (Property 2). Property 1 makes it easy to handle the
NPE restriction, and Property 2 makes it possible to bound the
number of inter-cluster migration.

Building upon an exact solution to Problem P1, we then
seek to address the following problem, which we call the
optimal schedule generation problem.

Definition 3 (P2): Given the per-cluster workload assign-
ments {x1

i } and {x2
i } (derived by Hetero-Split), determine

a schedule where all jobs of all tasks τi ∈ τ meet their
deadlines for all possible legal job arrival-sequences on a two-
type heterogeneous platform π.

We note that, for any feasible workload assignment of a task
set on a m-type heterogeneous multicore platform, Problem

P2 can be transformed to one instance of the classical shop
scheduling problems — preemptive open shop scheduling to
minimize makespan [16], [12]. Its solution is known to have
the complexity of polynomial time [16]. In this paper, we show
that Problem P2 can be addressed in an optimal manner with
a much lower cost of O(n) — even with the same complexity
as in the identical multicore case. This is made possible by
exploiting the important properties that Hetero-Split derives.

By addressing the above two sub-problems: P1 and P2,
we can achieve optimal fully-migrative scheduling for two-
type heterogeneous multicore platforms. Since Problem P1
determines the per-cluster workload of each individual task
while holding feasibility and Problem P2 generates schedules
in an optimal way, our solution schedules all jobs in a task set
without any deadline miss of a job as long as there exists a
feasible solution.

III. FEASIBLE TASK WORKLOAD ASSIGNMENT

In this section, we present our approach to determine the
fractions of workload of each task on both clusters (i.e., {x1

i }
and {x2

i }), explained in Problem P1 in Section II. To this end,
we introduce exact conditions for a task workload assignment
to be feasible on a two-type heterogeneous multicore platform,
present our feasibility-optimal per-cluster task workload as-
signment algorithm, and derive two key properties.

A. Feasibility conditions

We introduce necessary and sufficient conditions for a per-
cluster task workload assignment to be feasible on a two-type
heterogeneous multicore platform. We recall that x1

i and x2
i

denote the fractions of workload Ci of τi that are assigned to
type-1 and type-2 clusters, respectively, where x1

i + x2
i = 1.

For a given value of xj
i of task τi (j ∈ [1, 2]), a job of τi

would execute xj
i · Ci units of work on the type-j cluster at

the execution rate of rji with the execution time of xj
i ·Ci/r

j
i .

Then, we define the utilization of task τi on type-1 and type-2
clusters (denoted by u1

i and u2
i) as follows:

u1
i = x1

i · Ci

r1i
· 1
Ti

, u2
i = x2

i · Ci

r2i
· 1
Ti

. (1)

Note that u1
i with x1

i = 1 is said to be the maximum possible
utilization of τi’s execution on the type-1 cluster, and denoted
by u1,max

i ; likewise, u2,max
i denotes u2

i with x2
i = 1.

From the exact feasibility test [12] of fully-migrative
heterogeneous multicore scheduling, the following conditions
must hold in order for a per-cluster task workload assignment
(i.e., {x1

i } and {x2
i }) to be feasible on a two-type heteroge-

neous multicore platform, as follows:

C1: ∀τi ∈ τ, x1
i + x2

i = 1,

C2: ∀τi ∈ τ, u1
i + u2

i ≤ 1,

C3:
∑
τi∈τ

u1
i ≤ m1,

C4:
∑
τi∈τ

u2
i ≤ m2,

C5: ∀τi ∈ τ, 0 ≤ x1
i , x

2
i ≤ 1.

Constraint C1 specifies that every task must receive its
appropriate amount of execution. Constraint C2 represents

121121121

a necessary condition for each task to meet its deadline.
Constraints C3 and C4 assert that total workload allocated on
each cluster should be less than or equal to the capacity of
each cluster. Baruah [12] proved that there is a per-cluster task
workload assignment satisfying the conditions C1–C5 if and
only if the task set τ on the two-type heterogeneous multicore
platform π is feasible.

Since all those conditions are linear equalities/inequalities,
finding a feasible per-cluster task workload assignment can be
formulated as linear programming. We note that, in general, a
linear program may have multiple optimal solutions that min-
imize (maximize) an objective function, and solving a linear
program requires a polynomial time complexity. We aim to find
a “particular” feasible per-cluster task workload assignment,
which facilitates generating a schedule (addressed in P2), and
find such a solution in an efficient manner without losing
optimality for a two-type heterogeneous multicore platform.

B. Optimal per-cluster workload assignment algorithm

We develop a linearithmic time complexity (O(n log n))
per-cluster task workload assignment, called Hetero-Split, that
guarantees to find a feasible workload assignment on type-1
and type-2 clusters satisfying C1–C5, as long as there exists
such a solution. According to the feasibility conditions C1–
C5, there are two kinds of inequalities: one is related to the
deadline constraint of each task (i.e., C2); the other is related
to the capacity constraint of each cluster (i.e., C3 and C4).
In order to find a feasible workload assignment in an efficient
way, we consider those constraints, one by one. First, we only
focus on the deadline constraint of each task and calculate
the minimum fraction of workload of each task that should be
assigned to either type-1 or type-2 cluster so as to satisfy the
deadline constraint. Then, we consider assigning the rest of
workload fractions solely focusing on the capacity constraint
of each cluster.

Consideration on the deadline constraint. As a first step,
we calculate the minimum fractions of workload of τi on type-
1 and type-2 clusters in order to satisfy constraint C2. By
the deadline constraint C2, if there exists a task τi such that
u1,max
i > 1 and u2,max

i > 1 hold, the task cannot satisfy the

constraint, which leads to infeasibility. However, if u2,max
i > 1

and u1,max
i ≤ 1 hold, we may find a feasible solution by

assigning some workload of τi to type-1 cluster. In this case,
there exists the minimum fraction of workload of τi that should
be assigned to the type-1 cluster so as to satisfy constraint C2.
Conversely, if u2,max

i ≤ 1 and u1,max
i > 1 hold, there exists

the minimum fraction of workload of τi that should be assigned
to the type-2 cluster with the same reasoning. If u2,max

i ≤ 1
and u1,max

i ≤ 1 hold, a task τi always satisfies constraint C2.
Then, the following lemma calculates the minimum fractions
of workload of τi that should be assigned to the type-1 and
type-2 clusters (denoted by lo1i and lo2i) in order to satisfy the
constraint C2.

Lemma 1: For each task τi, the deadline constraint C2 is
always satisfied, if

x1
i ≥ lo1i , x2

i ≥ lo2i

where lo1i and lo2i are calculated by

lo1i =

⎧⎨
⎩

u
2,max
i −1

u
2,max
i −u

1,max
i

, if u2,max
i > 1,

0, otherwise.
(2)

lo2i =

⎧⎨
⎩

u
1,max
i −1

u
1,max
i −u

2,max
i

, if u1,max
i > 1,

0, otherwise.
(3)

Proof: In constraint C2, if we substitute x2
i to 1−x1

i based
on constraint C1, we can calculate lo1i . The same holds for lo2i .
Due to space limitation, we refer readers to Appendix A in the
supplementary file [17] for a full proof.

Once lo1i and lo2i are calculated, the rest of workload
fraction (i.e., 1 − lo1i − lo2i by constraint C1) for each task
can be properly allocated to each cluster as long as the cluster
capacity constraints (C3 and C4) meet. We let y1i and y2i denote
the workload fractions excluding lo1i and lo2i (i.e., x1

i = y1i+lo1i
and x2

i = y2i + lo2i), respectively. Then, the constraints C1–C5
for guaranteeing feasibility can be reduced as

C1: ∀τi ∈ τ, y1
i + y2

i = 1− lo1i − lo2i ,

C3:
∑
τi∈τ

y1
i · u1,max

i ≤ m1 −
∑
i

lo1i · u1,max
i ,

C4:
∑
τi∈τ

y2
i · u2,max

i ≤ m2 −
∑
i

lo2i · u2,max
i ,

C5: ∀τi ∈ τ, 0 ≤ y1
i , y

2
i ≤ 1− lo1i − lo2i .

Note that constraint C2 is removed. This is because con-
straint C2 is never violated if x1

i and x2
i are assigned at least

lo1i and lo2i by Lemma 1, respectively.

Consideration on the capacity constraint. Since we re-
duce the problem by allocating lo1i and lo2i amount of fractions
of workload to type-1 and type-2 clusters, respectively, the
remaining step is to determine {y1i } and {y2i } such that C1–C5
is satisfied.

Each task has different execution behavior between clusters.
A task τi consumes the capacity of u1,max

i if fully allocated on

the type-1 cluster, and u2,max
i on the type-2 cluster. We define

cfi as τi’s capacity efficiency ratio of type-1 cluster to type-2
cluster, expressed as

cfi =
u1,max
i

u2,max
i

. (4)

If cfi > 1, executing τi on the type-2 cluster is more capacity-
efficient than the type-1 cluster; on the contrary, if cfi < 1,
the converse holds. Thereby, if there is no capacity limit for
each cluster, allocating all of the remaining workload of τi to
its capacity-efficient cluster consumes the least capacity.

However, each cluster has its capacity limit as shown in
constraints C3 and C4, so it might be impossible to allocate all
τi with cfi > 1 on the type-2 cluster (or all τi with cfi < 1 on
the type-1 cluster). Consequently, we need to rearrange each
task workload allocation in order to satisfy cluster capacity
limits.

The Hetero-Split algorithm. We now design our optimal
per-cluster workload assignment algorithm (Hetero-Split) based
on the understanding of per-task capacity efficiency on each
cluster (see Algorithm 1). Hetero-Split works in three stages:
1) allocating lo1i to type-1 and lo2i to type-2 clusters to meet
deadline constraints, 2) allocating the rest of workload fractions
so as to consumes the minimum capacity assuming infinite
capacity of both clusters, and 3) rearranging the workload

122122122

m1 = 3, m2 = 2 τ1 τ2 τ3 τ4 τ5 τ6 τ7
(u1,max

i , u2,max
i) (1.0, 0.3) (0.9, 0.3) (1.4, 0.6) (1.8, 0.9) (1.2, 0.8) (0.8, 0.9) (0.4, 0.7)

cfi 3.3 3.0 2.3 2.0 1.5 0.9 0.6

u1
i 0 0.3 0.7 0.2 0.6 0.8 0.4

u2
i 0.3 0.2 0.3 0.8 0.4 0 0

TABLE I. TASK SET EXAMPLE

Algorithm 1 Optimal-Workload-Assignment (Hetero-Split)
1: stage 1:
2: if ∃τi : u1,max

i > 1 and u2,max
i > 1 then

3: return not feasible
4: end if
5: Allocate {lo1i }, {lo2i } according to Lemma 1
6: if

∑
i lo

1
i · u1,max

i > m1 ∨ ∑
i lo

2
i · u2,max

i > m2 then
7: return not feasible
8: end if
9: stage 2:

10: Γ1 ← {τi|cfi < 1}
11: Γ2 ← {τi|cfi ≥ 1}
12: Allocate y1

i ← 1− lo1i − lo2i , y2
i ← 0 for all tasks in Γ1

13: Allocate y1
i ← 0, y2

i ← 1− lo1i − lo2i for all tasks in Γ2

14: stage 3:
15: if Both C3 and C4 are satisfied then
16: return {x1

i |x1
i = y1

i + lo1i }, {x2
i |x2

i = y2
i + lo2i }

17: else if Both C3 and C4 are not satisfied then
18: return not feasible
19: else if Only C3 is satisfied then
20: repeat
21: find τk with the closest cfk to 1 in Γ2

22: if
∑

i y
2
i · u2,max

i − y2
k · u2,max

k > m2 −∑
i lo

2
i · u2,max

i
then

23: y1
k ← 1− lo1k − lo2k

24: y2
k ← 0

25: Γ2 ← Γ2 \ {τk}
26: else
27: y1

k ←
∑

i y2
i ·u2,max

i −(m2−
∑

i lo2i ·u2,max
i)

u
2,max
k

28: y2
k ← 1− lo1k − lo2k − y1

k

29: end if
30: if C3 is violated then
31: return not feasible
32: end if
33: until C4 is satisfied
34: else if Only C4 is satisfied then
35: Do the corresponding process to lines 20–33.
36: end if
37: return {x1

i |x1
i = y1

i + lo1i }, {x2
i |x2

i = y2
i + lo2i }

fractions excluding lo1i and lo2i to satisfy cluster capacity
constraints.

In stage 1), if there exists a task τi such that u1,max
i > 1 and

u2,max
i > 1, there is no feasible workload allocation, meaning

that the task set is not feasible (lines 2–4). We calculate the
minimum workload fractions (lo1i , lo

2
i) that should be allocated

to type-1 and type-2 clusters according to Lemma 1 and
allocate them on each cluster (line 5). After that, if no capacity
remaining for accommodating the rest of workload for each
cluster, there is no feasible workload allocation (lines 6–7).

In stage 2), Algorithm 1 partitions a task set into two groups
according to capacity efficiency on a cluster. Let Γ1 and Γ2

denote a collection of tasks that are more capacity-efficient
when executing on the type-1 and type-2 clusters, respectively
(lines 10–11). Then, we allocate the rest of workload fractions
(except lo1i , lo

2
i) of all tasks in Γ1 to the type-1 cluster and

the rest of workload fractions of all tasks in Γ2 to the type-2

cluster (lines 12–13).

In stage 3), we check whether the allocation done by stage
2) satisfies cluster capacity constraints C3 and C4. There are
4 cases: i) if both C3 and C4 are satisfied, the allocation done
by stage 2) is an optimal solution satisfying all feasibility
conditions (lines 15–16); ii) if both C3 and C4 are not satisfied,
there is no feasible workload allocation (lines 17–18); iii)
if only C3 is satisfied, it requires to move some workload
fractions allocated on the type-2 cluster to the type-1 cluster
until it satisfies C4 (lines 19–33); and iv) if only C4 is satisfied,
it requires to move some workload fractions allocated on the
type-1 cluster to the type-2 cluster until it satisfies C3 (lines
34–36). In the process of rearranging workload fractions for
cases iii) and iv), if no available type-1 cluster capacity to
accommodate more remaining workload fractions, there is no
feasible workload allocation (lines 30–32). The key issue in
rearranging workload fractions is to choose some tasks whose
workload fractions will be re-allocated. When some workload
fractions are moved from the capacity-efficient cluster to the
other one, capacity consumption is supposed to increase. Thus,
we need to move the workload fractions in a way that the
amount of increased capacity consumption arising from work-
load migration is minimized. We show that choosing tasks in
the order of the closest cfi to 1 not only minimizes the amount
of increased capacity consumption, but also is beneficial for
feasibility in Theorem 1.

Example 3.1: Let us consider a set of seven tasks and a
two-type heterogeneous multicore platform comprising three
cores of type-1 and two cores of type-2 (i.e., m1 = 3, m2 = 2).
Each task is characterized by (u1,max

i , u2,max
i) and its capacity

efficiency ratio cfi as shown in Table I. According to the
value of cfi, we have Γ1 = {τ6, τ7}, Γ2 = {τ1, τ2, τ3, τ4, τ5}.
After stage 2) of Algorithm 1, C4 is not satisfied, while C3 is
satisfied. Then, at stage 3), the algorithm reallocates workload
fractions in Γ2 by moving from the type-2 cluster to the type-1
cluster in an increasing order of cfk (i.e., the order of τ5, τ4,
τ3, and τ2) until the total utilization on the type-2 cluster is
equal to the capacity of the type-2 cluster (m2). Since τ5, τ4
and τ3 have lo25 = 1/2, lo24 = 8/9, and lo23 = 1/2, the rest of
workload except lo2i will be moved to the type-1 cluster, that is
y15 = 1/2, y14 = 1/9, and y13 = 1/2. After that, the algorithm
leaves some of workload of τ2 such that the entire capacity of
the type-2 cluster (m2) is used and moves the rest of workload
to the type-1 cluster, that is y12 = 1/3 and y22 = 2/3. The final
results ({u1

i }, {u2
i }) is shown in Table I.

We now prove that Hetero-Split achieves feasibility-
optimality.

Theorem 1: For a given task set τ running on a two-type
heterogeneous multicore platform, Hetero-Split presented in
Algorithm 1 always find {x1

i } and {x2
i } satisfying all feasibility

requirements if such a solution exists.

Proof: We will show that if Algorithm 1 finds a solution,
the solution satisfies all feasibility conditions, and otherwise,
there is no feasible workload allocation.

123123123

In stage 1), according to Lemma 1, constraint C2 is never
violated if x1

i and x2
i are assigned at least lo1i and lo2i . After

stage 1), Algorithm 1 allocates the rest of workload fractions
(except lo1i and lo2i) to the remaining capacity of type-1 and
type-2 clusters. Then, there are 4 cases: i) both C3 and C4
are satisfied; ii) both C3 and C4 are not satisfied; iii) only C3
is satisfied; iv) only C4 is satisfied. We prove the feasibility-
optimality for each case of i) – iv). For any variable X , we
denote by ΔX the amount of the variation of X through
the remaining of this proof. We consider the following task
allocation process A:

A1. allocating workload of all tasks to the type-2 cluster
A2. moving tasks in the order of the smallest cfi from the
type-2 cluster to the type-1 cluster until

∑
i u

2
i =W2.

We prove that (a) process A minimizes
∑

i u
1
i when the value

of
∑

i u
2
i is fixed as W2 and (b) stage 3) of Algorithm 1 satisfies

the feasibility-optimality for each case of i) – iv).

Proof of (a): we denote by ΔU2 =
∑

iΔu2
i the amounts of

workload moved from the type-2 cluster to the type-1 cluster,
where Δu2

i is each amount of workload of τi in ΔU2. If we
move ΔU2 to the type-1 cluster during process A2, the change
amount of the workload on the type-1 cluster (denoted as ΔU1)
is calculated as

ΔU1 =
∑
i

Δu1
i =

∑
i

u1,max
i ·Δy1

i

=
∑
i

u1,max
i · (−Δy2i) =

∑
i

u1,max
i · (− Δu2

i

u2,max
i

)

=
∑
i

−Δu2
i · u

1,max
i

u2,max
i

= −
∑
i

Δu2
i · cfi. (5)

For the same amount of ΔU2 < 0, in order to minimize
ΔU1, we should move tasks in the order of the smallest cfi
from the type-2 cluster to the type-1 cluster. Therefore, (a) is
true.

Proof of (b):
In case i), all feasibility conditions are already satisfied.

In case ii), by (a), moving tasks in the order of the smallest
cfi from the type-2 cluster to the type-1 cluster minimizes U1

but ΔU1 > 0 (∵ Δu2
i < 0 → Δu1

i > 0). Therefore, there is
no way to decrease U2 and U1 at the same time (i.e., τ is not
feasible in case ii)).

In case iii), the closest cfi to 1 in the type-2 cluster corresponds
to the smallest cfi in the cluster since τi ∈ Γ2. By (a), moving
tasks in the order of the closest cfi to 1 in Γ2 to the type-
1 cluster minimizes U1. Therefore, if C3 is violated in the
process of A2 where W2 = m2, τ is not feasible.

In case iv), Algorithm 1 satisfies the feasibility-optimality
based on the same reasoning shown in case iii).

Therefore, Algorithm 1 satisfies feasibility-optimality.

C. Properties of Hetero-Split

Hetero-Split guarantees the following two key properties.

Property 1: Among tasks that are fractionally assigned to
both type-1 and type-2 clusters (i.e., 0 < x1

i , x
2
i < 1), there

exists at most one task that has u1
i + u2

i < 1. The other tasks
have u1

i + u2
i = 1.

Proof: In Algorithm 1, there are 4 cases: i) both C3 and
C4 are satisfied; ii) both C3 and C4 are not satisfied; iii) only
C3 is satisfied; iv) only C4 is satisfied.

In case i), all tasks in Γ1 are entirely assigned to the type-1
cluster (i.e., x1

i = 1), and all tasks in Γ2 are entirely assigned
to the type-2 cluster (i.e., x2

i = 1). Therefore, there is no task
that are fractionally assigned to both clusters.

In case ii), the task set is not feasible.

In case iii), Algorithm 1 iteratively finds τk with the closest
cfk to 1 in Γ2 and moves some workload of τk from the type-
2 to the type-1 cluster (lines 20–33). In each iteration, there
exists two situations: the one (denoted by S1) where C4 is not
satisfied even if all of τk’s workload except lo2k are moved to
the type-1 cluster (line 22); the other (denoted by S2) where
C4 is satisfied if some of τk’s workload except lo2k are moved
to the type-1 cluster (line 26). Since the iteration ends when C4
is satisfied, all tasks selected during the iteration except the last
selected one belong to S1. In S1, all of τk’s workload except
lo2k are moved to the type-1 cluster (lines 23–24). If lo2k = 0
then τk is entirely assigned to the type-1 cluster (i.e., x1

k =
1). Otherwise, τk is fractionally assigned to both clusters with
u1
k+u2

k = 1, because if x2
k = lo2k and x1

k = 1− lo2k then u1
k+

u2
k = 1 by Lemma 1. While assigning the last selected task,

the algorithm assigns as much fraction of the task as possible
to type-2 (i.e., the entire remaining capacity of type-1 cores is
used), and the remaining fraction is assigned to type-1 cores.
In this case, the task may have u1

k+u2
k < 1, because x2

k > lo2k.
We note that the tasks that are not selected during iteration in
Γ2 are entirely assigned to the type-2 cluster. Therefore, the
last selected task may have u1

k + u2
k < 1, and the other tasks

that are fractionally assigned to both clusters have u1
k+u2

k = 1.

In case iv), Property 1 is true based on the same reasoning
shown in case iii).

We note that a task τi has u1
i + u2

i = 1 if and only if a
dual property holds for τi.

Property 2: The number of tasks that are fractionally as-
signed to both type-1 and type-2 clusters is at most m1+m2.

Proof: We prove this property by contradiction. Suppose
that there are m1+m2+1 tasks that are fractionally assigned
to both clusters. Then, by Property 1, at least m1 +m2 tasks
have u1

i + u2
i = 1. The sum of utilization of those tasks on

both clusters is m1+m2. Then, there is no capacity remaining
for the other task. Therefore, the task set is not feasible.

These two properties play a key role in developing the
Hetero-Wrap scheduling algorithm and deriving the bound on
the number of inter-cluster migrations presented in Section IV.

Complexity. Recall that we denote by n the number of
tasks in a task set. In stages 1) and 2), calculating lo1i , lo2i
and determining Γ1, Γ2 require O(n). In stage 3), sorting a
task set requires O(n log n). Therefore, the time-complexity
of Algorithm 1 is at most O(n log n).

IV. OPTIMAL SCHEDULE GENERATION

In the previous section, we discussed how to determine
the fractions xk

i of workload Ci of each task τi to execute

124124124

exclusively on the type-k cluster (k = 1, 2). In this section, we
study how to schedule those workload fractions xk

i ·Ci on the
type-k cluster, respectively, under the NPE restriction — no
single task τi executes on two clusters at the same time. This
may allow a perspective that considers the scheduling of τ on a
two-type heterogeneous platform π as a collection of identical
multicore scheduling of workload fractions (xk

i · Ci) on πk

under the NPE restriction. Such a perspective makes it easier to
develop solutions efficiently, since it allows to build upon and
elaborate a body of successful results on identical multicore
scheduling while mostly focusing on how to handle the NPE
restriction effectively. As a first attempt to explore such a
perspective, we extend scheduling guidelines and algorithms
for optimal identical multicore scheduling toward two-type
heterogeneous scheduling. Then, as a result, we are able to give
the first upper-bound on the number of inter-cluster migration
under heterogeneous scheduling, extending the technique to
bound the number of (intra-cluster) migration under identical
scheduling.

A. The Hetero-Fair Guidelines

In this section, we aim to derive simple guidelines to design
optimal schedulers for implicit-deadline periodic tasks running
on a two-type heterogeneous multicore platform. To this end,
we discuss how to extend the DP-Fair guidelines [18] that are
designed for optimal identical multicore scheduling.

DP-Fair relies on the requirement of proportionate fairness
that each task should execute proportionally to its utilization.
DP-Fair shows that enforcing the fairness requirement only
at job deadlines suffices to achieve optimal scheduling. It
partitions time into slices based on deadlines of all jobs invoked
by a task set (referred to as deadline partitioning). To ensure
the fairness requirement at every deadline, each job is assigned
its execution requirement proportional to its utilization within
each time slice. We note that if every job can be executed
constantly at a rate equal to its utilization (referred to as a
fluid scheduling model), the fairness requirement can be easily
satisfied for all jobs. However, it is impossible to implement
such a fluid schedule on practical platforms since one core
cannot execute more than one task simultaneously. Thereby,
DP-Fair suggests three scheduling rules for designing practical
schedulers to guarantee the optimality. Specifically, Rules 1
and 2 examine each individual task τi in order to determine
whether τi must and must not execute at a given time instant,
respectively, based on the concept of local laxity. Rule 3
compares the total amount of workloads remaining with the
total available resource capacity so as to determine at least
how many tasks must execute.

Now, we discuss how to extend the DP-Fair guidelines
towards two-type heterogeneous multicore scheduling, when
the workload of each task τi is split into two clusters at
the ratio of x1

i :x2
i . There are two key issues to consider: 1)

each workload portion (xk
i · Ci) should execute only on the

type-k cluster, and 2) each cluster has its own processing
capacity to execute the total amount of workloads assigned
to it. Without proper scheduling decisions, it may end up with
some undesirable situations, including (a) ones where a single
task cannot complete a remaining workload at some point
unless it executes on two clusters at the same time and (b)
the others where the total amount of workload remaining on a
cluster is larger than the total available capacity of the cluster.
To resolve such issues, we extend DP-Fair in the following way.

We extend Rules 1 and 2 to address the former (a) situations
by introducing the concept of task-level local laxity and expand
Rule 3 to deal with the latter (b) situations with the notion of
cluster-level local laxity.

We here present our Hetero-Fair guidelines building upon
DP-Fair. After deadline partitioning, the k-th time slice (de-
noted by σk) is [tk−1, tk) of length lk = tk− tk−1. Within the
time slice σk, each task τi is then assigned its local execution
requirement u1

i ·lk and u2
i ·lk on both type-1 and type-2 clusters,

respectively. As scheduling decisions are made over time, the
local remaining execution of task τi at time t in σk on type-1
and type-2 clusters is denoted by R1

i (t) and R2
i (t), respectively.

At each time t, a task is said to be a migrating task when
its remaining execution is on both type-1 and type-2 clusters
(i.e., R1

i (t) > 0 and R2
i (t) > 0), and a task is said to be

an partitioned task when its remaining execution is solely on
either type-1 or type-2 cluster (i.e., R1

i (t) = 0 or R2
i (t) = 0). A

migrating task at time t can become a partitioned one whenever
no execution remains either type-1 or type-2 cluster after t.

We define the task-level local laxity of τi at time t (denoted
by Li(t)) as the difference between the remaining time in a
time slice σk and the sum of remaining execution on each
cluster before the time slice, and it is presented as

Li(t) = (tk − t)− (R1
i (t) +R2

i (t)). (6)

At the beginning of a time slice σk, R1
i (tk−1) is u1

i · lk, and
R2

i (tk−1) is u2
i · lk. Once a job of a task has zero task-level

local laxity, it should always be executed on either the type-1
or type-2 cluster until the end of time slice; otherwise, the job
will miss its deadline.

We define the cluster-level local laxity at time t, denoted
by L1(t) (L2(t)), as the difference between the total available
capacity of the type-1 (type-2) cluster from t to at the end of
a time slice and the total remaining workloads on the type-1
(type-2) cluster, expressed as

L1(t) = m1 · (tk − t)−
∑
i

R1
i (t), (7)

L2(t) = m2 · (tk − t)−
∑
i

R2
i (t). (8)

If cluster-level local laxity of the type-1 cluster at t (i.e., L1(t))
reaches zero, all the type-1 cores should execute jobs until the
end of the time slice; otherwise, at least one job will miss its
deadline due to insufficient supply. The same holds for cluster-
level local laxity of the type-2 cluster.

With the notions of task-level and cluster-level local laxi-
ties, we present our Hetero-Fair scheduling rules.

Definition 4: (Hetero-Fair scheduling for time slices) A
scheduling algorithm belongs to Hetero-Fair if it schedules jobs
within a time slice σk according to the following rules:

Rule 1: Always run all the jobs with zero task-level local
laxity (i.e., Li(t) = 0);

Rule 2: Never run a job with no workload remaining on
both clusters in the slice (i.e., R1

i (t) = 0 and
R2

i (t) = 0);
Rule 3: Always allocate m1 jobs on the type-1 cores

at time t if its cluster-level laxity is zero (i.e.,
L1(t) = 0), and allocate m2 jobs on the type-2

125125125

cores at time t if its cluster-level laxity is zero
(i.e., L2(t) = 0);

We now prove that any Hetero-Fair scheduler is optimal on
two-type heterogeneous multicore platforms.

Theorem 2: If a periodic implicit-deadline task set τ is fea-
sible, any Hetero-Fair scheduling algorithm always schedules
the task set without any deadline miss.

Proof: We prove this theorem by contradiction. Suppose
a job of task τi misses its deadline when it is scheduled by
Hetero-Fair. Then, there must exist the time slice σk and the
earliest time t′ in σk such that the job of τi has task-level local
laxity of -1 at t′ (i.e., Li(t

′) < 0, tk−1 ≤ t′ < tk). The job
became zero laxity at t′− 1, so it should be executed at t′− 1
according to Rule 1. However, it fails to execute at t′ − 1. We
denote by τ ′ = {τj |Lj(t

′ − 1) = 0} the task set of which a
job has zero laxity at t′ − 1.

We consider two cases: (A) |τ ′| > m1 + m2, (B) |τ ′| ≤
m1 +m2.

Case A: If |τ ′| > m1 + m2, then the sum of remaining
execution on both the type-1 and type-2 clusters in [t′− 1, tk)
is larger than (m1 +m2) · (tk − (t′ − 1)) since the remaining
execution of a zero laxity job at t′−1 is tk−(t′−1). Moreover,
all cores in the type-1 and type-2 clusters should be busy in
interval [tk−1, t

′−1). If there is an idle core at t′′ in [tk−1, t
′−

1), the only reason that a job of τj ∈ τ ′ cannot be executed
on the idle core is that the job is already executed on the other
core at t′′. It means |τ ′| ≤ m1 +m2, and this contradicts the
assumption that |τ ′| > m1 + m2. Therefore, the sum of the
total workload allocated on each cluster in [tk−1, t

′ − 1) and
[t′ − 1, tk) (i.e. [tk−1, tk)) is larger than the sum of the total
capacity of each cluster in [tk−1, tk), meaning that at least
either C3 or C4 are violated. This contradicts the assumption
that τ is feasible.

Case B: We consider the case that |τ ′| ≤ m1 + m2. The
deadline miss job of τi was not executed at t′− 1 even though
the job has zero laxity, which implies that there is no job to
execute except zero laxity jobs. Moreover, by assumption, the
number of zero laxity jobs executed at t′ − 1 should be less
than m1+m2. Therefore, if |τ ′| ≤ m1+m2, there must exist
at least one idle core at t′ − 1.

(Case B-1): In the case that task τi is a migrating task at
t′ − 1 (i.e., R1

i (t
′ − 1) > 0 and R2

i (t
′ − 1) > 0), a job of τi

should be executed on the idle core at t′ − 1. This contradicts
that the job of τi has task-level local laxity of -1 at t′.

(Case B-2): In the case that task τi is a partitioned task at
t′ − 1 (i.e., either R1

i (t
′ − 1) = 0 or R2

i (t
′ − 1) = 0). Without

loss of generality, we assume R2
i (t
′ − 1) = 0.

If the type-1 cluster has an idle core at t′−1, a job of task
τi should be executed at t′ − 1 by Rule 1. It contradicts that
the job of τi has task-level local laxity of -1 at t′.

If the type-1 cluster has no idle core at t′−1, there must be
more than m1 partitioned zero laxity jobs on the type-1 cluster
at t′ − 1 (If not, a job of τi should be executed at t′ − 1 by
Rule 1). We define τ ′′ = {τj |Lj(t

′−1) = 0∧R2
j (t
′−1) = 0}.

The sum of the remaining execution of all jobs of τj ∈ τ ′′ in
[t′ − 1, tk) should be larger than m1 · (tk − (t′ − 1)). Since
L1(t′−1) < 0, there must exist the latest time t′′ ∈ [tk−1, t

′−
1) such that L1(t′′) = 0 (if not, ∀t ∈ [tk−1, tk), L

1(t) < 0→ τ

(a) A naive approach shows an incor-
rect schedule

(b) Hetero-Wrap shows a feasible
schedule

Fig. 1. Schedules of a task set described in Table II in time interval [0,10).

violates C3). Then, there must be at least one idle core at t′′
because ∀t > t′′, L1(t) < 0. The only reason that a job of
τj ∈ τ ′′ cannot be executed on the idle core is that the job is
already executed on the other core at t′′. If such job of τj is a
migrating one at t′′, it must be executed on the type-1 cluster
by Rule 3. If such job of τj is a partitioned one at t′′, it is
executed on the type-1 cluster. Thus, all jobs of tasks in τ ′′
are executed on the type-1 cluster, which implies |τ ′′| ≤ m1,
and this contradicts |τ ′′| > m1. This also holds for the case
that R1

i (t
′ − 1) = 0.

Therefore, for all cases, we show that if Hetero-Fair fails
to schedule a task set, the task set should be not feasible.

B. The Hetero-Wrap Algorithm

Now, we develop an algorithm that implements the Hetero-
Fair guidelines, called Hetero-Wrap. Building upon a per-
cluster task workload assignment obtained by Hetero-Split,
Hetero-Wrap exploits McNaughton’s wrap-around rule [15]
which is one of the simplest optimal scheduling algorithms for
identical multicore platforms. The McNaughton’s wrap-around
rule constructs a schedule by sequentially allocating tasks to
cores; this way ensures that each job is executed on at most
one core at any time. If we apply McNaughton’s wrap-around
rule to each cluster separately, we can prevent a single job
from parallel execution within a cluster. The main challenge is
then how to avoid parallel execution of a job on both clusters
(i.e., the NPE restriction). The following example shows that
if we apply McNaughton’s wrap-around rule to both clusters
independently, we cannot necessarily avoid parallel execution
of a single job on two clusters.

τ1 τ2 τ3 τ4 τ5 τ6 τ7
u1
i 0 0.3 0.7 0.2 0.6 0.8 0.4

u2
i 0.3 0.2 0.3 0.8 0.4 0 0

TABLE II. TASK SET EXAMPLE

Example 4.1: Let us consider a set of seven tasks and a
two-type heterogeneous multicore platform comprising three
cores of type-1 and two cores of type-2. The utilization of a
task on each cluster is shown in Table II, which is assigned by
Hetero-Split. Fig. 1(a) shows the schedule in a time slice [0, 10),
when we apply McNaughton’s wrap-around rule to each cluster
in an alphabetical order of tasks. For example, tasks to be
executed in the type-1 cluster (i.e., {τ2, τ3, τ4, τ5, τ6, τ7}) are

126126126

scheduled on core 1 of the type-1 cluster from time 0 to 10;
once core 1 becomes full, the tasks are scheduled on core 2
and then core 3. Tasks to be executed in the type-2 cluster
(i.e., {τ1, τ2, τ3, τ4, τ5}) are scheduled in the same way. Then,
the resulting schedule is incorrect in that there are some jobs
that execute in both clusters at the same time. For example, τ3
executes in [5, 8) on both core 1 of type-1 cluster and core 1
of type-2 cluster.

To avoid the situation in the above example, Hetero-Wrap
categorizes tasks into four subsets as follows: (i) a set Ma of
migrating tasks τi with u1

i +u2
i = 1, (ii) a set Mb of migrating

tasks τk with u1
k + u2

k < 1, (iii) a set P1 of partitioned tasks
on the type-1 cluster, and (iv) a set P2 of partitioned tasks on
the type-2 cluster.

For the same situation as Example 4.1, suppose that we
apply McNaughton’s wrap-around rule to the type-1 cluster
from time 0 to 10, and the type-2 cluster from time 10 to 0
(the reverse order). To decide the order of tasks to be scheduled
without parallel execution on two clusters, we utilize the
following properties. First, each task τi in Ma has u1

i +u2
i = 1.

Then, τi can execute on the type-1 cluster, exactly when it is
idle on the type-2 cluster, and vice versa, which we call a dual
property. Therefore, we can schedule a task in Ma without
parallel execution, only when the current starting point2 of the
type-1 cluster is the same as that of the type-2 cluster. Also,
after scheduling a task in Ma on both clusters, the new current
starting point of the type-1 cluster is also the same as that
of the type-2 cluster. For example, after we schedule τ3 on
both clusters, the current starting point for both clusters is 7,
as shown in Fig. 1(b). Then, we can successfully schedule
τ4 ∈Ma next; the new starting points for both cluster are 9.

This means that we should schedule tasks in Ma consecu-
tively. Otherwise, before we schedule a task in Ma, we should
find some tasks that make the current starting points of both
clusters equal, which is difficult or impossible depending on
utilization of unscheduled tasks. Then, the remaining issue is
to determine the order of tasks in Mb and P1 (or P2). Since
each task in Mb does not satisfy the dual property, we always
check whether scheduling a task in Mb yields parallel execution
on two clusters or not. If so, we need to some tasks to be
scheduled prior to the task in Mb, which is also difficult or
impossible. However, a task in Mb does not result in parallel
execution on two clusters, as long as the task is followed by
scheduling all tasks in Ma. This is because, after scheduling
all tasks in Ma, the next starting point of the type-1 cluster
is the same as that of the type-2 cluster. Therefore, we can
easily schedule a single task in Mb; when it comes to multiple
tasks in Mb, however, it is non-trivial to schedule those tasks
with no parallel execution. To this end, we already designed
Hetero-Split so as to yield at most one task in Mb by Property
1. Once we finish scheduling all tasks in Ma and a single task
in Mb, we can schedule remaining tasks in P1 and P2 with any
order. This is because, the tasks are irrelevant to cluster-level
parallel execution.

Motivated by this, Hetero-Wrap constructs the offline sched-
ules for the unit-time interval [0, 1) for type-1 and type-2
clusters as follows. During the time interval, each task demands
u1
i and u2

i time-unit executions on type-1 and type-2 clusters,
respectively. Hetero-Wrap basically employs McNaughton’s
wrap-around rule [15] as follows:

2The current starting point is the time instant to start packing the current
task when applying McNaughton’s wrap-around rule.

• For type-1 cluster, we schedule tasks in the order of
Ma, Mb, and then P1. It schedules the i-th task on
the first non-empty core, packing tasks from left to
right. Suppose (i-1)-th task was scheduled on core k
up to time instant t (0 ≤ t ≤ 1). Then, up to (1 − t)
time units of the i-th task are scheduled on core k and
the remaining time units are scheduled on core k + 1
starting from time 0 (see Example 4.2).

• For type-2 cluster, we schedule tasks in the order
of Ma, Mb, and then P2

3. It constructs the offline
schedule in the same manner as in type-1 cluster
scheduling, except only that the packing direction for
each core is the other way around (i.e., from right to
left).

Example 4.2: Fig. 1(b) depicts how the Hetero-Wrap al-
gorithm generates a schedule in a time slice. The task set
described in Table II can be partitioned as follows: Ma =
{τ3, τ4, τ5}, Mb = {τ2}, P1 = {τ6, τ7}, and P2 = {τ1}.
Fig. 1(b) shows the actual schedule in a time slice of length
10. The migrating tasks in Ma (i.e., τ3, τ4, τ5) are always
executed on either a type-1 or type-2 core at any time. For
example, τ3 is executed on core 1 of type-1 in [0, 7) and on
core 2 of type-2 in [7, 10). We note that the tasks split into two
(i.e., τ5, τ6, and τ4) will be preempted and executed on two
different cores in the same cluster. If the split task is migrating
one (i.e., τ5 and τ4), inter-cluster migration will occur twice.
For example, τ5 will be executed first on core 2 of type-1 in
[0, 5), then migrated from type-1 to type-2, executed on core 1
of type-2 in [5, 9), again migrated from type-2 to type-1, and
finished core 1 of type-1. The other migrating tasks which are
not split (i.e., τ3, τ2) will migrate between clusters only once.

Again, we would like to emphasize that Hetero-Wrap
works because of the following reasons. First, Hetero-Wrap
itself determines a proper order of tasks to be scheduled, by
exploiting properties of task groups, e.g., the dual property for
Ma. Second, Hetero-Split assigns proper workload such that
Hetero-Wrap can generate schedule easily, e.g., the number of
tasks in Mb is at most one.

We will show that our Hetero-Wrap algorithm satisfies all
the Hetero-Fair guidelines in the following theorem. Specifi-
cally, we prove that Hetero-Wrap can provide a schedule such
that each task executes on at most one core at each time instant,
while all tasks finish all execution requirements on both type-1
and type-2 clusters at the end of each time slice.

Theorem 3: For a given feasible per-cluster workload as-
signment satisfying Property 1, Hetero-Wrap schedules all jobs
in a task set without any deadline miss of a job.

Proof: We prove that all tasks can be correctly scheduled
on each cluster in an interval of length 1. Then, it is clear that
this is also true for any time slice. To this end, we show that
each task is executed at most one core (regardless of core type)
at each time instant.

Within a cluster, it is clear that each task is executed at
most one core at each time instant, because Hetero-Wrap uses
McNaughton’s wrap-around rule for each cluster, separately.
Since u1

i ≤ 1 and u2
i ≤ 1, ∀τi, each task can be split onto at

most two cores within a cluster and will not be executed on
those cores at the same time.

3The task ordering in Ma is consistent with the type-1 cluster case.

127127127

Now, we prove that each migrating task will not be executed
on two cores in different clusters at the same time. Without loss
of generality, we assume that migrating tasks in Ma are indexed
according to the order where McNaughton’s wrap-around rule
is used. We denote by sji the time instant to start allocating τi
and f j

i the time instant to fish allocating τi on a type-j cluster

when applying McNaughton’s wrap-around rule (0 ≤ sji , f
j
i ≤

1). For each migrating task in Ma, we show that s1i = s2i and
f1
i = f2

i by mathematical induction.

- Base step: for i = 1,

s11 = 0 mod 1 , s21 = 1 mod 1

f1
1 = u1

1 , f2
1 = 1− u2

i

Then, s11 = s21 and f1
1 = f2

1 , since u1
1 + u2

1 = 1.

- Inductive step: for some i ≥ 1, suppose s1i = s2i and
f1
i = f2

i . Then, for i+ 1, we have

s1i+1 = f1
i , s2i+1 = f2

i

f1
i+1 = (s1i+1 + u1

i+1) mod 1 , f2
i+1 = (s2i+1 − u2

i+1) mod 1.

According to distributive law, we have

f1
i+1 = (s1i+1 + u1

i+1) mod 1 = (f1
i + u1

i+1) mod 1

= f1
i mod 1 + u1

i+1 mod 1,

f2
i+1 = (s2i+1 − u2

i+1) mod 1 = (f2
i − u2

i+1) mod 1

= f2
i mod 1− u2

i+1 mod 1.

Thus, s1i+1 = s2i+1 and f1
i+1 = f2

i+1, since (u1
i+1 +

u2
i+1) mod 1 = (f1

i − f2
i) mod 1.

Since, for each migrating task in Ma, s1i = s2i and f1
i = f2

i
and McNaughton’s wrap-around rule is applied to both clusters
from opposite directions to each other, all migrating tasks
in Ma always run on either type-1 or type-2 core without
overlapping each task’s running times on two clusters. After
allocating tasks in Ma, at most one migrating task is left
according to Property 1, which is in Mb. Then, its running
times on two clusters will not overlap, because s1i = s2i and
u1
i + u2

i < 1.

Migration bounds. We now calculate the maximum num-
ber of intra-cluster and inter-cluster migrations. To reduce task
migrations, we use the mirroring technique [19] by reversing
the order of tasks on each core in odd-numbered slices. Then,
the tasks that execute last on each core at an even-numbered
time slice will execute first at the next time slice without any
migration. Therefore, task migration only occurs in the middle
of a time slice, not between time slices. Looking at the example
in Fig. 1(b), τ5 runs for the first 5 of the time slice on core 2
of type-1, for the second 4 on core 1 of type-2, and for the last
1 on core 1 of type-1. If we reverse the ordering within each
core for the next slice, then τ5 will start on core 1 of type-1
for 1, execute on core 1 of type-2 for 4 and finish on core 2
of type-1 for 5.

According to Hetero-Wrap, there exist at most m1 − 1
and m2 − 1 tasks that are split into two when constructing
a schedule for the type-1 and type-2 clusters, respectively.
Those tasks will be preempted and executed on two different
cores in the same cluster. In addition, inter-cluster migration
is inevitable for all migrating tasks. According to Property 2,
there are at most m1 +m2 migrating tasks. If any migrating

task is split when constructing a schedule, the task will migrate
between clusters twice: once from an initial cluster where
they first run to the other one and again for returning to the
initial cluster. Otherwise, migrating tasks will migrate between
clusters only once. Then, we now provide upper-bounds on
the intra-cluster and inter-cluster migrations in the following
lemma.

Lemma 2: The Hetero-Wrap algorithm will produce at
most m1−1 and m2−1 intra-cluster migrations on the type-1
and type-2 clusters, respectively, and 2 · (m1 +m2)− 1 inter-
cluster migrations per slice.

Proof: With the mirroring technique, task migration only
occurs in the middle of a time slice, never at the end. For
each cluster, only split task will migrate once between two
cores within the same cluster. There are at most m1 − 1 and
m2− 1 split tasks for type-1 and type-2 clusters. Therefore, at
most m1 − 1 and m2 − 1 intra-cluster migrations will occur
on the type-1 and type-2 clusters, respectively, per slice. All
migrating tasks should migrate once between clusters. We note
that the migrating task that is split into two when constructing a
schedule will migrate once again between clusters. According
to Property 2, there are at most m1 + m2 migrating tasks,
and, in the worst case, all migrating tasks except the first task
in the task ordering can be split into two. Therefore, at most
2 · (m1+m2)− 1 inter-cluster migrations will occur per slice.

Time complexity. Partitioning a task set into Ma, Mb,
P1, and P2 requires O(n), and applying McNaughton’s wrap-
around rule to each cluster requires O(n). Therefore, the time-
complexity of Hetero-Wrap is O(n).

V. EVALUATION

In this section, we evaluate the performance of the proposed
fully-migrative scheduling framework in comparison with the
existing intra-migrative and non-migrative approaches for two-
type heterogeneous multicore platforms. We first explain how
to generate task sets for simulation and then present simulation
results to compare their schedulability performance.

Simulation environment. We generate task sets and their
running platforms as follows. We have three input parameters:
a) the number of cores on each cluster (m1, m2), b) the
number of tasks (n), and c) individual task parameters (u1,max

i ,

u2,max
i). The number of cores on each cluster is uniformly

chosen in {2, 3, 4}. The number of tasks is uniformly chosen

in [m1 + m2, 25]. For each task τi, u1,max
i and u2,max

i are
uniformly chosen in [0.1, 2.0]. We note that the maximum
utilization of τi on each cluster can be greater than one.

We generate 80, 000 feasible task sets by using an LP
solver with the exact feasibility test [12]. We define the total
utilization rate (Uτ,π) of a task set on its running platform as
∑

i(u
1
i+u2

i)

m1+m2
. The minimum value of Uτ,π (denoted by Umin

τ,π)
can be obtained by setting the objective function of LP as
minimizing Uτ,π . We generate 10, 000 feasible task sets whose
Umin
τ,π ∈ (p − 0.1, p], where we increase p from 0.3 to 1.0 in

the step of 0.1, resulting in 80, 000 task sets.

Simulation results. For the generated task sets, we per-
form simulations for our fully-migrative scheduling framework
(denoted by OUR). We compare OUR with two state-of-the-
art approaches [8], [11] for intra-migrative and non-migrative

128128128

 0

 2000

 4000

 6000

 8000

 10000

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
h
e

n
u
m

b
er

 o
f

d
ed

ic
at

ed
 s

et
s

Minimum total utilization rate

OUR (fully-migrative)

SA (intra-migrative)

SA-P (non-migrative)

Fig. 2. The number of schedulable task sets by OUR, SA, and SA-P

scheduling, respectively, in terms of how many task sets are
deemed schedulable by their own approaches.

In [8], [11], intra-migrative assignment (called SA) and
non-migrative assignment (called SA-P) algorithms were pro-
posed. If there exists a feasible intra-migrative assignment, SA
(SA-P) finds such an intra-migrative (non-migrative) assign-
ment if cores are 1+ α

2 (1+α) times faster, where 0 < α ≤ 1.
Both SA and SA-P have the complexity of O(n log n).

Fig. 2 plots the number of task sets deemed schedulable by
OUR, SA, and SA-P with different values of Umin

τ,π . Basically,
since OUR achieves optimality, OUR guarantees to find a
feasible solution for all generated task sets, while SA and SA-
P find 17% and 36% less task sets schedulable than OUR does.
The performance gap between OUR and SA/SA-P becomes
larger as Umin

τ,π increases. In particular, when Umin
τ,π is close

to one, the improvements of OUR over SA and SA-P are
72% and 97%, respectively. We can interpret such a gap as
the benefit of using fully-migrative scheduling compared to
intra-migrative and non-migrative scheduling. OUR utilizes
two-type heterogeneous resources more effectively by allowing
task migration between cores of any type. As a result, OUR
outperforms both intra-migrative and non-migrative approaches
while retaining the same time-complexity.

VI. CONCLUSION

We addressed the optimal two-type heterogeneous multi-
core fully-migrative scheduling problem. We proposed Hetero-
Split as a feasibility-optimal per-cluster workload assignment
algorithm and introduced the Hetero-Fair scheduling guidelines
to correctly schedule all tasks without any deadline miss on a
two-type heterogeneous multicore platform. We then presented
the Hetero-Wrap optimal two-type heterogeneous multicore
scheduling algorithm that implements Hetero-Fair by exploiting
McNaughton’s wrap-around rule based on a property (i.e., a
dual property) derived in Hetero-Split. Finally, we provided
the first upper-bounds on the numbers of intra- and inter-cluster
migrations under two-type heterogeneous multicore scheduling,
respectively.

In this paper, we viewed fully-migrative scheduling on a
two-type heterogeneous multicore platform from the perspec-
tive of a collection of identical multicore scheduling for each
cluster while cooperatively handling the NPE restriction. As a

first attempt to explore such a perspective, we extended one of
the simplest optimal scheduling algorithms for identical multi-
core platforms toward two-type heterogeneous scheduling. Re-
cently, new optimal scheduling algorithms, such as Bfair [20],
RUN [21], U-EDF [22], and QPS [23], were proposed for
identical multicore platforms with the aim of reducing the
number of preemptions and migrations. As a future work, we
will extend those advanced scheduling techniques to two-type
heterogeneous scheduling with the additional consideration on
two types of migration showing different costs, aiming at
reducing the overall preemption and migration overheads. In
addition, we only focused on implicit-deadline periodic task
systems. We plan to extend the proposed approach to more
general task systems such as constrained-deadline sporadic task
systems, which is another direction of future work.

ACKNOWLEDGEMENT

This work was supported in part by BSRP (NRF-2010-0006650,

NRF-2012R1A1A1014930, NRF-2014R1A1A1035827), KEIT(2011-

10041313), NCRC (2010-0028680), and IITP (B0101-15-0557)

funded by the Korea Government (MEST/MSIP/MOTIE).

REFERENCES

[1] ARM, “big.little technology: The future of mobile,” 2013. [Online]. Available:
http://www.arm.com/files/pdf/big-LITTLE-Technology-the-Futue-of-Mobile.pdf

[2] S. Baruah, “Task partitioning upon heterogeneous multiprocessor platforms,” in
RTAS, 2004.

[3] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms.
Springer, 2012.

[4] B. Andersson, G. Raravi, and K. Bletsas, “Assigning real-time tasks on heteroge-
neous multiprocessors with two unrelated types of processors,” in RTSS, 2010.

[5] G. Raravi and V. Nelis, “A PTAS for assigning sporadic tasks on two-type
heterogeneous multiprocessors,” in RTSS, 2012.

[6] B. Andersson and G. Raravi, “Provably good task assignment for two-type hetero-
geneous multiprocessors using cutting planes,” ACM Transactions on Embedded
Computing Systems, vol. 13(5), pp. 160:1–160:25, 2014.

[7] S. Baruah, “Partitioning real-time tasks among heterogeneous multiprocessors,” in
Proceedings of the 2004 International Conference on Parallel Processing (ICPP),
2014.

[8] G. Raravi, B. Andersson, K. Bletsas, and V. Nelis, “Task assignment algorithms
for two-type heterogeneous multiprocessors,” in ECRTS, 2012.

[9] G. Raravi and V. Nelis, “Task assignment algorithms for heterogeneous multi-
processors,” ACM Transactions on Embedded Computing Systems, vol. 13(5), pp.
159:1–159:26, 2014.

[10] J. R. Correa, M. Skutella, and J. Verschae, “The power of preemption on unrelated
machines and applications to scheduling orders,” Mathematics of Operations
Research, vol. 37(2), pp. 379–398, 2012.

[11] G. Raravi, B. Andersson, V. Nelis, and K. Bletsas, “Task assignment algorithms
for two-type heterogeneous multiprocessors,” Real-Time Syst, vol. 50, pp. 87–141,
2014.

[12] S. Baruah, “Feasibility analysis of preemptive real-time systems upon heteroge-
neous multiprocessor platforms,” in RTSS, 2004.

[13] ARM, “big.little processing with arm cortex-a15 and cortex-a7,” 2011. [Online].
Available: http://www.arm.com/files/downloads/big LITTLE Final Final.pdf

[14] T. S. Muthukaruppan, A. Pathania, and T. Mitra, “Price theory based power
management for heterogeneous multi-cores,” in ASPLOS, 2014.

[15] R. McNaughton, “Scheduling with deadlines and loss functions,” Management
Science, vol. 6, no. 1, pp. 1–12, 1959.

[16] T. Gonzalez and S. Sahni, “Open shop scheduling to minimize finish time,” Journal
of the Association for Computing Machinery, vol. 23(4), pp. 665–679, 1976.

[17] H. S. Chwa, J. Seo, J. Lee, and I. Shin, “Supplement: Optimal real-time
scheduling on two-type heterogeneous multicore platforms,” 2015. [Online].
Available: http://cps.kaist.ac.kr/CSL15/supplement.pdf

[18] G. Levin, F. Shelby, S. Caitlin, P. Ian, and B. Scott, “DP-Fair: A simple model
for understanding optimal multiprocessor scheduling,” in ECRTS, 2010.

[19] B. Andersson and E. Tovar, “Multiprocessor scheduling with few preemptions,”
in RTCSA, 2006, pp. 322–334.

[20] D. Zhu, X. Qi, D. Mosse, and R. Melhem, “An optimal boundary fair scheduling al-
gorithm for multiprocessor real-time systems,” Journal of Parallel and Distributed
Computing, vol. 7, pp. 1411–1425, 2011.

[21] P. Regnier, G. Lima, E. Massa, G. Levin, and S. Brandt, “RUN: Optimal
multiprocessor real-time scheduling via reduction to uniprocessor,” in RTSS, 2011.

[22] G. Nelissen, V. Berten, V. Nelis, J. Goossens, and D. Milojevic, “U-EDF: An unfair
but optimal multiprocessor scheduling algorithm for sporadic tasks,” in ECRTS,
2012.

[23] E. Massa, G. Lima, P. Regnier, G. Levin, and S. Brandt, “Optimal and adaptive
multiprocessor real-time scheduling: The quasi-partitioning approach,” in ECRTS,
2014.

129129129

