
The Journal of Systems and Software 117 (2016) 1–14

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

GPU-SAM: Leveraging multi-GPU split-and-merge execution for

system-wide real-time support

Wookhyun Han , Hoon Sung Chwa , Hwidong Bae , Hyosu Kim , Insik Shin

∗

School of Computing,KAIST, Daejeon, South Korea

a r t i c l e i n f o

Article history:

Received 13 June 2015

Revised 20 January 2016

Accepted 8 February 2016

Available online 17 February 2016

Keywords:

Real-time systems

Multi-GPU

GPGPU

a b s t r a c t

Multi-GPUs appear as an attractive platform to speed up data-parallel GPGPU computation. The idea

of split-and-merge execution has been introduced to accelerate the parallelism of multiple GPUs even

further. However, it has not been explored before how to exploit such an idea for real-time multi-GPU

systems properly. This paper presents an open-source real-time multi-GPU scheduling framework, called

GPU-SAM , that transparently splits each GPGPU application into smaller computation units and executes

them in parallel across multiple GPUs, aiming to satisfy real-time constraints. Multi-GPU split-and-merge

execution offers the potential for reducing an overall execution time but at the same time brings various

different influences on the schedulability of individual applications. Thereby, we analyze the benefit and

cost of split-and-merge execution on multiple GPUs and derive schedulability analysis capturing seem-

ingly conflicting influences. We also propose a GPU parallelism assignment policy that determines the

multi-GPU mode of each application from the perspective of system-wide schedulability. Our experiment

results show that GPU-SAM is able to improve schedulability in real-time multi-GPU systems by relax-

ing the restriction of launching a kernel on a single GPU only and choosing better multi-GPU execution

modes.

© 2016 Elsevier Inc. All rights reserved.

1

U

c

t

f

(

p

t

2

i

2

s

p

t

m

G

Z

p

H

K

a

f

p

2

2

C

d

g

G

n

s

n

I

i

a

h

0

. Introduction

GPGPU (General-Purpose computation on Graphics Processing

nits) offers an effective computing platform to accelerate a wide

lass of data-parallel computing, including the ones with real-

ime constraints. For instance, GPGPUs have been used to per-

orm various features for automotive systems, including navigation

 Homm et al., 2010), obstacle avoidance (Nordin, 2010), and image

rocessing/filtering for object detection (Nagendra, 2011). In addi-

ion, many interactive augmented/virtual reality systems (Oculus,

012; Sulon, 2014) employ GPGPUs to accelerate image process-

ng (Madsen and Laursen, 2007), real-time stereo (Sizintsev et al.,

010), and ray tracing (Parker et al., 2010) to deliver real-time re-

ponse. When many of such applications are integrated on a single

latform, they may require higher GPU computing power beyond

he capacity of a single GPU. The focus of this paper is to support

ultiple real-time GPGPU applications on multiple GPUs.

Recently, there is a growing interest in exploiting multiple

PUs (Noaje et al., 2010; Stuart et al., 2011; Garcia et al., 2013;

hou and Fürlinger, 2015), since multi-GPU systems provide a
∗ Corresponding author. Tel.: +82423503524.

E-mail address: insik.shin@cs.kaist.ac.kr , insik.shin@gmail.com (I. Shin).

d

k

e

t

e

ttp://dx.doi.org/10.1016/j.jss.2016.02.009

164-1212/© 2016 Elsevier Inc. All rights reserved.
otential for higher performance beyond single-GPU systems.

owever, the prevailing GPGPU programming models, including

hronos. OpenCL (2015) and CUDA (2015) , do not provide a proper

bstraction over multiple GPUs. OpenCL is a standard framework

or parallel programming of heterogeneous platforms. Lately, many

arallel computing platforms including not only GPUs (Du et al.,

012) but also CPUs (Karrenberg and Hack, 2012), DSPs (Li et al.,

012), and FPGAs (Shagrithaya et al., 2013; Czajkowski et al., 2012;

hen and Singh, 2012; Rodriguez-Donate et al., 2015) use OpenCL

ue to direct portability. In OpenCL programming models, pro-

rammers define functions, called kernels , that are executed on

PU in parallel by a number of threads, while each single ker-

el invocation should correspond to a single designated GPU. With

uch a single-GPU-per-kernel restriction, real-time applications may

ot fully utilize multiple GPUs even in the face of deadline misses.

n general, it will impose a great burden on application developers

f they are responsible for addressing the underutilization of avail-

ble multiple GPUs.

To alleviate this problem, several previous studies have intro-

uced the idea of Split-and-Merge (S & M) execution of a single

ernel across multiple GPUs (Luk et al., 2009; Kim et al., 2011; Lee

t al., 2013; Pandit and Govindarajan, 2014). Their proposed sys-

ems automatically partition the workload across multiple GPUs,

xecute the partial workloads in parallel, and merge the partial

http://dx.doi.org/10.1016/j.jss.2016.02.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2016.02.009&domain=pdf
mailto:insik.shin@cs.kaist.ac.kr
mailto:insik.shin@gmail.com
http://dx.doi.org/10.1016/j.jss.2016.02.009

2 W. Han et al. / The Journal of Systems and Software 117 (2016) 1–14

c

t

s

2

t

a

T

d

e

w

a

m

T

g

e

O

q

a

m

t

d

t

g

o

h

c

w

a

G

k

s

G

t

d

m

t
results into a complete one. Those systems differ from each other

in terms of applicability (i.e., the type of kernels to support) and

portability (i.e., whether code modification is required). Yet, they

share the same goal of performance improvement from a single

kernel’s point of view. It is important to note that since the S & M

execution of one application can influence the execution behavior

of other applications in a various manner, simply achieving such

a goal can harm the system-wide performance and/or schedulabil-

ity. However, the issue of exploiting multi-GPU S & M execution

properly for real-time systems has not been considered before.

Split-and-merge execution can be beneficial for real-time multi-

GPU computing. It offers the potential for decreasing GPU response

time by splitting a single kernel into several smaller units, called

sub-kernels , and executing them in parallel across different GPUs.

Moreover, the execution of such smaller sub-kernels helps to re-

duce the time to block higher-priority applications, which is in-

evitable from the non-preemptive nature of GPU processing. On

the other hand, S & M execution can impose non-trivial over-

head, since it requires extra memory transfer of input/output data

between host and GPU memory and additional computation of

merging the partial outputs. Such overhead can be translated to

interfering (or blocking) other applications, thereby hurting their

schedulability. Such a tradeoff between benefits and costs of S & M

execution varies according to the type of GPGPU applications (i.e.,

compute- or memory-intensive) as well as the number of GPUs

to launch parallel sub-kernels on. This entails a good strategy of

determining how applications utilize multi-GPU S & M execution

from the perspective of system-wide schedulability.

As such, split-and-merge execution raises many interesting re-

search questions to explore for system-wide real-time support. For

example, which scheduling policies are favorable for multi-GPU S

& M execution? Unfortunately, the existing works (Luk et al., 2009;

Kim et al., 2011; Lee et al., 2013; Pandit and Govindarajan, 2014)

for multi-GPU S & M execution do not offer an adequate (open

source and accessible) environment for further exploration and ex-

perimentation. Open source environments would be particularly

useful for exploring such research issues with a low barrier-to-

entry.

This motivates our work to develop an open-source real-time

multi-GPU scheduling framework, called GPU-SAM

1 (Split And

Merge), that orchestrates multi-GPU split-and-merge execution of

multiple kernels transparently, aiming to provide real-time guaran-

tees. GPU-SAM features two additional functionalities for system-

wide real-time support: real-time scheduling and decision-making

on multi-GPU execution. For real-time scheduling, it supports

priority-based scheduling of memory transfer and kernel launch

requests according to a predefined priority order.

In order to exploit split-and-merge execution more properly

under real-time scheduling, we explore the issue of determining

the multi-GPU mode of individual applications. We first build a

benefit-cost analysis model of S & M execution across a different

number of GPUs and construct a schedulability condition with the

model. We then present an algorithm, called GPA (GPU Parallelism

Assignment), that decides the number of parallel sub-kernels for

each application based on the schedulability condition in order to

improve system-wide schedulability. A key characteristic of GPA

is its conceptual simplicity, while balancing the conflicting effects

of S & M execution on system-wide schedulability. This is possible

since its underlying schedulability condition captures such conflict-

ing effects and translates them into schedulability terms.

Our experimental and simulation results show that S & M ex-

ecution can be advantageous for real-time multi-GPU computing

and GPA can improve the system-wide schedulability substantially,
1 https://github.com/GPU-SAM

f

(

s
ompared to when decisions are made from an individual applica-

ions’ viewpoint, by 25–50%.

Contributions. The main contribution of this paper can be

ummarized as follows.

• To the best of our knowledge, this work makes the first at-

tempt to explore split-and-merge execution over multiple GPUs

for real-time support.
• We introduce an algorithm, called GPA , that determines the

multi-GPU execution mode of individual GPGPU applications to

improve system-wide real-time schedulability. Our evaluation

results show that GPA outperforms the existing approaches sig-

nificantly, while performing comparable to an optimal solution

obtained through exhaustive search.
• We present an open-source prototype implementation of GPU-

SAM as an extension of OpenCL runtime that offers the state-

of-the-art applicability and portability. It supports multi-GPU

split-and-merge execution for real-time applications in a seam-

less manner regardless their data access patterns without any

code modification required. We anticipate that with our open-

source framework, many other S & M research issues could be

explored more easily.

. Background

This section introduces the basic GPU architecture and OpenCL,

he standard GPGPU programming model.

GPU architecture. Modern GPUs consist of thousands of rel-

tively simple processing cores optimized for parallel computing.

hey are specially tailored to SIMD (single-instruction multiple-

ata) processing; all threads running on a stream multiprocessor

xecute the same instruction. To deal with multiple data at once

ith the same code, GPU threads get access to different memory

ddresses based on their thread IDs, group IDs, and so forth.

OpenCL programming model. OpenCL is one of the program-

ing models for leveraging such massively parallel architectures.

he OpenCL programming model consists of kernels and host pro-

rams . Kernels are a basic unit of non-preemptive executable code,

ach of which is assigned a single GPU and runs on it in original

penCL. The host program executes on a CPU and invokes (or en-

ueues) kernel instances using command queues.

Once the kernel execution is requested by the host program,

 N-dimensional workspace (or index space) is defined. Each ele-

ent in the workspace is called work-item which is run by a single

hread while executing the same kernel function but on different

ata. Work-items are partitioned into work-group , to be executed

ogether on the same compute unit of a device. Within a work-

roup, work-items are enforced to share the same view of mem-

ry at each synchronization point such as barrier . On the other

and, there is no synchronization point for inter-work-groups, ex-

ept the end of the kernel execution. Such independence among

ork-groups enables not only their out-of-order execution, but

lso the distributed execution of a single kernel even on multiple

PUs by splitting a single kernel into multiple sub-kernels. A sub-

ernel is recognized as a single kernel in OpenCL runtime, so each

ub-kernel must run on a single GPU but it can run on different

PU.

During the kernel execution, threads frequently access memory

o get or store data. At this time, since GPUs provide their own

evice memory with much higher bandwidth than host memory,

ost applications try to run kernels using the device memory in

he following steps: (i) Upload Copy : all input data is transferred

rom the host memory to the device memory through the PCI bus,

ii) Kernel Launch : with the copied data, a kernel is executed and

tores intermediate output data in the device memory, and (iii)

https://github.com/GPU-SAM

W. Han et al. / The Journal of Systems and Software 117 (2016) 1–14 3

Fig. 1. Logical overview of GPU-SAM .

D

p

3

o

m

t

t

s

h

p

G

o

S

a

o

a

g

p

a

a

o

l

3

o

p

t

w

O

k

e

s

(

i

s

o

l

m

DCUC

Kernel Launch (KL)

PCI

GPU1

Time

(a) OpenCL with a single GPU

GPU1

DC DC

KL (Half)

KL (Half)

UC UC

OM

Time

GPU2

PCI

CPU

(b) GPU-SAM

Fig. 2. GPGPU application execution flows: Single-GPU and GPU-SAM .

t

t

s

o

(

k

o

p

G

p

r

w

m

p

p

n

3

A

k

a

s

a

a

t

p

w

T

i

n

G

i

b

n

w

r

i

k

i

k

w

k

v

s

g

o
ownload Copy : after the kernel execution is completed, their out-

ut data is copied back to the host memory.

. GPU-SAM framework

The goal of GPU-SAM is to enable split-and-merge execution

n multiple GPUs for supporting real-time applications without

odification and enhance system-wide schedulability. Fig. 1 illus-

rates the GPU-SAM architecture with SAMCL and SAM Manager

oward this goal. SAMCL is an extension of OpenCL that enables

plitting and merging kernels for GPGPU applications. Since SAMCL

ooks OpenCL APIs, legacy GPGPU applications are able to trans-

arently work under SAMCL with no modification and run on all

PUs regardless of which GPUs are specified by programmers.

SAM Manager, on the other hand, works for real-time support

f GPU-SAM . Whenever a task set in the system is changed, Mode

elector in SAM Manager determines how many GPUs each GPGPU

pplication uses (i.e., 1-to-m GPU mode where m is the number

f GPUs) based on offline profile data so that deadline misses

re minimized from a system-wide viewpoint (more details are

iven in Section 4). In addition, Scheduler in SAM Manager enforces

riority-based scheduling on both PCI and GPU where applications

re scheduled in a FIFO manner by default. Every time a GPGPU

pplication requests for a memory operation or a kernel launch

peration, the request is instead sent to GPU-SAM scheduler and

ater granted based on its priority.

.1. Overview of split-and-merge execution

First of all, what we mean by split is duplicating a kernel

n multiple GPUs and assigning disjoint workspaces to each du-

licated kernel. We call such kernels as sub-kernels , which share

he same code but use different workspace, where the union of

orkspaces equals to the original kernel’s workspace.

As previously described, a typical scenario of executing an

penCL application can be viewed as a sequence of upload copy,

ernel launch and download copy. When an application is ex-

cuted with GPU-SAM on multiple GPUs, GPU-SAM supports

plit-and-merge execution of a kernel in the application as follows.

i) For upload copy (UC), SAMCL makes multi-GPUs ready for host-

ng sub-kernels by copying input data to each GPU so that all the

ub-kernels can run with their own copy of input data in their

wn GPU memory. (ii) For kernel launch (KL), each sub-kernel is

aunched on its own GPU for concurrent execution. At this mo-

ent, each sub-kernel is subject to run on its own workspace
o compute partial results. (iii) For download copy (DC), similar

o the upload copy case, SAMCL copies the outputs of individual

ub-kernels back to the host memory from their own GPU mem-

ry. (iv) SAMCL introduces an additional stage called Output Merge

OM), during which it performs merging the partial outputs of sub-

ernels to produce a complete result that is the same as the result

f single-GPU execution. Fig. 2 compares how a kernel program

roduces output on a single GPU with original OpenCL, and on two

PUs with SAMCL.

Issues. Implementing such a split-and-merge execution

aradigm for real-time applications raises several issues to

esolve. For example, sub-kernels should be generated correctly

ith disjoint workspaces. In addition, partial outputs should be

erged maintaining coherence with respect to the single-GPU-

er-kernel execution. For real-time support, it would be better to

rovide priority-based GPU and PCI scheduling despite their FIFO

ature. The next subsection discusses those issues in details.

.2. Implementation issues

Sub-kernels with disjoint workspaces. Kernel Translator and

rgument Setter in SAMCL are two key components to split a

ernel. The kernel translator works when kernel program objects

re created. As previously mentioned, each work-item (or thread)

hares the same kernel program code, but uses different memory

ddresses for read and write. The memory address for each thread

ccess is then determined through various work-item built-in func-

ions. Since such built-in functions can produce different com-

utation results when a kernel is decomposed into sub-kernels,

e need to modify them to maintain consistent computations.

o this end, the kernel translator appends the following auxil-

ary arguments to all the functions in a kernel, including the ker-

el itself; GPUSAM_num_groups , GPUSAM_group_offset , and

PUSAM_global_size . We note that the return values of work-

tem built-in functions determine the memory addresses accessed

y sub-kernels, and the return values may vary according to the

umber of sub-kernels determined by the mode selector. Thereby,

e append such auxiliary arguments to deal with dynamic envi-

onments. Table 1 describes the translation rules for all the work-

tem built-in functions.

The argument setter then works when individual sub-

ernels are launched. The argument setter makes the auxil-

ary arguments in a way that the workspace of each sub-

ernel is exclusive to each other, and the union of those

orkspaces is equivalent to the workspace of the original

ernel. For each sub-kernel, the argument setter assigns the

alues of GPUSAM_num_groups and GPUSAM_global_size
uch that those values are equal to the return values of

et_num_groups() and get_global_size() invoked by the

riginal kernel, respectively. On the other hand, the values of

4 W. Han et al. / The Journal of Systems and Software 117 (2016) 1–14

Table 1

Translation rules for work-item built-in functions.

OpenCL GPU-SAM

get_work_dim() get_work_dim()
get_global_size() GPUSAM_global_size
get_global_id() (get_global_id()

+ get_local_size()
∗ GPUSAM_group_offset)

get_local_size() get_local_size()
get_local_id() get_local_id()
get_num_groups() GPUSAM_num_groups
get_group_id() (get_group_id()

+ GPUSAM_group_offset)
get_global_offset() get_global_offset()

i

i

o

S

c

W

n

q

s

s

e

t

t

G

G

s

(

G

i

u

g

d

i

s

i

v

h

G

d

l

4

s

t

s

G

a

u

2

2

q

m

p

e

b

s

m

l

W

e

s

m

fi

2 Atomic operations (i.e., atomicAdd) can be used to coordinate between the

work-items distributed across work-groups to avoid race conditions. However, the

atomic operations are often subject to performance concerns due to their serializa-

tion nature, potentially leading to a substantial loss of parallelism and thus a great

loss in performance. Thereby, for example, it is often suggested to use a reduction

method rather than an atomicAdd to fully exploit the massive parallelism of GPU

and thus reduce the complexity to O (ln n) from O (n), where n is the number of

work-items.
GPUSAM_group_offset are assigned differently to guarantee

disjoint workspaces.

Workload distribution. Though a kernel can be split into sub-

kernels which have disjoint workspaces through the kernel trans-

lator and the argument setter, there exist problems of deter-

mining how much portion of its workload is assigned to each

sub-kernel and which dimension of a workspace is divided. In the

systems with homogeneous GPUs, SAMCL distributes workload to

sub-kernels as equally as possible. In the systems with hetero-

geneous devices, there exists an additional challenge to balance

workload to heterogeneous computing devices for maximizing per-

formance, since the performance of a computing device varies by

not only hardware specifications, such as the number of cores,

clock frequency of cores, and memory bandwidth, but also ap-

plication characteristics, such as compute-intensive and memory-

intensive. We remain this problem as future work for extending

our framework to heterogeneous systems.

Secondly, we need to decide how to divide workspace dimen-

sions. A workspace size of a kernel is represented as up to 3 di-

mensions (x , y , z), and any of those can be divided to split the

workspace into sub-workspaces. For example, a 2D workspace with

dimension (4,2) can be split into two sub-workspaces of (2,2) or

two sub-workspaces of (4,1). We design a workspace allocation

scheme that maximizes the minimum length of dimensions. When

running on 4 GPUs, a workspace with dimension (8,8) is split into

four sub-workspaces of (4,4), and the argument setter sets four

sub-kernels to have offsets of (0,0), (4,0), (0,4), and (4,4). This

scheme is driven from the observation in Appendix A .

Equivalent output data. Since we distribute workloads to mul-

tiple GPUs, we need to merge partial outputs from each GPU to

make a whole. Basically, Output Merger in SAMCL keeps the orig-

inal data whenever duplicating the data across multiple GPUs. In

the output merge process, for each element in the original data,

the output merger overwrites it with a corresponding one in the

result of a sub-kernel if they are different. It is important to

note that there is at most one different element, because the ker-

nel translator and the argument setter make disjoint workspaces

across sub-kernels and thereby at most one sub-kernel updates the

element. In this way, SAMCL is able to deal with even the case

of irregular memory access patterns. More details about data co-

herency and correctness of SAMCL are described in Appendix B .

Inter-kernel dependencies. Applications may have multiple

kernels under inter-kernel dependency in a way that one kernel

takes as input the output data of a previous kernel. In order to

maintain the coherence of the final output, GPU-SAM enforces

buffer synchronization between host and device memory right be-

fore each kernel launch. To make it efficient, GPU-SAM does it on

demand for the kernels under dependency. More details are pro-

vided in Appendix B .

Prioritized resource scheduling. While real-time applications

make use of CPU, GPU, and PCI resources for GPGPU comput-
ng, GPU and PCI resources are allocated under FIFO schedul-

ng by default. Thus, GPU-SAM enables priority-based scheduling

n PCI and GPU for the sake of better real-time support. GPU-

AM scheduler in SAM Manager is another Linux process and

reates individual priority queues for PCI and GPUs, respectively.

hen an application requests either a memory transfer or ker-

el launch operation to the OpenCL runtime, SAMCL hooks the re-

uest and sends it to GPU-SAM scheduler through POSIX mes-

age queues. The request is then enqueued to a corresponding re-

ource queue if the resource is busy, or immediately granted oth-

rwise. Upon receiving a signal from SAMCL indicating its applica-

ion finishing the use of a resource, GPU-SAM scheduler dequeues

he highest priority request from the corresponding queue. In a

PU-SAM prototype, fixed-priority scheduling is employed, and

PU-SAM scheduler is running on the highest priority of Linux

cheduler.

Limitations. All existing multi-GPU split-and-merge systems

 Luk et al., 2009; Kim et al., 2011; Lee et al., 2013; Pandit and

ovindarajan, 2014), including GPU-SAM , share one restriction

n applicability. They may not work in a case where applications

se global barriers or atomic operations 2 to coordinate between

lobal work-items. Since the current GPGPU programming models

o not support synchronization primitives between multiple GPUs,

t seems quite difficult to resolve this issue efficiently.

One limitation of GPU-SAM in supporting priority-based PCI

cheduling comes into account when kernels make accesses to data

n host memory directly. It is worth noting that since GPU de-

ice memory offers an order of magnitude higher bandwidth than

ost memory does (NVIDIA GTC, 2014), it is suggested to perform

PGPU computation over data in the device memory, rather than

ata in the host memory, for high performance. Thereby, such a

imitation is not so problematic in practice.

. Split-and-merge execution for system-wide real-time

upport

In the previous section, we introduced GPU-SAM framework

hat facilitates split-and-merge execution for real-time multi-GPU

ystems. This section explores the issues involved in leveraging

PU-SAM for system-wide schedulability improvement. When

pplications determine GPU execution modes from their individ-

al points of view, as is done by many existing studies (Luk et al.,

009; Kim et al., 2011; Lee et al., 2013; Pandit and Govindarajan,

014), it may not lead to system-wide optimal decision. This re-

uires to consider a good policy of system-wide GPU execution

ode assignment in order to improve the overall schedulability

erformance.

To this end, we first investigate the effects of split-and-merge

xecution (i) on each single application and (ii) on the interaction

etween applications from a schedulability viewpoint. We mea-

ure benefits and overheads of S & M execution through experi-

ents with various OpenCL benchmarks and build an application-

evel benefit-cost analysis model based on the benchmark results.

e then present end-to-end response time analysis that prop-

rly captures seemingly conflicting effects of S & M execution on

ystem-wide schedulability. Finally, building upon the benefit-cost

odel and end-to-end response time analysis, we develop an ef-

cient GPU execution mode assignment algorithm which decides

W. Han et al. / The Journal of Systems and Software 117 (2016) 1–14 5

t

s

4

s

m

t

f

t

g

d

G

a

G

o

F

O

a

b

h

c

h

p

o

a

t

v

t

o

l

p

p

s

i

t

e

G

s

a

t

c

f

c

d

p

g

k

c

S

o

d

c

p

H

5

3

T
a

b
le

2

B
e

n
ch

m
a

rk

sp

e
ci

fi
ca

ti
o

n
s.

In
p

u
t

O
u

tp
u

t

B
e

n
ch

m
a

rk

S
o

u
rc

e

T
y

p
e

#

o

f
d

a
ta

To
ta

l
S

iz
e

T
y

p
e

#

o

f
d

a
ta

To
ta

l
S

iz
e

W
o

rk
G

ro
u

p
s

K
e

rn
e

l
D

e
p

e
n

d
e

n
cy

C
o

rr
e

ct
n

e
ss

A
E

S
E

n
cr

y
p

t/
D

e
cr

y
p

t
A

M
D

S
D

K

B
it

m
a

p

im

a
g

e

5
1

2

×

5
1

2

2
5

6
K

B

B
it

m
a

p

im

a
g

e

5
1

2

×

5
1

2

2
5

6
K

B

2
5

6

X

O

B
in

o
m

ia
lO

p
ti

o
n

A
M

D
S

D
K

#

o

f
st

o
ck

p

ri
ce

1
6

3
8

4

2
5

6
K

B

#

o

f
F

P

n

u
m

b
e

rs

1
6

3
8

4

2
5

6
K

B

2
5

5

X

O

F
il

te
r

C
U

S
T

O
M

B
it

m
a

p

im

a
g

e

1
0

2
4

×

7
6

8

7
6

8
K

B

B
it

m
a

p

im

a
g

e

1
0

2
4

×

7
6

8

7
6

8
K

B

7
6

8

X

O

H
is

to
g

ra
m

A
M

D
S

D
K

#

o

f
8

-b
it

s
1

6

m

il
li

o
n

s
1

6
M

B

In
te

g
e

rs

2
5

6

1
K

B

5
1

2

X

O

K
-n

e
a

re
st

C
U

S
T

O
M

#

o

f
F

P

n

u
m

b
e

rs

1
0

2
4

×

3
2

1
2

8
K

B

#

o

f
F

P

n

u
m

b
e

rs

1
0

2
4

×

3
2

0

1
2

8
0

K
B

1
2

8

X

O

M
a

tr
ix

M
u

lt
ip

li
ca

ti
o

n

N
V

ID
IA

S

D
K

M
a

tr
ix

si

ze

2
0

4
8

×

2
0

4
8

3
2

M
B

M
a

tr
ix

si

ze

2
0

4
8

×

2
0

4
8

1
6

M
B

4
0

9
6

X

O

P
a

g
e

ra
n

k

C
U

S
T

O
M

#

o

f
F

P

n

u
m

b
e

rs

4

m

il
li

o
n

s
1

6
M

B

#

o

f
F

P

n

u
m

b
e

rs

4

m

il
li

o
n

s
1

6
M

B

4
0

9
6

O

O

he number of sub-kernels from the perspective of system-wide

chedulability.

.1. Benefit and cost analysis

GPU-SAM has a great potential for real-time multi-GPU

cheduling by reducing overall execution time through split-and-

erge execution. However, it does not come for free. S & M execu-

ion could impose some non-trivial overheads, which mainly come

rom extra memory transfer in upload/download copy and addi-

ional computation for output merge. This subsection first investi-

ates the benefits and overheads of S & M execution from an in-

ividual application perspective, and shows the results of running

PU-SAM on various types of GPGPU applications. For simplicity,

ll the multi-GPU mode executions are run on two GPUs.

Benefits/overheads of split-and-merge execution. We compare

PU-SAM on two GPUs (dual-GPU mode) and the original OpenCL

n a single GPU (single-GPU mode). 3 The result is illustrated in

ig. 3 , describing the benefits and overheads in each stage of an

penCL application execution sequence.

Fig. 3 (a) shows that in dual-GPU mode, upload copy takes

bout twice time as much as that of single-GPU mode. This is

ecause split-and-merge requires extra memory transfer, from the

ost memory to the device memory in another GPU. Since data

opy time is proportionate to the data size, the upload copy over-

ead can be modeled through linear regression.

Fig. 3 (b) illustrates the benefit of split-and-merge execution by

lotting the execution time of a kernel for matrix multiplication

ver different input data sizes. It shows that the execution time of

 sub-kernel is a half of that of its original kernel. This also shows

hat the overhead of launching multiple sub-kernels is negligible.

As described in Fig. 3 (c), the overhead for download copy is

ery similar to the one of upload copy, and it can also be modeled

hrough linear regression. Since each sub-kernel generates a partial

utput, the outputs of sub-kernels should be merged after down-

oad copy. The time for output merge depends on the size of out-

ut data, increasing in proportion to the output data size. This out-

ut merge time can be easily reduced through parallelization APIs

uch as POSIX threads and OpenMP, as is the case with GPU-SAM

mplementation. Note that the extra data copy and output merge

imes are proportional to the number of GPUs each, while the ex-

cution time of a kernel is inversely proportional to the number of

PUs.

Benchmark results and correctness. By investigating how

plit-and-merge affects the execution time of each stage, we ex-

mined the potential benefits and overheads of GPU-SAM . It is

hen necessary to see if it is beneficial to run various GPGPU appli-

ations concurrently despite some overheads. To this end, we per-

ormed experiments with some representative benchmarks which

an be used in many real-time applications (see Table 4). Table 2

escribes the specifications for these benchmarks, including in-

ut/output data type, data size, buffer size, the number of work-

roups, and whether the benchmark consists of inter-dependent

ernels.

Fig. 4 illustrates the normalized execution times of benchmarks,

omparing the original OpenCL in single-GPU mode and GPU-

AM in dual-GPU mode, and Table 3 shows the execution times

f benchmarks in milliseconds. For presentational convenience, we

efine the execution time of a kernel as the time required to

omplete upload copy, kernel launch, download copy, and out-

ut merge. As described in the figure, most benchmarks (except

istogram and Pagerank) are GPU compute-intensive, spending
3 Both experiments of Figs. 3 and 4 are conducted on two NVIDIA GeForce GTX

60Ti GPUs and Intel Core i5-3550 CPU with NVIDIA proprietary driver Version

31.49 and OpenCL Version 1.1. More details are in Section 5 .

6 W. Han et al. / The Journal of Systems and Software 117 (2016) 1–14

y = 0.64x

y = 0.32x

0

50

100

150

0 50 100 150 200

Ti
m

e
(m

s)

Input data size (MB)

GPU-SAM
OpenCL

(a) The overhead of upload copy

0

1000

2000

3000

4000

0 50 100 150 200

Ti
m

e
(m

s)

Input data size (MB)

GPU-SAM
OpenCL

(b) The execution time of a kernel for matrix multi-
plication

y = 2.29x

y = 0.72x

y = 0.36x

0

100

200

0 50 100

Ti
m

e
(m

s)

Output data size (MB)

GPU-SAM OM

GPU-SAM DC

OpenCL DC

(c) The overhead of download copy and output merge

Fig. 3. The benefits and overheads of multi-GPU mode execution.

Table 3

The execution time of seven benchmarks on OpenCL in single-GPU mode and

GPU-SAM in dual-GPU mode.

Benchmark UC KL DC OM Total

AESEncrypt OpenCL 4 .09 69 .11 4 .83 0 78 .02

GPU-SAM 9 .96 42 .91 9 .04 10 .88 78 .79

AESDecrypt OpenCL 4 .09 209 .50 4 .61 0 218 .20

GPU-SAM 9 .97 112 .88 9 .07 8 .18 140 .11

Binomial OpenCL 0 .72 73 .40 0 .83 0 74 .65

Option GPU-SAM 1 .39 39 .58 0 .89 0 .60 42 .46

Filter OpenCL 0 .31 21 .82 0 .34 0 22 .48

GPU-SAM 0 .74 13 .21 0 .99 0 .51 15 .45

Histogram OpenCL 20 .87 16 .67 0 .24 0 37 .78

GPU-SAM 54 .23 10 .00 0 .95 0 .40 65 .59

K-nearest OpenCL 0 .80 111 .97 0 .49 0 113 .25

GPU-SAM 2 .90 58 .69 2 .83 2 .20 66 .63

Matrix Mul- OpenCL 10 .97 249 .74 6 .10 0 266 .81

tiplication GPU-SAM 26 .05 149 .19 13 .52 15 .20 203 .97

Pagerank OpenCL 63 .17 838 .05 5 .17 0 906 .39

GPU-SAM 297 .63 419 .66 60 .36 65 .80 843 .46

Table 4

Explanation of benchmarks.

AES

Encrypt/Decrypt

Encryption/decryption algorithm established by

Advanced Encryption Standard (AES), applicable to

secure real-time transport protocols.

Binomial Option A numerical algorithm for valuation of options.

Filter A data processing technique, applicable to real-time

image processing applications such as augmented

reality.

Histogram A graphical representation technique for the

distribution of data, applicable to various statistical

purposes and real-time image processing such as

histogram equalization.

K-nearest K-Nearest Neighbors algorithm, applicable for a wide

range of real-time machine learning applications,

including face/voice/gesture recognition.

Matrix Mul. Matrix multiplication, a typical GPU-favorable

operation for a wide range of applications (i.e.,

real-time data processing techniques).

Pagerank A link analysis algorithm used by Google’s search

engine, applicable for network/context analysis.

i

e

u

o

e

t

w

n

a

i

d

t

c

i

m

G

i

k

d

p

m

p

e

t

e

n

T

s

w

i

t

G

I

k

S

m

O

p

e

l

l

e

5

a

1

t

o

M

88.5–99.8% of the execution time on the kernel launch in single-

GPU mode. These are common examples that gain a lot of ben-

efits from largely decreased kernel launch time. We note that in

some benchmarks (i.e., AES Encrypt/Decrypt, Filter, and Histogram),

the upload buffer is used as an output buffer. In this case, it is

necessary to duplicate the buffer on the host memory to update

partial outputs from GPUs to the output buffer correctly. The cost

of this additional duplication is about 0.5 times of original upload

copy in our environment. Although S & M execution increases up-

load/download copy time by a factor of about 2.5 with additional

buffer duplication and adds an extra output merge time, it is able

to save 6.8–43.2% of the total execution time through parallel exe-

cution on two GPUs.
On the other hand, Histogram is one of the typical memory-

ntensive applications that can hardly benefit from split-and-merge

xecution. Histogram takes up 44.1% of the execution time on only

pload copy in single-GPU mode. Such memory-intensive nature

f Histogram makes GPU-SAM suffer from 73.6% increase of total

xecution time, even though kernel launch time is reduced by half.

Last but not least, Pagerank shows a different behavior due

o its inter-kernel dependency. Since it launches multiple kernels

hich require an input from the output buffer of the former ker-

el, extra output merge and buffer synchronization occur. In our

pplication, pagerank has five kernels and consecutive kernels have

nter-kernel data dependency. This cause the upload copy and

ownload copy to be increased by 4.7 times and 11.7 times respec-

ively, while kernel launch time remains half. Although total exe-

ution time is reduced by 7.0% in this case, a little increase in the

nput data size may result in a huge loss in memory transfer time,

aking it inappropriate for GPU-SAM . Thereby, in order to apply

PU-SAM in practice, we need to carefully consider the character-

stics of applications, such as memory-intensive nature and inter-

ernel dependency.

In Appendix C , we show more benchmark specifications un-

er various application characteristics including inter-kernel de-

endency. Furthermore, it is worth mentioning that all the bench-

arks (except only two benchmarks using atomic operations)

roduced semantically equivalent results to single-GPU mode ex-

cution, which is shown in the last column of Table C.1 .

Impact of problem size. In general, GPU achieves high

hroughput by exploiting a million of threads to hide latency. How-

ver, if the number of threads is small so that the threads in a ker-

el cannot fully utilize the GPU throughput decreases significantly.

herefore, when we split a kernel into two sub-kernels and each

ub-kernel cannot fully utilize a GPU, the sub-kernel launch time

ould take more than a half of the kernel launch time of the orig-

nal kernel. Similarly, if the size of upload copy of an application is

oo small to fully utilize the PCI bus, the upload copy time of dual-

PU mode would be less than twice of that of single-GPU mode.

n addition, most GPGPU applications have the largest portion of

ernel launch time. Therefore, as the problem size increases GPU-

AM can have larger benefits from S & M execution.

Fig. 5 shows the normalized execution times of square matrix

ultiplication with different problem sizes, comparing the original

penCL in single-GPU mode and GPU-SAM in dual-GPU mode. As

roblem size increases the S & Mexecution can have larger ben-

fits. For the case of the matrix size of 256 × 256, the kernel

aunch time is reduced by 43% in dual-GPU mode, and the up-

oad/download copy time is increased by 77%. Thus, the total ex-

cution time is increased by 48%. For the case of matrix size 512 ×
12, the kernel launch time is reduced by 47% in dual-GPU mode

nd the total execution time is increased by 4%. In the final case,

024 × 1024 matrix, kernel launch time is reduced by 50%, and the

otal execution time is reduced by 25%. From the experiments, we

bserve that larger problem size can have larger benefit from S &

 execution.

W. Han et al. / The Journal of Systems and Software 117 (2016) 1–14 7

0

0.5

1

1.5

2

O
pe

nC
L

G
P

U
-S

A
M

O
pe

nC
L

G
P

U
-S

A
M

O
pe

nC
L

G
P

U
-S

A
M

O
pe

nC
L

G
P

U
-S

A
M

O
pe

nC
L

G
P

U
-S

A
M

O
pe

nC
L

G
P

U
-S

A
M

O
pe

nC
L

G
P

U
-S

A
M

O
pe

nC
L

G
P

U
-S

A
M

AES
Encrypt

AES
Decrypt

Binomial
Option

Filter Histogram K-nearest Matrix
Multipli-
cation

Pagerank

R
el

at
iv

e
ex

ec
ut

io
n

tim
e UC (Upload Copy)

KL (Kernel Launch)
DC (Download Copy)
OM (Output Merge)

Fig. 4. The relative execution time of seven benchmarks on OpenCL in single-GPU

mode and GPU-SAM in dual-GPU mode.

0

0.4

0.8

1.2

1.6

OpenCL GPU-SAM OpenCL GPU-SAM OpenCL GPU-SAM

256 x 256 512 x 512 1024 x 1024

R
el

at
iv

e
ex

ec
ut

io
n

tim
e

Output matrix size

UC KL DC OM

Fig. 5. The relative execution times of square matrix multiplication with different

problem sizes on OpenCL in single-GPU mode and GPU-SAM in dual-GPU mode.

Fig. 6. Pipeline task model.

4

e

e

i

G

c

a

c

i

d

t

o

G

o

o

s

r

u

e

m

G

F

g

a

e

G

v

t

A

O

b

e

t

C

t

d

i

f

d

fi

o

i

A

w

n

s

t

m

1

t

c

u

R

T

w

t

w

J

w

t

i

s

s

S

l

t

r

.2. Schedulability analysis

In this subsection, we examine the influence of split-and-merge

xecution on the response time of other applications and present

nd-to-end response time analysis that properly captures such an

nfluence across various resources, which serves as the basis of our

PU parallelism assignment algorithm.

System model. GPGPU applications utilize CPU and GPU for

omputation and the PCI bus for data transfer between the host

nd device memory. Capturing this, we model each GPGPU appli-

ation as a pipeline task, as shown in Fig. 6 , as follows. A task τ i

nvokes a series of jobs sporadically with a minimum separation

elay of T i , and it has an end-to-end deadline of D i (D i ≤ T i). Every

ask τ i consists of n i stages, s i, 1 , . . . , s i,n i , in each of which τ i has

ne or more subtasks to run on a specific resource w i, j ∈ {CPU, PCI,

PU}. Each stage s i, j is sequentially activated upon the completion

f a preceding stage s i, j−1 . Thus, no stages within a single task can

verlap each other. Depending on the resource type w i, j of stage

 i, j , the subtasks of τ i can be characterized:

(i) if w i, j = CPU, one preemptive subtask runs in s i, j ,

(ii) if w i, j = PCI, one non-preemptive subtask runs, and

(iii) if w i, j = GPU, m i non-preemptive subtasks execute in paral-

lel with each other, where 1 ≤ m i ≤ M G . We note that m i

indicates the number of sub-kernels which can be concur-

rently executed on GPUs, and m will be chosen between 1
i
and M G , where M G denotes the number of available GPUs,

by our proposed GPU parallelism assignment algorithm.

We note that each subtask has a set of different execution time

equirements { C (1)
i, j

, . . . , C
(M G)

i, j
} depending on how many GPUs τ i

tilizes. Then, C
(m i)

i, j
indicates the execution time requirement of

ach subtask in stage s i, j when τ i is subject to m i -GPU execution

ode. We assume that the execution time requirement for each

PU execution mode is given by offline profile data as shown in

ig. 1 .

We consider GPU-SAM employs a fixed-priority scheduling al-

orithm. A given task τ i has the same priority across all resources,

nd it must complete execution of all subtasks prior to its end-to-

nd deadline D i .

It is important to note that we model both PCI data transfer and

PU execution as single-resource activities while they actually in-

olve another resource (CPU) for initiation. Data transfer between

he host and device memory is operated by DMA (Direct Memory

ccess) engine, while initiated by some CPU-side operations (i.e.,

penCL upload/download copy APIs) including memory mapping

etween userspace and OS kernel space. GPU-SAM assigns a high-

st priority to such CPU operations in order to introduce no addi-

ional delay, though it takes relatively short time to complete the

PU operations. For example, in our measurements, it takes less

han 0.2ms for 30MB DMA transfer, translating to 2% of the entire

ata transfer time of about 10ms. Such a CPU time can be added

nto PCI memory transfer time. We note that CPU-side operation

or DMA transfer can preempt and delay other CPU subtasks. Such

elay can be added to the execution times of other CPU tasks ef-

ciently. For instance, for 30MB DMA transfer, the execution times

f subtasks can increase by 0.2ms ∗ α, where α indicates the max-

mum number of DMA transfers to overlap (i.e., α = � T i / 10ms �).
 similar reasoning can be applied to the case of GPU execution,

hile the time to execute some CPU-side operations for GPU ker-

el launch is typically much shorter (i.e., 15 μs).

End-to-end response time analysis. We apply holistic analy-

is to upper-bound the end-to-end delay of each task. The holis-

ic analysis was first introduced in Tindell and Clark (1994) , and

any extensions were proposed in Palencia and Harbour (1998 ,

999 , 2003); Pellizzoni and Lipari (2005) . The analysis shows that

he worst-case end-to-end response time R i of a pipeline task τ i

an be derived by summing up the maximum delays that individ-

al stages s i, j experience, that is,

 i =

∑

∀ j
r i, j .

he analysis basically employs the concept of release jitter to deal

ith the precedence constraints between stages. The release jit-

er J i, j of each stage s i, j is defined as the difference between the

orst-case and best-case release times and is presented as

 i, j =

j−1 ∑

q =1

r i,q −
j−1 ∑

k =1

C (m i)
i,k

here J i , 1 is equal to 0. The use of release jitter allows to calculate

he local response time at each stage independently of other stages

n the same task, but by involving interference with other task’s

ubtasks running on the same resource only.

To compute local response time (r i, j), we use a popular re-

ponse time analysis (RTA) (Bertogna and Cirinei, 2007; Lee and

hin, 2014) and incorporate release jitter into interference calcu-

ation. The local response time r i, j can be calculated iteratively in

he following expression:

a +1
i, j

← C (m i)
i, j

+ I a i, j + B i, j , (1)

8 W. Han et al. / The Journal of Systems and Software 117 (2016) 1–14

t

s

l

a

e

c

h

r

4

a

τ

t

t

r

r

c

d

k

o

p

t

T

t

t

s

o

O

s

A

d

t

t

m

m

n

d

n

s

b

a

R

a

s

T

·

5

m

G

p

where I a
i, j

is the maximum interference of higher priority subtasks

on a subtask in s i, j , and B i, j is the maximum blocking time from

lower priority subtasks. The iteration starts with r 0
i, j

= C
(m i)

i, j
and

continues until it converges or reaches a predefined value. The in-

terference I a
i, j

is upper-bounded as follows, depending on the type

of resources,

I a i, j =

{ ⌈
1

N(w i, j)
· X

a
i, j

⌉
if w i, j = CPU or PCI , ⌈

1
N(w i, j)

· (X

a
i, j

+ Y i, j)
⌉

if w i, j = GPU ,

where

X

a
i, j =

∑

τk ∈ hp(τi)

∑

p: w k,p = w i, j

⌈ J k,p + r a
i, j

T k

⌉

· C
(m k)

k,p
· | τk,p | ,

Y i, j = C (m i)
i, j

· (| τi, j | − 1) ,

while N (w i, j) is the number of processing elements in resource

w i, j , hp (τ i) is the set of higher priority tasks than τ i , and | τ k, p | is

the number of subtasks in stage s k, p . In the cases of CPU and PCI

resources, the interference of higher priority subtasks on a subtask

in s i, j is upper-bounded by using X a
i, j

as similarly shown in Tindell

and Clark (1994) , where X a
i, j

describes the sum of the maximum

workload of all subtasks having a higher priority than τ i running

on resource w i, j in any interval of length r a
i, j

. In the case of GPU

resource, it is worth noting that m i subtasks run concurrently un-

der global non-preemptive scheduling of M G GPUs, where 1 ≤ m i

≤ M G . This requires to consider a case where m i subtasks interfere

with each other running on the same GPUs, in particular, in the

presence of other higher-priority tasks running on other GPUs. The

term Y i, j captures such intra-task interference (Chwa et al., 2013)

by including the workload of other (m i − 1) subtasks.

The blocking time B i, j is calculated as follows:

B i, j =

{

0 if w i, j = CPU , ⌈
1

N(w i, j)
· Z i, j

⌉
if w i, j = PCI or GPU ,

where

Z i, j =

∑

τk ∈ l p(τi)

∑

p: w k,p = w i, j

∑

N(w i, j) largest subtasks ∈ τk,p

(C (m k)

k,p
− 1) ,

while lp (τ i) is the set of lower priority tasks than τ i . Since a sub-

task running on CPU resource preempts lower priority subtasks

at any time, B i, j is zero. On the other hands, the execution of a

subtask running on PCI or GPU can be blocked by currently run-

ning lower priority subtasks. The maximum blocking time B i, j from

lower priority subtasks is upper-bounded by choosing N (w i, j) sub-

tasks which have the largest execution time requirements (Lee and

Shin, 2014). 4

Discussion. We discuss how the analysis captures the conflict-

ing influences of split-and-merge execution. Such influences on an

individual task can broadly fall into three categories. (i) For a task

τ i that does S & M execution, the effect is directly reflected on its

execution time C
(m i)

i, j
on each resource in a way that it decreases

GPU execution time but increases CPU and PCI execution times. (ii)

For higher priority tasks than τ i , if τ i is split into more sub-kernels

having a smaller non-preemptive region, the blocking time from τ i

decreases. The blocking time from τ i is captured by the third term

(B) in Eq. (1) when calculating the response time of a higher pri-

ority task. Thus, S & M execution of τ can decrease the response
i

4 We note that our response time analysis can be tightened by applying the state-

of-the-art analysis techniques, such as min techniques (Bertogna and Cirinei, 2007),

limited carry-in techniques (Guan et al., 2009), and effective problem windo ws for

non-preemptive tasks (Lee and Shin, 2014). Due to space limit, however, we leave

it to an extended version.

m

O

t

t

w

m
ime of higher priority tasks. (iii) For lower priority tasks than τ i ,

plitting into more sub-kernels of τ i imposes more interference on

ower priority tasks due to additional overheads (i.e., memory copy

nd merge operations) on the PCI and CPU resources. The interfer-

nce from τ i is captured by the second term (I) in Eq. (1) when

alculating the response time of a lower priority task. Unlike the

igher priority task case, S & M execution of τ i can increase the

esponse time of lower priority tasks.

.3. GPU parallelism assignment

We consider the GPU parallelism assignment problem that, given

 task set τ , determines the number of sub-kernels for every task

i ∈ τ such that the task set is deemed schedulable according to

he end-to-end response time analysis presented in Section 4.2 .

From a system-wide schedulability viewpoint, if there exists a

ask τ i to miss a deadline (i.e., R i > D i) with a certain configu-

ation, the GPU parallel mode of each individual task should be

econsidered in a direction to make the task schedulable. As dis-

ussed in the previous subsection, there are three options to re-

uce the response time of a task: (i) changing its number of sub-

ernels, (ii) decreasing the number of sub-kernels of higher pri-

rity tasks, or (iii) increasing the number of sub-kernels of lower

riority tasks. However, each option can cause a domino effect on

he other tasks, while may be harming the others’ schedulability.

hereby, this makes it difficult to find an optimal configuration on

he number of sub-kernels for all tasks in a reasonable time. For-

unately, our proposed analysis easily identifies the system-wide

chedulability and closely summarizes how the conflicting effects

f split-and-merge execution work on the response time of a task.

ur schedulability analysis is then able to provide a guideline to

olve the GPU parallelism assignment problem.

We present a heuristic algorithm, called GPA (GPU Parallelism

ssignment) , that determines the number of sub-kernels of all in-

ividual tasks based on our schedulability analysis in polynomial

ime. As shown in Algorithm 1 , GPA divides the task set τ into

wo disjoint subsets: S and R , where S is a subset of tasks whose

 i has been assigned, and R is a subset of remaining tasks whose

 i must be assigned.

The general idea is that GPA gradually increases, through a fi-

ite number of iterative steps, the potential to make the system

eemed schedulable (i.e., R i ≤ D i for ∀ τ i). In the beginning, the

umber of sub-kernels for each task is initialized to the one that

hows the best performance when each task runs alone. We denote

y ̂ m i the initial configuration of task τ i (line 3). Then, in each iter-

tion (lines 4–24), GPA seeks to minimize the maximum value of

 i / D i among all tasks τ i by changing the number of sub-kernels of

 single task (τ ∗
i

) from 1 to M G . GPA repeats this process until the

ystem becomes deemed schedulable or all tasks are determined.

hereby, GPA invokes the end-to-end response time analysis O (M G

n 3) times, where n is the number of tasks.

. Experimental andsimulation results

We performed experimental and simulation studies to see how

uch split-and-merge execution is beneficial for real-time multi-

PU systems and how well the proposed algorithm, GPA , can im-

rove the benefit further.

For performance evaluation, we considered four schemes for

ulti-GPU split-and-merge execution: Single-GPU , INDIVIDUAL ,

PTIMAL , and GPA . Single-GPU does not exploit S & M execu-

ion but allows each single kernel to run on a single GPU only. On

he other hand, the other three schemes employ S & Mexecution,

hile differing from each other in terms of the policies for deter-

ining the number of GPUs to assign to each task. INDIVIDUAL

W. Han et al. / The Journal of Systems and Software 117 (2016) 1–14 9

Algorithm 1 GPA - GPU Parallelism Assignment.

1: S← φ
2: R← { τ1 . . . τn }
3: Initialize the number of sub-kernels m i of each task in R to ̂ m i

4: while R is not empty do

5: if R ∪ S is schedulable then

6: return success

7: end if

8: for each candidate τi ∈ R do

9: for each possible number of sub-kernels k from 1 to M G

do

10: change m i to k

11: for each candidate τ j ∈ R ∪ S do

12: R j = End-to-End Response Time Analysis (τ j)

13: end for

14: Z ik ← max
τ j ∈R∪S

R j /D j

15: end for

16: change m i to ̂ m i

17: end for

18: Z ∗ ← min

τi ∈R

Z ik

19: τ ∗
i

← the task that has Z ∗ value

20: k ∗ ← the number of sub-kernels when τ ∗
i

has Z ∗ value

21: change the number of sub-kernels of τ ∗
i

to k ∗

22: S← S ∪ { τ ∗
i
}

23: R← R\{ τ ∗
i
}

24: end while

25: if S is schedulable then

26: return success

27: end if

28: return fail

m

t

o

m

s

a

5

t

h

c

x

N

w

G

t

t

p

l

t

i

i

(

t

n

a

t

i

Table 5

Application specifications.

Index Application Priority Period Exec. GPU Exec.

Time Time

P 1 Matrix Mul. High 400 ms 340 ms 320 ms

P 2 Image Filter Medium 80 ms 50 ms 48 ms

P 3 K-nearest Low 500 ms 80 ms 77 ms

s

h

F

fi

t

t

t

r

P

t

g

l

W

l

O

a

t

d

e

P

T

c

G

b

akes locally optimal decisions from an individual task perspec-

ive in order to minimize the WCET (worst-case execution time)

f each individual task. OPTIMAL finds a globally optimal assign-

ent through exhaustive search, exploring an exponential search

pace of O (M

n
G
) , where n is the number of tasks. GPA follows the

lgorithm described in Algorithm 1 .

.1. Experimental results

We conducted experiments with the GPU-SAM prototype sys-

em to show the need of GPA and to measure scheduling over-

ead.

Experimental Setup. Our experiment was conducted on a ma-

hine that has two NVIDIA GeForce GTX 560Ti GPUs with PCIe 2.0

 16 and Intel Core i5-3550 CPU. The Linux kernel Version 3.5.0-27,

VIDIA proprietary driver Version 331.49, and OpenCL Version 1.1

ere used. The GPU has 8 compute units and the CPU has 4 cores.

PU-SAM uses 4 CPU threads to merge output buffers. We note

hat although our experiment was taken a number of times to ob-

ain WCET, measuring the exact WCET is not in the scope of this

aper.

Preemption size and priority. For better system-wide schedu-

ability, it is necessary to reduce non-preemptive regions on impor-

ant resources (i.e., PCI and GPU) despite some overheads. Chunk-

ng the input/output data and transfer them in a finer-grained way

s a well-known strategy to reduce PCI non-preemptive regions

 Kim et al., 2011). We decide data chunk size as 1MB, which in-

roduces a negligible PCI overhead of less than 1%.

Applications are scheduled as real-time processes by Linux ker-

el, using the SCHED_FIFO scheduling policy. SCHED_FIFO uses

 fixed priority between 1 (lowest) and 99 (highest). We use

he sched_setscheduler function to set priority and schedul-

ng policy of applications.
System-wide schedulability. Table 5 describes the application

et used in this experiment. In practice, matrix multiplications

ave been widely applied to real-time signal processing (e.g., Fast

ourier Transformation using matrix multiplications), and image

ltering is one of the popular methods for real-time object detec-

ion. A k-nearest neighbors algorithm is often employed for real-

ime object recognition. We consider an implicit-deadline applica-

ion set such that the deadline of each application is equal to a pe-

iod. The periods of P 1 and P 2 are arbitrarily set, and the period of

 3 is determined not to exceed the response time of P3 according

o end-to-end response time analysis. Jobs continue to execute re-

ardless of their deadline misses. When a job which misses dead-

ine is finished, a new period of the next job starts immediately.

e measured the execution time of each application, including up-

oad/download copy and kernel launch, when it runs on a vanilla

penCL runtime.

Fig. 7 (a) plots the response time of each job instance of the

pplications under Single-GPU , INDIVIDUAL , and GPA . Response

imes are shown to fluctuate due to non-preemptive regions and

ifferent periods of the applications. Fig. 7 (b) breaks down the ex-

cution times of job instances, into three resources (CPU, GPU, and

CI) when running alone in single-GPU mode and dual-GPU mode.

he total execution times are normalized to the vanilla OpenCL

ase. In single-GPU mode, GPU-SAM does upload copy to both

PUs to assign a job to an available GPU immediately for GPU load

alancing purpose.

(i) Single-GPU . When all three applications run in Single-

GPU mode on two GPUs, the two highest priority applica-

tions, P 1 and P 2 , are free from GPU interference but are sub-

ject to only the blocking effect of their lower-priority appli-

cation, P 3 . Due to the non-preemptive nature of GPU pro-

cessing, such a blocking effect can delay the executions of

P 1 and P 2 by up to the GPU execution time of P 3 , which is

77ms. In such cases, P 1 and P 2 can miss deadlines as shown

in Fig. 7 (a).

(ii) INDIVIDUAL . In order to investigate the influence of split-

and-merge execution, we perform another experiment with

all three applications running in dual-GPU mode. Here,

Fig. 7 (b) shows that each application has a great potential

to reduce response time through parallel GPU execution. As

shown in Fig. 7 (a), P 1 benefits much from S & Mexecution

mainly from reducing the GPU execution time of its sub-

kernel by half. It thereby no longer misses a deadline. On the

other hand, P 2 still suffers from deadline misses although it

runs via S & Mexecution on two GPUs. This is largely be-

cause the S & Mexecution of P 1 can impose interference on

P 2 as much as the GPU execution time of P 1 ’s sub-kernel,

which is 160ms. This illustrates that the S & Mexecution of

one application can help to satisfy its own timing constraint

but threatens the schedulability of its lower-priority applica-

tion.

(iii) GPA . In this example, GPA determines that P 1 and P 2 run

in single-GPU mode, but P 3 does in dual-GPU mode. In this

case, as explained before, P 1 and P 2 are free from GPU inter-

ference on two GPUs, and the amount of blocking time from

P 3 reduces by half through the split-and-merge execution of

P . Fig. 7 (a) shows that P and P are then able to meet
3 1 2

10 W. Han et al. / The Journal of Systems and Software 117 (2016) 1–14

0

500

0

300

0

600

1 51 101 151 201 251

Single-GPU INDIVIDUAL GPA

Deadline of P2

Deadline of P3

Deadline of P1

R
es

po
ns

e
tim

e
(m

s)

P1

P2

P3

Job instances

(a) Response time

0

0.2

0.4

0.6

0.8

1

1.2

O
pe

nC
L

S
in

gl
e-

G
P

U

D
ua

l-G
P

U

O
pe

nC
L

S
in

gl
e-

G
P

U

D
ua

l-G
P

U

O
pe

nC
L

S
in

gl
e-

G
P

U

D
ua

l-G
P

UR
el

at
iv

e
ex

ec
ut

io
n

tim
e

PCI GPU CPU

P1 P2 P3

(b) Job specification

Fig. 7. The response times of job instances and job specifications.

0

20

40

60

80

1 501 1001 1501O
ve

rh
ea

d
pe

r
a

sc
he

du
le

 r
eq

ue
st

(µ

s)

of schedule requests
(= # of sub-kernels + # of data chunks)

Fig. 8. GPU-SAM scheduler overhead.

0
0.2
0.4
0.6
0.8

1

0.6 1.4 2.2

N
or

m
al

iz
ed

sc

he
du

la
bi

lit
y

The total GPU utilization of a task set (UG)

OPTIMAL

GPA

INDIVIDUAL

Single-GPU

Fig. 9. Schedulability, normalized to global optimum algorithm, under different to-

tal GPU utilizations of a task set.

t

u

i

t

F

u

(

w

c

m

n

U

a

b

a

a

t

v

C

o

T

G

t

b

f

b

w

s

t

o
deadlines, while P 3 experiences longer response times, com-

pared to the Single-GPU mode, but still meets its deadline.

This example shows that the S & Mexecution of one applica-

tion can improve the schedulability of higher-priority appli-

cations by reducing its blocking time. It also indicates that

all the applications can satisfy their deadlines when their

GPU parallelism modes are properly determined.

GPU-SAM scheduler overhead. We have measured the over-

head of GPU-SAM scheduler for scheduling and communicating

with SAMCL. The scheduling overhead of the scheduler is mea-

sured by the time taken for priority queue management. Fig. 8

shows the average scheduling overhead of GPU-SAM scheduler

per a schedule request. The x-axis represents a different number of

total schedule requests, and the y-axis represents the average CPU

time used by the scheduler in handing a request. The figure indi-

cates that the overhead is almost linear to the number of schedule

requests; the scheduling overhead per a request of GPU-SAM is

about 12 μs.

The communication overhead is measured by the sum of

elapsed time, from sending a request to successfully receiving it.

The average communication overhead for each request is kept sta-

ble at about 45 μs. In total, the overall overhead for a single re-

quest to be about 57 μs for both communication and scheduling,

which is quite a low overhead. For an instance, Matrix Multiplica-

tion in Table 5 sends 98 requests with split-and-merge execution

over 340 ms of the total execution time. Since 98 requests produce

about 5ms overhead, we can see that it is only 1.6% of the total

execution time, which is acceptable.

5.2. Simulation results

We have carried out simulations to evaluate the performance of

GPA under various task characteristics in comparison to OPTIMAL

as well as Single-GPU and INDIVIDUAL . During the simulations,

we also measured the execution time of GPA .
Simulation environment. Each task τ i was generated according

o the following parameters: (i) Period and deadline (T i = D i) are

niformly chosen in [100, 1000]. (ii) The number of sub-tasks (n i)

s set to 1 + 4 k , where k is randomly selected in [1, 5], and the sub-

asks are mapped to the sequence of {CPU-PCI-GPU-PCI-} k CPU (see

ig. 6). (iii) The total worst-case execution time (WCET) of τ i is

niformly chosen in [5, T i] and arbitrarily distributed to sub-tasks.

iv) The task is chosen to have an inter-kernel data dependency

ith a probability of P D . Then, the overheads of upload/download

opy and kernel execution time in multi-GPU modes were deter-

ined accordingly depending on whether it has the dependency or

ot, based on our benefit and cost analysis shown in Section 4.1 .

We generated 10 0,0 0 0 task sets with a total GPU utilization

 G ranging from 0.1 to M G . GPU-bounded tasks consist of 70% of

ll tasks, PCI-bounded tasks consist of 20%, and the rest are CPU-

ounded. According to the parameters determined as described

bove, we first generated a set of 2 tasks and then keep creating

n additional task set by adding a new task into the old set until

he total GPU utilization U G becomes greater than a pre-specified

alue. During the simulation, the system is assumed to have 4

PUs, 1 PCI, and 4 GPUs.

Simulation results. Fig. 9 plots the schedulability performance

f four schemes (normalized to the OPTIMAL case) when P D = 0 .

he figure shows a widening performance gap between Single-

PU and the globally optimal one (OPTIMAL) with an increasing

otal GPU workload (U G). It also shows that the performance can

ecome worse, compared to OPTIMAL , when decisions are made

rom an individual application’s viewpoint (INDIVIDUAL). This is

ecause some applications can benefit from multi-GPU executions

ith lower response times at the expense of consuming more re-

ources (i.e., PCI, CPU) and, hence, imposing a larger amount of in-

erference on other CPU- and/or PCI-intensive applications. On the

ther hand, the figure shows that the performance of GPA stays

W. Han et al. / The Journal of Systems and Software 117 (2016) 1–14 11

800

1,000

1,200

1,400

0.0 0.2 0.4 0.6 0.8 1.0

T
he

 n
um

be
r

of

sc
he

du
la

bl
e

se
ts

A ratio of tasks with data dependency (PD)

OPTIMAL GPA INDIVIDUAL Single-GPU

Fig. 10. Schedulability under different data dependency task ratios.

0

30

60

3 9 15 21 27

G
P

A
 e

xe
cu

tio
n

tim
e

(m
s)

of tasks

Fig. 11. GPA running time.

v

s

G

s

a

t

S

p

w

i

t

m

M

G

s

w

t

W

f

a

6

2

2

m

d

e

p

w

w

r

p

n

O

r

o

c

f

2

(

c

a

i

s

a

q

a

i

o

t

t

(

a

e

o

s

P

s

q

M

c

r

S

(

t

e

m

f

(

a

G

O

s

G

m

u

i

C

(

m

7

a

e

o

a

y

m

i

p

e

m

c

f

f

a

i

t

i

s

a

m
ery close to OPTIMAL with the loss of up to 19.8% during the

imulation.

Fig. 10 compares four schemes (Single-GPU , INDIVIDUAL ,

PA , and OPTIMAL) in terms of the number of schedulable task

ets when the total GPU utilization U G is fixed to 1.4. The x -

xis represents the probability (P D) with which a task is selected

o have an inter-kernel data dependency. The figure shows that

ingle-GPU stays insensitive to the ratio of tasks with data de-

endency, while all the other schemes have lower performances

hen the ratio increases. This is because inter-kernel dependency

nherently requires additional data transfer in multi-GPU modes

o maintain data coherence across GPUs. In spite of such perfor-

ance degradation, GPA yields nearly the same results as OPTI-

AL does.

GPA running time. We have measured the execution time of

PA . Fig. 11 shows the average execution time of GPA with re-

pect to the number of tasks. We randomly generate 10 0 0 task sets

hose utilizations range from 0.1 to 4.0. We note that GPU execu-

ion mode assignment is required only when a new task comes in.

hen the number of tasks is 30, assigning GPU execution mode

or all tasks takes less than 100 ms, which seems to be acceptable

s an occasional event handling overhead.

. Related work

Multi-GPU Split-and-Merge support. Several works (Luk et al.,

009; Kim et al., 2011; Lee et al., 2013; Pandit and Govindarajan,

014) employed multi-GPU split-and-merge execution for perfor-

ance improvement from the viewpoint of a single kernel. They

iffer in terms of portability and applicability. In portability, an

arlier work (Luk et al., 2009) requires programmers to write

rograms through the new API to use split-and-merge execution,

hile the others require no code modification. The applicability of

orks (Luk et al., 2009; Kim et al., 2011) is limited to the case of

egular memory access, while the others support irregular access

atterns as well. They analyze the memory access pattern of a ker-

el and transfer partial memory region each GPU reads and writes.

n the other hand, our approach transfers all candidate memory

egion. Though our approach is not efficient and needs to merge

utputs, it is able to transparently cope with irregular memory ac-

ess patterns without any code modification. Our work can be dif-

erentiated from all the above works (Luk et al., 2009; Kim et al.,

011; Lee et al., 2013; Pandit and Govindarajan, 2014) as follows:

i) none of them considers the issues involved supporting real-time
onstraints, (ii) none of them offers open source implementation,

nd (iii) our work proposes an analysis-based policy for determin-

ng how many GPUs to be used by each application to improve the

chedulability of an entire system.

Real-time GPU support. The non-preemptive nature of GPU

nd DMA architecture could introduce priority inversion. The re-

uests of higher-priority GPGPU applications for memory copy

nd/or kernel launch may be blocked when lower-priority ones are

nvolved in memory operations and/or kernel execution. A couple

f approaches (Kato et al., 2011; Basaran and Kang, 2012) were in-

roduced to reduce the maximum possible blocking time, sharing

he principle of making non-preemptible regions smaller. RGEM

 Kato et al., 2011) presents a user-space runtime solution that splits

 memory-copy transaction into multiple smaller ones with pre-

mption available between smaller transactions. Both RGEM and

ur work employ fixed priority scheduling, so they maintain global

cheduling queues and control the access to resources (GPU and

CI) according to priority. In RGEM, global scheduling queues re-

ide in a POSIX shared memory, and applications access to the

ueues through POSIX shared memory APIs. In GPU-SAM, SAM

anager maintain global scheduling queues, and applications ac-

ess to the queues through POSIX message queue. Access to the

esources is controlled by POSIX semaphore in RGEM, while GPU-

AM controls through POSIX message queue. Basaran and Kang

2012) propose to decompose a kernel into smaller sub-kernels

o allow preemption between sub-kernel boundaries. Berezovskyi

t al. (2012) introduce a method to calculate the worst-case

akespan of a number of threads within a kernel, which is useful

or an estimate of worst-case execution time. Elliott and Anderson

2012) present a robust interrupt handling method for multi-CPU

nd multi-GPU environments on top of closed-source GPU drivers.

Dev (Kato et al., 2012) integrates GPU resource management into

S to facilitate the OS-managed sharing of GPU resource, for in-

tance, allowing different CPU processes to share GPU memory.

PUSync (Elliott et al., 2013) introduces a lock-based multi-GPU

anagement for real-time systems. They allow kernel migration

sing peer-to-peer memory copy, and the migration cost predictor

s introduced to decide migration. Various configurations of multi-

PU and multi-GPU systems are explored in Elliott and Anderson

2014) . However, none of them in this category considers split-and-

erge execution across multiple GPUs.

. Conclusion

This paper presents GPU-SAM to accelerate the massive par-

llelism in real-time multi-GPU systems through split-and-merge

xecution. We analyze the impact of split-and-merge execution of

ne application on the application itself and the other applications,

nd reflect it into schedulability analysis. Building upon the anal-

sis, we develop an algorithm, called GPA , that determines the

ulti-GPU parallel execution mode of each application. Our exper-

mental and simulation results show that S & M execution can im-

rove the system-wide schedulability substantially and can bring

ven much more improvement when the multi-GPU parallelism

ode is properly determined by GPA .

As a preliminary study, this paper focuses on multi-GPU exe-

ution mode assignment in supporting split-and-merge execution

or real-time systems. However, there are many other issues worth

urther investigation. In this paper, we assume the priority of each

pplication is predefined, while appropriate priority ordering can

mprove schedulability further. This is an interesting topic for fu-

ure research. S & M execution inherently imposes overheads by

ntroducing additional data transfer. Such overheads can be sub-

tantially reduced by utilizing peer-to-peer memory transfer, such

s (NVIDIA GPUDirect, 2012), to facilitate data transfer between

ultiple GPUs. In addition, those overheads can be dramatically

12 W. Han et al. / The Journal of Systems and Software 117 (2016) 1–14

n

6

d

(

c

T

d

h

w

&

(

o

w

o

y

c

5

A

a

b

h

c

t

t

o

w

d

s

a

l

b

a

T

o

p

a

l

s

a

L

f

h

e
reduced in on-chip GPU systems (e.g., AMD Llano Branover et al.,

2012) where GPU shares main memory with CPUs. We plan to

extend GPU-SAM towards heterogeneous multiple CPUs/GPUs, in-

cluding on-chip GPU and other accelerators such as FPGAs and

DSPs. Our work is portable to such heterogeneous systems, but

there exist difficulties to balance workload in the systems. Since

the performance difference of heterogenous devices depends not

only on hardware specifications but also on application character-

istics, deep performance analysis techniques capturing those effect

are required to balance workload in such heterogeneous systems.

As an open source framework, we hope GPU-SAM could facili-

tate future research on leveraging S & M execution for real-time

multi-GPU systems. Another direction of future work is to extend

our system taking into consideration architectural characteristics

(Ding and Zhang, 2012; Ding et al., 2013; Ding and Zhang, 2013;

Zhang and Ding, 2014; Liu and Zhang, 2015; Liu and Zhang, 2014),

parallelism (Wang et al., 2015), or energy (Anne and Muthukumar,

2013).

Acknowledgment

This work was supported in part by BSRP (NRF-

2015R1D1A1A01058713, NRF-2010-0 0 0 6 650, NRF-

2012R1A1A1014930), IITP (2011-10041313, B0101-15-0557), ICT/SW

Creative research program (R2215-15-1019), NCRC (2010-0028680),

and NRF(2015M3A9A7067220) funded by the Korea Government

(MEST/MSIP/MOTIE). This work was also conducted at High-Speed

Vehicle Research Center of KAIST with the support of Defense Ac-

quisition Program Administration (DAPA) and Agency for Defense

Development (ADD).

Appendix A. Workspace allocation scheme

In Section 3 , we explained our workspace allocation scheme to

divide a workspace into several sub-workspaces. Two factors are

considered to design the scheme. Firstly, applications utilize mem-

ory bandwidth of a GPU with coalesced memory access. Therefore,

dividing a certain dimension can cause performance loss when the

application accesses memory along the dimension. Secondly, we do

not know dimensions which applications access along. If an appli-

cation accesses memory along the x-dimension but the length of

the x -dimension is too short, dividing the x-dimension can cause

performance loss since memory bandwidth can be underutilized.

This is the worst-case situation that we must avoid. On the other

hand, if the length of the x -dimension is long enough, dividing

the x -dimension would not cause performance loss since memory

bandwidth can be still utilized. From the observations, we design

workload allocation scheme which maximizes the minimum length

of dimensions as much as possible to avoid the worst-case.

Fig. A.1 shows normalized kernel execution times of workspaces

to validate our scheme. we prepare two matrix multiplication ker-
0

0.2

0.4

0.6

0.8

1

(64, 8192) (64, 8192) (64, 4096) (8192, 64) (4096, 64) (8192, 32)

(64, 8192) (8192, 64)N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Dimensions of workspaces

Fig. A.1. Normalized kernel execution times of workspaces.

b

(

a

n

m

r

d

B

t

B

t

t

m

e

els with the same size of workspaces, (64, 8192) and (8192,

4), respectively, and divide them along x -dimensions and y -

imensions in half. When dividing the first kernel with workspace

64,8192) into two sub-kernels with workspace (32,8192), the exe-

ution time of each sub-kernel is 93% of that of the original kernel.

his is the worst-case situation where memory bandwidth is un-

erutilized. In the case, split-and-merge execution with dual-GPU

as a benefit of only 7%. A sub-kernel with workspace (64,4096),

hich is result of our scheme, can have a beneift of 50% through S

 M execution. When dividing the second kernel with workspace

8192,64) under the scheme, we divide the x-dimension, but length

f x -dimension, 4096, is long enough to utilize memory band-

idth. Finally, a sub-kernel of workspace (8192,32) utilizes mem-

ry bandwidth enough and has a benefit of 50%, since dividing the

 -dimension does not affect memory bandwidth utilization. In con-

lusion, our scheme is designed to avoid the worst-case and has

0% benefits always in the case.

ppendix B. Implementation Details

In Section 3 , we briefly explained how GPU-SAM enables split-

nd-merge execution of kernels. This appendix describes missing,

ut important implementation details for supporting (i) data co-

erency and correctness and (ii) inter-kernel dependency .

Data coherency and correctness. Originally, an OpenCL appli-

ation is programmed to run on a single GPU so that the applica-

ion allocates all the objects in one GPU. Upon each object alloca-

ion by the application, GPU-SAM duplicates the object allocation

n another GPU.

As one of the objects, buffers can be allocated as read-only or

ritable on GPUs. Read-only buffers are used only for the input

ata, and writable buffers can be also used as output buffers that

tore computation results. For memory coherency, the buffers cre-

ted in multiple GPUs should have the same data before kernel

aunch. Since writable buffers are subject to change, when writable

uffer B 1 is created on GPU 1 , GPU-SAM creates B 2 on GPU 2 , and

llocates a shadow buffer B S of the same size on the host memory.

he shadow buffer is then used for synchronization and merge; the

utput merger merges B 1 and B 2 into B S , and an additional com-

onent of SAMCL, Buffer Synchronizer , copies the data in B S into B 1
nd B 2 when data coherence is enforced for B 1 and B 2 (right before

aunching a kernel that accesses B 1 and B 2).

Once buffers are created, the application requests to transfer

ome input data from the host memory to all the buffers so that

n individual sub-kernel can run with its own copy of input data.

ast, the data is transferred to the corresponding shadow buffer B S
or coherence purpose and merging.

Before every kernel launch, the buffer synchronizer enforces co-

erence for all the buffers of sub-kernels of K across GPUs before

very kernel launch. There can be some uninitialized data in the

uffer due to lack of support on some proper memory operations

i.e., memset()) in some OpenCL version (i.e., 1.1). In order for

ll the buffers to contain consistent data, the buffer synchronizer

eeds to duplicate the data of B S to B 1 and B 2 , clearing dirty bits.

After all the kernels complete the execution, the output merger

erges all the output buffers of sub-kernels to produce the final

esult. For output merging, let B [i] indicate the element of B of in-

ex i . The output merger duplicates B 1 and B 2 to temporary buffers

T
1

and B T
2

on the host memory. It then compares each element of

he shadow buffer B S [i] to B
T
1

[i] and B T
2

[i] , and overwrites B S [i] with

T
1 [i] or B T 2 [i] if B S [i] differs from B T 1 [i] or B T 2 [i] . Since we assume

hat there is no global barrier, and the buffer synchronizer ensures

hat B 1 and B 2 contain the same data before kernel launch, there

ust be no conflict; if B T 1 [i] is not equal to B S [i], B T 2 [i] must be

qual to B [i], and vice versa.
S

W. Han et al. / The Journal of Systems and Software 117 (2016) 1–14 13

Table C.1

A full list of benchmark specifications.

Input Output

Benchmark Source Type # of data Total Size Type # of data Total Size WorkGroups Kernel Dependency Correctness

AESEncrypt/Decrypt AMD Bitmap image 2048 × 2048 12MB Bitmap image 2048 × 2048 12MB 12288 X O

AtomicCounters AMD # of integers 1M 4MB 32-bit integer 1 4Byte 8192 X X

BinarySearch AMD # of integers 1M 4MB 32-bit integers 4 16Byte 16 X O

BinomialOption AMD # of Stock Price 16384 256KB FP numbers 16384 256KB 255 X O

BitonicSort AMD # of integers 1048576 4MB 32-bit integers 1048576 4MB 524288 O O

BlackScholes NVIDIA # of Stock Price 1048576 4MB FP numbers 2097152 8MB 1024 X O

BoxFilter AMD Bitmap image 1024 × 1024 4MB Bitmap image 1024 × 1024 4MB 4096 O O

DCT8x8x NVIDIA # of FP numbers 166777216 16MB FP numbers 166777216 16MB 8192 O O

DotProduct NVIDIA # of FP numbers 5111808 39MB FP numbers 1277952 4875KB 4992 X O

DwtHarr1D AMD # of FP numbers 1M 4MB FP numbers 1048576 4MB 512 X O

DXTCompression NVIDIA Image 512 × 512 4MB Array 32768 128KB 16384 O O

FastWalshTransform AMD # of FP numbers 1M 4MB FP numbers 1048576 4MB 2048 O O

FDTD3d NVIDIA Volume Size 376 3 216MB Volume 376 3 216MB 564 O O

Filter CUSTOM Bitmap image 1024 × 768 768KB Bitmap image 1024 × 768 768KB 768 X O

FloydWarshall AMD # of Nodes 256 256KB Nodes 256 256KB 256 O O

HiddenMarkovModel NVIDIA # of state 4096 64MB Sequences 100 400Byte 4096 O O

Histogram AMD # of 8-bits 16 millions 16MB Integers 256 1KB 512 X O

HistogramAtomics AMD # of 8-bits 16 millions 16MB Integers 256 1KB 512 X X

K-nearest CUSTOM # of FP numbers 1024 × 32 128KB # of FP numbers 1024 × 320 1280KB 128 X O

MatrixMultiplication NVIDIA Matrix Size 2048 × 2048 32MB Matrix 2048 × 2048 16MB 4096 X O

MatrixTranspose AMD Matrix Size 2048 × 2048 16MB Matrix 2048 × 2048 16MB 16384 X O

MatVecMul NVIDIA Matrix Size 1100 × 60981 255MB Vector 1100 255KB 239 X O

MersenneTwister NVIDIA # of matrices 4096 64KB FP numbers 228M 91MB 32 O O

Pagerank CUSTOM # of FP numbers 4 millions 16MB # of FP numbers 4 millions 16MB 4096 O O

PrefixSum AMD # of integers 2K 8KB Integers 2K 8KB 2 X O

QuasiRandomSequence AMD # of vectors 1024 1KB FP numbers 8192 8KB 8 X O

RadixSort NVIDIA # of FP numbers 1M 4MB FP numbers 1M 4MB 4096 O O

RecursiveGaussian AMD Matrix Size 512 × 512 1MB Matrix 512 × 512 1MB 2 O O

Reduction NVIDIA Array Size 1M 4MB Integer 1 4Byte 512 O O

ScanLargeArrays AMD Array Size 1K 4KB Array 1K 4KB 4 O O

SimpleConvolution AMD Matrix Size 64 × 64 16KB Matrix 64 × 64 16KB 16 X O

SobelFilter AMD Bitmap image 512 × 512 1MB Bitmap image 512 × 512 1MB 1024 X O

SortingNetworks NVIDIA # of Arrays 64 × 16384 4MB Arrays 64 × 16384 4MB 2048 O O

Tridiagonal NVIDIA # of Systems 128 × 16384 8MB Systems 128 × 16384 8MB 16384 O O

VectorAdd NVIDIA # of FP numbers 114 4 47872 436MB FP numbers 114 4 47872 436MB 447062 X O

h

t

n

F

d

o

t

t

K

o

K

a

k

t

p

c

t

A

A

S

d

p

s

a

q

p

b

E

r

o

R

A

B

B

B

B

C

C

C

C

D

D

D

D

E

E

E

G

G
Both merge and synchronization need data transfer between

ost memory and GPU memory. Because it is costly, GPU-SAM

ries to reduce the number of transfers as much as possible by run-

ing the output merger and the buffer synchronizer on-demand.

or an instance, prevent unnecessary synchronization, GPU-SAM

oes not create the shadow buffer for read-only buffer.

Inter-kernel dependency. Output merge can also happen with-

ut explicit buffer read requests when applications consist of mul-

iple inter-dependent kernels. GPU-SAM handles such cases in

he following way. Consider a kernel K with its two sub-kernels

 1 and K 2 executing on two GPUs, and writing their own partial

utputs on B 1 and B 2 , respectively. Then, suppose another kernel

′ has two sub-kernels K

′
1 and K

′
2 that want to execute individu-

lly on two GPUs, taking as input the output data of its preceding

ernel K . Since the output data of K is split in B 1 and B 2 , the par-

ial output results should be merged into their shadow buffer as

reviously described. When output merging ends, the buffer syn-

hronizer copies B S back to B 1 and B 2 , making K

′
1

and K

′
2

be ready

o launch.

ppendix C. Benchmark results

Table C.1 shows a full list of benchmark specifications from

MD and NVIDIA SDK used for the benefit and cost analysis (see

ection 4.1). It contains input/output data type, the number of

ata, total data size, the number of work-groups, inter-kernel de-

endencies, and correctness on multi-GPU execution. We exclude

ome AMD applications that can be executed only on AMD GPUs,

nd applications for testing purpose (i.e., bandwidth, rendering

uality, and simple functionality). Note that GPU-SAM cannot

roduce correct output for AtomicCounters and HistogramAtomics

ecause they use atomic instructions for global synchronization.

xcept those applications, all the others introduce correct results

egardless of existence of kernel dependencies and irregular mem-

ry access patterns.
eferences

nne, N. , Muthukumar, V. , 2013. Energy aware scheduling of aperiodic real-time

tasks on multiprocessor systems. J. Comput. Sci. Eng. 7 (1), 30–43 .
asaran, C. , Kang, K.-D. , 2012. Supporting preemptive task executions and memory

copies in GPGPUs. In: ECRTS .
erezovskyi, K. , Bletsas, K. , Andersson, B. , 2012. Makespan computation for GPU

threads running on a single streaming multiprocessor. In: ECRTS .
ertogna, M. , Cirinei, M. , 2007. Response-time analysis for globally scheduled sym-

metric multiprocessor platforms. In: RTSS, pp. 149–160 .

ranover, A. , Foley, D. , Steinman, M. , 2012. AMD fusion APU: Llano. IEEE M. 32 (2),
28–37 .

hen, D. , Singh, D. , 2012. Invited paper: Using opencl to evaluate the efficiency of
cpus, gpus and fpgas for information filtering. In: Proceedings of 2012 22nd

International Conference on Field Programmable Logic and Applications (FPL).
IEEE .

hwa, H.S. , Lee, J. , Phan, K.-M. , Easwaran, A. , Shin, I. , 2013. Global EDF schedulability

analysis for synchronous parallel tasks on multicore platforms. In: ECRTS .
UDA, https://developer.nvidia.com/cuda-zone (Accessed 2015).

zajkowski, T.S. , Aydonat, U. , Denisenko, D. , Freeman, J. , Kinsner, M. , Neto, D. ,
Wong, J. , Yiannacouras, P. , Singh, D.P. , 2012. From opencl to high-performance

hardware on FPGAS. In: Proceedings of 2012 22nd International Conference on
Field Programmable Logic and Applications (FPL). IEEE .

ing, Y. , Wu, L. , Zhang, W. , 2013. Bounding worst-case DRAM performance on multi-

core processors. J. Comput. Sci. Eng. 7 (1), 53–66 .
ing, Y. , Zhang, W. , 2012. Multicore-aware code co-positioning to reduce WCET on

dual-core processors with shared instruction caches. J. Comput. Sci. Eng. 6 (1),
12–25 .

ing, Y. , Zhang, W. , 2013. Multicore real-time scheduling to reduce inter-thread
cache interferences. J. Comput. Sci. Eng. 7 (1), 67–80 .

u, P. , Weber, R. , Luszczek, P. , Tomov, S. , Peterson, G. , Dongarra, J. , 2012. From CUDA
to OpenCL: Towards a performance-portable solution for multi-platform gpu

programming. Parallel Comput. 38 (8), 391–407 .

lliott, G. , Anderson, J. , 2012. Robust real-time multiprocessor interrupt handling
motivated by GPUS. In: ECRTS .

lliott, G. , Ward, B. , Anderson, J. , 2013. GPUSync: a framework for real-time GPU
management. In: RTSS .

lliott, G.A. , Anderson, J.H. , 2014. Exploring the multitude of real-time multi-GPU
configurations. In: RTSS .

arcia, C. , Botella, G. , Ayuso, F. , Prieto, M. , Tirado, F. , 2013. Multi-GPU based on mul-

ticriteria optimization for motion estimation system. EURASIP J. Adv. Signal Pro-
cess. 2013 (1), 1–12 .

uan, N. , Stigge, M. , Yi, W. , Yu, G. , 2009. New response time bounds of fixed priority
multiprocessor scheduling. In: RTSS .

http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0057
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0057
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0057
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0001
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0001
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0001
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0002
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0002
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0002
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0002
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0003
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0003
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0003
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0004
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0004
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0004
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0004
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0005
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0005
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0005
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0006
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0006
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0006
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0006
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0006
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0006
https://developer.nvidia.com/cuda-zone
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0007
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0007
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0007
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0007
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0007
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0007
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0007
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0007
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0007
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0007
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0052
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0052
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0052
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0052
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0051
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0051
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0051
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0053
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0053
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0053
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0008
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0008
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0008
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0008
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0008
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0008
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0008
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0009
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0009
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0009
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0010
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0010
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0010
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0010
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0011
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0011
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0011
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0012
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0012
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0012
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0012
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0012
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0012
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0013
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0013
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0013
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0013
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0013

14 W. Han et al. / The Journal of Systems and Software 117 (2016) 1–14

S

S

S

T

W

Z

2

o

S

t

H

a

n

p

y

t

I

C

2

H

r

S

s

H

s

(

c

s

a

I

a

v

v

a

s

e

a

h

S

b

P

i

Homm, F. , Kaempchen, N. , Ota, J. , Burschka, D. , 2010. Efficient occupancy grid com-
putation on the GPU with lidar and radar for road boundary detection. In: IEEE

Intelligent Vehicles Symposium (IV) .
Karrenberg, R. , Hack, S. , 2012. Improving performance of OpenCL on cpus. In: Com-

piler Construction. Springer .
Kato, S. , Lakshmanan, K. , Kumar, A. , Kelkar, M. , Ishikawa, Y. , Rajkumar, R. , 2011.

Rgem: A responsive GPGGU execution model for runtime engines. In: RTSS .
Kato, S. , McThrow, M. , Maltzahn, C. , Brandt, S. , 2012. Gdev: first-class GPU resource

management in the operating system. In: USENIX ATC .

Khronos, OpenCL, https://www.khronos.org/opencl/ (Accessed 2015).
Kim, J. , Kim, H. , Lee, J.H. , Lee, J. , 2011. Achieving a single compute device image in

opencl for multiple gpus. In: PPoPP .
Lee, J. , Samadi, M. , Park, Y. , Mahlke, S. , 2013. Transparent CPU-GPU collaboration for

data-parallel kernels on heterogeneous systems. In: PACT .
Lee, J. , Shin, K.G. , 2014. Imporvement of real-time multi-core schedulability with

forced non-preemption. IEEE Tran. Parallel Distrib. Syst. 25 (5), 1233–1243 .

Li, J.-J. , Kuan, C.-B. , Wu, T.-Y. , Lee, J.K. , 2012. Enabling an opencl compiler for em-
bedded multicore dsp systems. In: Proceedings of 2012 41st International Con-

ference on Parallel Processing Workshops (ICPPW),. IEEE .
Liu, Y. , Zhang, W. , 2014. Two-level scratchpad memory architectures to achieve time

predictability and high performance. J. Comput. Sci. Eng. 8 (4), 215–227 .
Liu, Y. , Zhang, W. , 2015. Scratchpad memory architectures and allocation algorithms

for hard real-time multicore processors. J. Comput. Sci. Eng. 9 (2), 51–72 .

Luk, C.-K. , Hong, S. , Kim, H. , 2009. Qilin: exploiting parallelism on heterogeneous
multiprocessors with adaptive mapping. In: MICRO-42 .

Madsen, C. , Laursen, R. , 2007. A scalable gpu-based approach to shading and shad-
owing for photo-realistic real-time augmented reality. In: Proceedings of Inter-

national Conference on Computer Graphics Theory and Applications, pp. 252–
261 .

Nagendra, P. , 2011. Performance characterization of automotive computer vision sys-

tems using graphics processing units (GPUS). In: Proceedings of IEEE Image In-
formation Processing (ICIIP) .

Noaje, G. , Krajecki, M. , Jaillet, C. , 2010. Multigpu computing using MPI or OpenMP.
In: Proceedings of 2010 IEEE International Conference on Intelligent Computer

Communication and Processing (ICCP). IEEE .
Nordin, P. Obstacle-Avoidance Control-Candidate Evaluation Using a GPU. http://

www.computer- graphics.se/gpu- computing/Presentations/gpgpuPeterNordin.pdf

NVIDIA, GPUDirect, http://developer.nvidia.com/gpudirect (Accessed 2014).
NVIDIA. GTC, 2014. http://www.gputechconf.com/highlights/2014-replays . Keynote

(Accessed 2014).
Oculus VR, 2012. https://www.oculus.com/rift/ (Accessed 2012).

Palencia, J. , Harbour, H. , 1998. Schedulability analysis for tasks with static and dy-
namic offsets. In: RTSS .

Palencia, J. , Harbour, H. , 1999. Exploiting precedence relations in the schedulability

analysis of distributed real-time systems. In: RTSS .
Palencia, J. , Harbour, H. , 2003. Offset-based response time analysis of distributed

systems scheduled under EDF. In: ECRTS .
Pandit, P. , Govindarajan, R. , 2014. Fluidic kernels: cooperative execution of openCl

programs on multiple heterogeneous devices. In: Proceedings of Annual
IEEE/ACM International Symposium on Code Generation and Optimization .

Parker, S.G. , Bigler, J. , Dietrich, A. , Friedrich, H. , Hoberock, J. , Luebke, D. ,
McAllister, D. , McGuire, M. , Morley, K. , Robison, A. , et al. , 2010. Optix: a gen-

eral purpose ray tracing engine. In: ACM Transactions on Graphics (TOG), Vol.

29. ACM, p. 66 .
Pellizzoni, R. , Lipari, G. , 2005. Improved schedulability analysis of real-time transac-

tions with earliest deadline scheduling. In: RTAS .
Rodriguez-Donate, C. , Botella, G. , Garcia, C. , Cabal-Yepez, E. , Prieto-Matias, M. , 2015.

Early experiences with opencl on fpgas: Convolution case study. In: Proceedings
of 2015 IEEE 23rd Annual International Symposium on Field-Programmable Cus-

tom Computing Machines (FCCM). IEEE .

Shagrithaya, K. , Kepa, K. , Athanas, P. , 2013. Enabling development of openCL applica-
tions on FPGA platforms. In: Proceedings of 2013 IEEE 24th International Con-

ference on Application-Specific Systems, Architectures and Processors (ASAP).
IEEE .
izintsev, M. , Kuthirummal, S. , Samarasekera, S. , Kumar, R. , Sawhney, H.S. ,
Chaudhry, A. , 2010. GPU accelerated realtime stereo for augmented reality. In:

Proceedings of International Symposium on 3D Data Processing, Visualization
and Transmission (3DPVT) .

tuart, J. , Owens, J.D. , et al. , 2011. Multi-GPU mapreduce on GPU clusters. In: Pro-
ceedings of 2011 IEEE International Parallel & Distributed Processing Sympo-

sium (IPDPS),. IEEE .
ulon, 2014. http://sulontechnologies.com (Accessed 2014).

indell, K. , Clark, J. , 1994. Holistic schedulability analysis for distributed hard real-

time systems. Elsevier Microprocess. Microprogr. 40(2–3), 117–134 .
ang, Y. , An, H. , Liu, Z. , Li, L. , Yu, L. , Zhen, Y. , 2015. Speculative parallelism char-

acterization profiling in general purpose computing applications. J. Comput. Sci.
Eng. 9 (1), 20–28 .

Zhang, W. , Ding, Y. , 2014. Exploiting standard deviation of CPI to evaluate architec-
tural time-predictability. J. Comput. Sci. Eng. 8 (1), 34–42 .

hou, L. , Fürlinger, K. , 2015. Dart-cuda: A PGAS runtime system for multi-GPu sys-

tems. In: Proceedings of 2015 14th International Symposium on Parallel and
Distributed Computing (ISPDC). IEEE .

Wookhyun Han received B.S. and M.S. degree in Computer Science in 2011, and
013, respectively, from KAIST (Korea Advanced Institute of Science and Technol-

gy), South Korea. He is currently working towards the Ph.D. degree in Computer
cience from KAIST. His research interests include resource management in real-

ime embedded systems and cyber-physical systems.

oon Sung Chwa received B.S. and M.S. degrees in Computer Science in 2009

nd 2011, respectively, from KAIST (Korea Advanced Institute of Science and Tech-
ology), South Korea. He is currently working toward the Ph.D. degree in Com-

uter Science from KAIST. His research interests include system design and anal-
sis with timing guarantees and resource management in real-time embedded sys-

ems and cyber-physical systems. He won two best paper awards from the 33rd

EEE Real-Time Systems Symposium (RTSS) in 2012 and from the IEEE International
onference on Cyber-Physical Systems, Networks, and Applications (CPSNA) in

014.

widong Bae received B.S. and M.S. degrees in Computer Science in 2010 and 2012,
espectively, from KAIST (Korea Advanced Institute of Science and Technology),

outh Korea. His research interests include real-time systems and cyber-physical

ystems.

yosu Kim received B.S degree in Computer Science from Sungkyunkwan Univer-
ity (SKKU), South Korea in 2010 and M.S. degree in Computer Science from KAIST

Korea Advanced Institute of Science and Technology), South Korea in 2012. He is
urrently working toward the Ph.D. degree in Computer Science from KAIST. His re-

earch interests include mobile resource management in real-time mobile systems
nd cyber-physical systems.

nsik Shin is currently an associate professor in Department of Computer Science
t KAIST, South Korea, where he joined in 2008. He received a B.S. from Korea Uni-

ersity, an M.S. from Stanford University, and a Ph.D. from University of Pennsyl-
ania all in Computer Science in 1994, 1998, and 2006, respectively. He has been

 post-doctoral research fellow at Malardalen University, Sweden, and a visiting
cholar at University of Illinois, Urbana-Champaign until 2008. His research inter-

sts lie in cyber-physical systems and real-time embedded systems. He is currently

 member of Editorial Boards of Journal of Computing Science and Engineering. He
as been co-chairs of various workshops including satellite workshops of RTSS, CP-

Week and RTCSA and has served various program committees in real-time em-
edded systems, including RTSS, RTAS, ECRTS, and EMSOFT. He received best paper

awards, including Best Paper Awards from RTSS in 2003 and 2012, Best Student
aper Award from RTAS in 2011, and Best Paper runner-ups at ECRTS and RTSS

n 2008.

http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0014
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0014
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0014
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0014
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0014
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0015
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0015
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0015
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0016
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0016
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0016
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0016
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0016
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0016
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0016
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0017
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0017
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0017
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0017
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0017
https://www.khronos.org/opencl/
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0018
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0018
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0018
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0018
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0018
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0019
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0019
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0019
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0019
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0019
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0020
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0020
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0020
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0021
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0021
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0021
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0021
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0021
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0055
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0055
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0055
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0056
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0056
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0056
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0022
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0022
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0022
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0022
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0023
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0023
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0023
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0024
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0024
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0025
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0025
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0025
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0025
http://www.computer-graphics.se/gpu-computing/Presentations/gpgpuPeterNordin.pdf
http://developer.nvidia.com/gpudirect
http://www.gputechconf.com/highlights/2014-replays
https://www.oculus.com/rift/
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0026
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0026
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0026
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0027
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0027
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0027
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0028
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0028
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0028
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0029
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0029
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0029
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0030
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0030
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0030
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0030
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0030
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0030
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0030
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0030
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0030
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0030
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0030
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0030
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0031
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0031
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0031
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0032
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0032
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0032
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0032
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0032
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0032
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0033
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0033
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0033
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0033
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0034
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0034
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0034
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0034
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0034
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0034
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0034
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0035
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0035
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0035
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0035
http://sulontechnologies.com
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0036
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0036
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0036
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0058
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0058
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0058
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0058
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0058
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0058
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0058
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0054
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0054
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0054
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0037
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0037
http://refhub.elsevier.com/S0164-1212(16)00045-5/sbref0037

	GPU-SAM: Leveraging multi-GPU split-and-merge execution for system-wide real-time support
	1 Introduction
	2 Background
	3 GPU-SAM framework
	3.1 Overview of split-and-merge execution
	3.2 Implementation issues

	4 Split-and-merge execution for system-wide real-time support
	4.1 Benefit and cost analysis
	4.2 Schedulability analysis
	4.3 GPU parallelism assignment

	5 Experimental andsimulation results
	5.1 Experimental results
	5.2 Simulation results

	6 Related work
	7 Conclusion
	 Acknowledgment
	Appendix A Workspace allocation scheme
	Appendix B Implementation Details
	Appendix C Benchmark results
	 References

