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Recent embedded systems are becoming integrated systems with components of different criticality. To tackle

this, mixed-criticality systems aim to provide different levels of timing assurance to components of different

criticality levels while achieving efficient resource utilization. Many approaches have been proposed to exe-

cute more lower-criticality tasks without affecting the timeliness of higher-criticality tasks. Those previous

approaches however have at least one of the two limitations; i) they penalize all lower-criticality tasks at once

upon a certain situation, or ii) they make the decision how to penalize lower-criticality tasks at design time.

As a consequence, they under-utilize resources by imposing an excessive penalty on low-criticality tasks. Un-

like those existing studies, we present a novel framework, called MC-ADAPT, that aims to minimally penalize

lower-criticality tasks by fully reflecting the dynamically changing system behavior into adaptive decision

making. Towards this, we propose a new scheduling algorithm and develop its runtime schedulability analy-

sis capable of capturing the dynamic system state. Our proposed algorithm adaptively determines which task

to drop based on the runtime analysis. To determine the quality of task dropping solution, we propose the

speedup factor for task dropping while the conventional use of the speedup factor only evaluates MC sched-

uling algorithms in terms of the worst-case schedulability. We apply the speedup factor for a newly-defined

task dropping problem that evaluates task dropping solution under different runtime scheduling scenarios.

We derive that MC-ADAPT has a speedup factor of 1.619 for task drop. This implies that MC-ADAPT can

behave the same as the optimal scheduling algorithm with optimal task dropping strategy does under any

runtime scenario if the system is sped up by a factor of 1.619.
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1 INTRODUCTION

One of the growing trends in safety-critical embedded systems is towards increasing complex sys-

tems with various applications of different importance or criticality. Their real-world examples are

avionics systems [18] and automotive systems [1]. These systems are called Mixed-Criticality (MC)

systems, which integrate multiple components with different criticality levels on a single comput-

ing platform. The main design goal for MC systems is to provide different levels of assurance to

functionalities of different criticality levels, while achieving efficient resource utilization.

Since the seminal work of Vestal [22], a vast amount of work has been developed for scheduling

of real-time MC systems (see [7] for a survey). In typical approaches, the system has two levels of

criticality (high and low), and a high-criticality task comprises of two WCET (Worst-Case Execu-

tion Time) estimates with different levels of confidence. Each high-criticality task typically starts in

the low-criticality mode during which it completes execution without exceeding a low-confidence

WCET estimate. Upon overrunning the low-confidence WCET estimate, the task is considered

to transit to the high-criticality mode during which it can execute up to its pessimistic (high-

confidence) WCET estimate. A typical requirement for MC systems is that 1) all high-criticality

tasks always satisfy their deadlines and 2) all low-criticality tasks meet deadlines as long as all

high-criticality tasks remain in the low-criticality modes. A major challenge is to guarantee the

MC-schedulability while at the same time improving resource utilization.

A vast majority of existing solutions [2, 3, 6, 9—11, 13, 15, 17, 20, 21] employ an assumption of

system-level mode switch that when a task exhibits high-criticality behavior by violating its low-

confidence WCET estimate, all the other high-criticality tasks also show high-criticality behavior

simultaneously. Upon any task transiting to the high-criticality mode, those existing solutions

commonly penalize all of the low-criticality tasks, i.e., either by dropping all [2, 3, 9, 13, 20] or

degrading all the services offered to them [6, 10, 11, 15, 17, 21]. However, this is overly pessimistic,

because not all high-criticality tasks necessarily violate their low-confidence WCET estimates at

the same time. For example in automotive, it is a rare case that both adaptive cruise control (ACC)

component and anti-lock braking system (ABS) component simultaneously violate the normal

ranges of WCET estimates because the behavior of each component depends on different sensors

(ACC depends on laser and radar sensors while ABS depends on friction and speed sensors).

Relaxing such an assumption, we consider task-level mode switch, where tasks can exhibit high-

criticality behavior at different times, independently from each other. Under task-level mode

switch, it is allowed that some high-criticality tasks execute in the high-criticality mode while

others remain in the low-criticality mode. This makes it possible to penalize some of the low-

criticality tasks selectively in the event of mode switch, rather than all of them unnecessarily. In

the automotive example, various infotainment components such as head-up display can be maxi-

mally serviced even under deviation of some high-criticality tasks. Our goal is then to minimize the

total number of low-criticality tasks to be dropped under task-level mode switch subject to the MC

schedulability constraints. To achieve this, we seek to develop a new MC scheduling framework

that dynamically determines which tasks to drop at runtime.

The task dropping decision under task-level mode switch is challenging since the system state

is dynamically changing in the sense that a set of tasks in the high-criticality (or low-criticality)

mode as well as a set of tasks dropped (or active) change dynamically over time. In addition, when a

high-criticality task requires additional resources due to its mode switch, the actual resources to be

secured by dropping low-criticality tasks may vary depending on the current system state. There

exist some recent studies [12, 14, 19] considering task dropping under task-level mode switch;

however, all of them do not take the dynamic behavior of the system into full consideration since

the tasks to be dropped are determined (and analyzed) at design time and then remain unchanged
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during runtime. Such a static decision has a considerable degree of pessimism, leading to unnec-

essary dropping of low-criticality tasks. This is because existing solutions cannot fully capture

dynamic system states and incorporate them efficiently into the decision making of task dropping

at runtime.

In this paper, we focus on the following research questions to address these challenges.

• Q1. How can we analyze the impact of dynamic system state changes on the MC schedula-

bility at runtime?

• Q2. How can we make adaptive decisions on task dropping without sacrifice in the MC

schedulability?

• Q3. How can we evaluate the quality of task dropping solution for MC scheduling

algorithms?

This paper presents MC-ADAPT, which is an adaptive MC scheduling framework that makes

online task dropping decisions according to dynamic system states under task-level mode switch.

In particular, to address Q1, we develop a run-time schedulability analysis capable of capturing

dynamic system states, which serves as a basis for online task dropping decisions. Our run-time

analysis is efficient in the sense that it is sufficient to consider only the current system state without

tracking the previous history of all system state changes when deciding which tasks to drop.

To address Q2, we design a new scheduling algorithm, called EDF-AD, by extending EDF-VD

to support adaptive task dropping under task-level mode switch. EDF-AD utilizes the proposed

run-time schedulability analysis to find a minimal set of low-criticality tasks to be dropped, so as

to secure the additional resources requested by a mode-transiting task at the current system state.

We found that a straightforward extension of EDF-VD leads to schedulability loss compared to

EDF-VD. We develop another scheduling algorithm, called EDF-AD-E, which identifies the subset

of tasks triggering schedulability loss and isolates them from other tasks. However, improving

schedulability is not our main goal in this paper.

To address Q3, we propose the speedup factor for task drop. Although the conventional speedup

factor for the MC scheduling problem is effective to evaluate the schedulability of scheduling

algorithms, it does not evaluate the quality of task dropping solution. We propose to apply the

speedup factor for a different MC scheduling problem, called the task dropping problem, which

evaluates runtime performance of low-criticality tasks in addition to MC-schedulability. We derive

that the speedup factor of MC-ADAPT for the task drop is (1 +
√

5)/2(≈ 1.619), which indicates that

MC-ADAPT can schedule any feasible task set under any runtime scenario by dropping the same

number of low-criticality tasks as the optimal scheduling framework with optimal task dropping

strategy if the processor is sped up by a factor of 1.619. To the best of our knowledge, this is

the first work to quantify runtime performance of MC scheduling algorithms via the processor

speedup factor [16]. In addition, we evaluate MC-ADAPT via simulation in terms of schedulability

and resource utilization.

In summary, this paper makes the following contributions:

• We present the MC-ADAPT framework supporting online adaptive task dropping under

task-level mode switch.

• We propose new scheduling algorithms, called EDF-AD and EDF-AD-E, that drop a minimal

set of low-criticality tasks based on run-time schedulability analysis, without sacrifice in

schedulability.

• We propose the speedup factor for the task dropping problem and derive that EDF-AD-E

has a speedup factor of 1.619 for task drop.

• Our simulation shows the effectiveness of our framework.
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2 RELATED WORK

Since Vestal’s initial work [22] on MC systems, a rich number of studies have been introduced

for MC real-time scheduling. A significant proportion of existing solutions make an assumption

on MC system behavior that once a single high-criticality task violates its low-confidence WCET,

all the other high-criticality tasks will simultaneously exhibit similar behavior, i.e., system-level

mode switch. Upon system-level mode switch, typical scheduling approaches [2, 3, 9, 13] require

the pessimistic strategy of dropping all active low-criticality tasks immediately. There is a method

to delay dropping low-criticality tasks by adjusting the threshold of mode switch in offline com-

putation [20] or runtime computation [11]. Bate et al. [5] presented a scheduling protocol for

returning to the low-criticality mode so as to resume the execution of low-criticality tasks. Other

works [6, 10, 11, 15, 17, 21] provided degraded service to low-criticality tasks after system-level

mode switch, which includes stretching their periods [6, 15, 21], lowering their priorities [6], skip-

ping their jobs [10], or reducing their execution times [11, 17]. However, all the above studies

share the impractical assumption of system-level mode switch, which results that resources are

still under-utilized in practice.

Relaxing the assumption of system-level mode switch, recent studies [12, 14, 19] considered

task-level mode switch that enables low-criticality tasks to be penalized selectively in the event

of individual mode switch. Huang et al. [14] proposed offline mapping from each high-criticality

tasks to multiple low-criticality tasks: when the high-criticality task mode switches, the connected

low-criticality tasks are dropped. Ren and Phan [19] proposed a similar technique under harmonic

workloads (the tasks with periods being integer multiples of each other) with exclusive task group-

ing where each group has a single high-criticality tasks. Gu et al. [12] also presented task grouping

technique that allows multiple high-criticality tasks. Within the predefined tolerance limit of a

task group, they drop only low-criticality tasks within the task group. All the above studies make

static task dropping decisions for a limited number of scheduling scenarios (which task is mode-

switching or how many tasks in a task group are mode-switched) at design time. On the other

hand, MC-ADAPT makes dynamic scheduling decision at runtime with online schedulability test

considering runtime criticality of each high-criticality task. Our task dropping algorithm drops the

minimum set of low-criticality tasks for each possible system state. It is worth to note that since

the system state comprises not only the information considered by the above approaches but also

new additional information, such as dropped low-criticality tasks.

The processor speedup factor [16] is widely used to evaluate MC scheduling algorithms [2, 17].

Baruah et al. [2] proposed EDF-VD with a speedup factor of 4/3, which is optimal in uniprocessor

MC scheduling. Since the conventional speedup factor in the existing work only evaluates schedu-

lability of MC scheduling algorithms, we propose the speedup factor to evaluate the quality of task

dropping solution.

3 SYSTEM MODEL AND FRAMEWORK OVERVIEW

3.1 System Model

We consider dual-criticality uniprocessor systems with two distinct criticality levels: HI (high) and

LO (low).

Task Model. We consider an implicit-deadline sporadic task system (denoted τ ) of n MC tasks.

Each MC task τi is characterized by (Ti ,C
L
i ,C

H
i , χi ), where

• Ti ∈ R is the minimum inter-job separation time (or period),

• CL
i ∈ R is a low-confidence WCET (LO-WCET),

• CH
i ∈ R is a high-confidence WCET (HI-WCET), and

• χi ∈ {HI, LO} is a task criticality level.
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Fig. 1. The Behavioral Model of Tasks.

We can categorize individual tasks τi by their criticality levels χi . For notational convenience,

let τH denote a set of tasks with HI-criticality levels (or a Hi-task set), i.e., τH
def
= {τi ∈ τ |χi = HI}.

Likewise, τL denotes a set of tasks with LO-criticality levels (or a LO-task set).

Utilization. The LO- and HI-utilization of a task τi are defined asuL
i

def
= CL

i /Ti anduH
i

def
= CH

i /Ti ,

respectively. For notational convenience, we have

U L
L

def
=
∑

τi ∈τL

uL
i , U

L
H

def
=
∑

τi ∈τH

uL
i , U

H
H

def
=
∑

τi ∈τH

uH
i .

Behavior Model. We assume some degree of uncertainty on the execution time of different

jobs for a task. We consider task-level criticality mode (task mode). Each HI-task τi has its own

task mode (denoted as Mi ) that indicates its behavior. A task τi is said to be in LO-mode (Mi = LO)

if no job of the task has executed more than its LO-WCET (CL
i ), and be in HI-mode (Mi = HI)

otherwise.

Under task mode, we consider task-level mode switch, where an individual task changes its task

mode independently. That is, each HI-task starts in LO-mode, and switches to HI-mode when its

execution time violatesCL
i (called mode switch) (see Figure 1(a)). Most of the existing MC schemes

employ the system-level criticality-mode (called system mode); the system mode is LO if all HI tasks

are in LO-mode, and it becomes HI when all HI-tasks are in HI-mode. System mode is a special

case of task mode.

In addition to HI-tasks, we consider the execution state of a LO-task (see Figure 1(b)): each LO-

task is in either active state or dropped state. Initially, all LO-tasks are active (jobs of the tasks

are released sporadically). On mode switch, some LO-tasks are allowed to be dropped in order to

support HI-tasks with their additional resource requests. When a LO-task is dropped, no job of the

task is released.

System Goal. It is generally important to maximize the performance of LO-tasks as well as

the MC-schedulability [6]. Our system goal is to drop as few LO-task as possible under MC-

schedulability, which consists of two conditions:

• Condition A: HI-tasks are always schedulable.

• Condition B: LO-tasks are schedulable if no HI-task is in HI-mode.

3.2 The Overview of the MC-ADAPT Framework

We present the MC-ADAPT scheduling framework that seeks to drop as few LO-tasks as possible

under the MC-schedulability. The key features of MC-ADAPT include task-level mode switch and

adaptive LO-task dropping. To enable such features and leverage them for achieving our goal

raises several issues to address. We first need to design a new scheduling algorithm that supports
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task-level mode switch effectively. It is desirable to generalize or dominate the similar ones based

on system-level mode switch. We then need to develop a method of task dropping that finds a

minimal set of LO-tasks to drop while securing the additional resources requested by a mode-

transiting task. This requires to analyze run-time variation on the resource demand of HI-tasks

under task-level mode switch. When a task exhibits HI-behavior, the amount of additional resource

demand for all HI-tasks to meet their deadlines can vary depending on a different runtime system

state, i.e., a different combination of tasks in HI-mode, LO-mode, active state, and dropped state.

This requires to calculate such resource demand precisely based on a runtime system state and

determine which LO-tasks to be dropped so as to guarantee the required resources as well as

minimize the number of dropped tasks at runtime in an efficient manner.

To develop the MC-ADAPT framework, we design a scheduling algorithm and its analysis build-

ing upon the principle of EDF-VD (Section 5), and enhance it to become a generalization of EDF-VD

(Section 6).

4 RECAPITULATION OF EDF-VD SCHEDULING

In this section, we recapitulate EDF-VD [2] for the implicit-deadline task model, whose algorithm

and analysis are simple while being speedup-optimal. Due to its simplicity, EDF-VD is extended

into various directions (e.g., constrained-deadline task model [8, 9] and imprecise computation

model [17]).

EDF-VD considers system-level mode switch that when a single HI-task switches to HI-mode, all

the other HI-tasks switch to HI-mode simultaneously. Upon such an event, it changes the system

mode from LO-mode to HI-mode and drops all the LO-tasks. Capturing the characteristics of MC

tasks that HI-tasks are subject to different WCET requirements in different modes, EDF-VD assigns

different priorities to a HI-task in different modes (virtual deadline (VD) in the LO mode and real

deadline in HI-mode).

We now explain how EDF-VD assigns VDs. For a HI-task τi , the VD of the task (Vi ) is assigned

by Vi = xTi where x is the VD coefficient1 (x ∈ R s.t. 0 < x ≤ 1) with x = U L
H /(1 −U

L
L ).

Schedulability analysis of EDF-VD consists of the following lemmas. We will reuse Lemma 4.1

for our new algorithm.

Lemma 4.1 (from [2]). A task set τ is schedulable by EDF-VD when all HI-tasks are in LO-mode if

U L
L +

U L
H

x
≤ 1. (1)

Lemma 4.2 (from [2]). A task set τ is schedulable by EDF-VD when any HI-tasks are in HI-mode

if

xU L
L +U

H
H ≤ 1. (2)

By Lemmas 4.1 and 4.2, a given task τ is MC-schedulable by EDF-VD if Equations (1) and (2)

hold.

5 THE MC-ADAPT FRAMEWORK

In this section, we present the MC-ADAPT framework that supports adaptive task dropping under

task-level mode switch. To minimize the dropping of LO-tasks, we need a resource-efficient sched-

uling algorithm and task dropping algorithm to choose a minimal set of LO-tasks for additional

resource request by a mode-transiting task (Section 5.1). In Section 5.2, we check whether a task is

schedulable at a specific mode switch via online schedulability analysis. In Section 5.3, we check

1The computation of VD coefficient is derived from Equation (1) of Lemma 4.1.
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whether a task set is schedulable under any sequence of mode switches via offline schedulability

analysis.

5.1 The EDF-AD Scheduling Algorithm

To minimize the dropping of LO-tasks under task-level mode switch, we propose the EDF-AD

(EDF-Adaptive task Dropping) algorithm extending the principle of EDF-VD.

Runtime Scheduling Policy. To guarantee the schedulability of HI-tasks after mode switch,

we apply VDs to HI-tasks in their LO-mode. EDF-AD adopts the same VD assignment2 as EDF-VD,

but changes the priorities of tasks according to task level mode switches. EDF-AD schedules the

job with the earliest effective deadline and operates under the following rules:

• Schedule LO-tasks with their real deadlines.

• For each HI-task τi , schedule the task with its VD if the task is in LO-mode (Mi = LO) and

with its real deadline if the task is in HI-mode (Mi = HI)

• At the mode switch of a HI-task τi , set Mi := HI and drop LO-tasks3 by the EDF-AD task

dropping algorithm.

If the task mode of a HI-task is changed to HI at the mode switch, the relative deadline of the task

is postponed from its VD to its real deadline.

Task Dropping Algorithm. To drop as few LO-tasks as possible at mode switch, we need to

know how many resources are required to satisfy MC-schedulability. To do this, we develop an

online schedulability test and drop LO-tasks by the test.

To construct such a test, we introduce system state that captures the dynamic system behavior

at mode switch, including the task mode (execution state) of each task.

Definition 5.1 (System state). For a given task set τ , a system state S is defined as a four-tuple of

disjoint sets: S = (τH 1,τH 2,τL1,τL2) where

• τH 1 : the LO-mode HI-task set (τH 1 = {τi ∈ τH |Mi = LO}),
• τH 2: the HI-mode HI-task set (including the mode switching task) (τH 2 = τH \τH 1),

• τL1: the active LO-task set, and

• τL2: the dropped LO-task set (including the dropping LO-tasks at mode switch) (τL2 =

τL\τL1).

The initial system state is S0 = (τH , ∅,τL, ∅).

We present the EDF-AD task dropping algorithm as follows:

• Before system start, sort LO-tasks in decreasing order of their task utilization.

• Drop the LO-task with the highest utilization among the active LO-task set (τL1) until the

dropped LO-task set (τL2) satisfies the online schedulability test (Equation (3)). This algo-

rithm minimizes the number of the dropping tasks during the entire running time, which

is optimal with respect to the online schedulability test.

2The VD coefficient is derived from the schedulability analysis for the initial system state (all HI-tasks are in LO-mode and

all LO-tasks are active), which is identical for both EDF-VD and EDF-AD.
3If a task is dropped by the scheduler, then the currently-released job of the task is immediately stopped (not guaranteed

to meet its deadline) and no further job of the task is released. If a task is in the active mode, all jobs released by the task

meet their deadlines.
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We present the online schedulability test to determine which LO-tasks should be dropped at mode-

switch:

U L
L2 ≥

U L
L1 +U

L
H 1/x +U

H
H 2 +U

L
L − 1

1 − x . (3)

Its correctness is presented in Section 5.2.

The runtime complexity of MC-ADAPT isO (n), a linear complexity. The task dropping algorithm

takes O (n): identifying resource deficiency takes O (n) and selecting the drop candidates of LO-

tasks (sorting LO-tasks is done offline) takes O (n). The required memory space for the system

state is at most n bits to store criticality-modes of HI-tasks.

5.2 Online Schedulability Analysis

We analyze online schedulability at a specific mode switch, which means whether a given task set

is schedulable by EDF-AD when the system state at mode switch is given. Let Sk be the system

state after k-th mode switch (k ≥ 1). To find the collective resource demand on a given interval,

we compute the resource demand of each task depending on its task mode (execution state).

We consider online schedulability on two different kinds of system states: the initial system state

(S0) and the system state (Sk ) that is switched from any feasible system state (Sk−1). Since S0 is the

same as system LO-mode in EDF-VD, we can reuse the results of EDF-VD for online schedulability

on S0.

Lemma 5.2. A task set τ is schedulable by EDF-AD on S0 if

U L
L +

U L
H

x
≤ 1. (4)

Proof. It is immediate from Lemma 4.1. �

Next, consider online schedulability on Sk .

Theorem 5.3. Consider a task set τ . Assume that the task set is schedulable with Sk−1. Let Sk be

the system state transited from Sk−1. Then, τ is schedulable by EDF-AD on Sk if

U L
L1 +

U L
H 1

x
+ xU L

L2 +U
H
H 2 ≤ 1. (5)

We can derive the online schedulability test (Equation (3)) in Section 5.1 from Theorem 5.3.

Equation (5) is rewritten to

(U L
L −U

L
L2) +

U L
H 1

x
+ xU L

L2 +U
H
H 2 ≤ 1 (∵ U L

L = U
L
L1 +U

L
L2)

⇔U L
L +

U L
H 1

x
+U H

H 2 − 1 ≤ U L
L2 − xU

L
L2,

which is Equation (3).

Now, we present the proof strategy for Theorem 5.3 and present auxiliary lemmas for the proof.

We prove it by contradiction. Suppose that a deadline is missed. Let I denote a minimal 4 instance

of jobs released by τ on which a deadline is missed by EDF-AD. Without loss of generality, we

assume that the first job in I is released at time 0 and the deadline is missed at time t1
5. For task τi

4Since I is minimal, EDF-AD can schedule any proper subset of I .
5All jobs in I are necessary to construct the deadline miss. Otherwise, the unnecessary job can be removed from I , which

contradicts the minimality of I .
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and any time t , let DEMi (t ) be an upper bound of the demand6 of task τi over time interval [0, t ) in

I . Let DEM(t ) be the sum of DEMi (t ) of all the tasks in τ . Since a deadline is missed at t1, we have

DEM(t1) > t1. We will show that our calculation of DEM(t1) is no greater than t1, which leads to

a contradiction.

To find DEM(t1), we consider individual task demand over [0, t1). The following lemma bounds

the demand for a HI-task in LO-mode and the demand of a LO-task in the active state.

Lemma 5.4. Consider any time t . (a) For a HI-task in LO-mode (τi ∈ τH 1), DEMi (t ) = (uL
i /x )t , and

(b) for a LO-task in the active state (τi ∈ τL1), DEMi (t ) = u
L
i · t .

Proof. (a) The task demand over [0, t ) is smaller than or equal toCL
i · t/(xTi ). Thus, DEMi (t ) =

(uL
i /x )t .

(b) The task demand over [0, t ) is smaller than or equal toCL
i · t/Ti . Thus, DEMi (t1) = uL

i · t1. �

For the demand for a HI-task in HI-mode and a LO-task in the dropped state, we utilize a char-

acteristic of the jobs that are included in DEM(t1).

Lemma 5.5 (from [2]). Consider the minimal instance I . All jobs that execute in [0, t1) have a

deadline ≤ t1.

Based on Lemma 5.5, we bound the demand of a HI-task in HI-mode. For a HI-task τi , let J ∗i be

the mode-switching job of τi in I and a∗i be the release time of J ∗i .

Lemma 5.6. If HI-task τi is mode switched (τi ∈ τH 2), then

DEMi (t1) =

{
(uL

i /x )t1 if t1 < a∗i + xTi ,

uL
i · a∗i + uH

i (t1 − a∗i ) otherwise.

Proof. At mode switch of τi , the deadline of J ∗i is changed from a∗i + xTi to a∗i +Ti and the

execution requirement is changed from CL
i to CH

i . By Lemma 5.5, the changed demand is not

considered when t1 < a∗i +Ti . The task demand over [0, t1) is different depending on whether time

t1 is before the VD of J ∗i or not.

Case (t1 < a∗i + xTi ). Since t1 < a∗i + xTi ≤ a∗i +Ti , the task demand is the same as

Lemma 5.4(a).

Case (t1 ≥ a∗i + xTi ). We calculate the task demand of jobs before time a∗i and the task demand

after time a∗i . Since jobs before time a∗i execute for LO-WCET (CL
i ), the task demand of jobs before

a∗i is CL
i · a∗i /Ti . Since job J ∗i and its successive jobs execute HI-WCET (CH

i ), the task demand of

jobs after time a∗i is CH
i (t1 − a∗i )/Ti . Then, DEMi (t1) = CL

i · a∗i /Ti +C
H
i (t1 − a∗i )/Ti . �

The following lemma bounds the demand of a LO-task in the dropped state.

Lemma 5.7. Let τq be the last (k-th) mode-switched task in I on Sk . If LO-task τi is dropped (τi ∈
τL2), then

DEMi (t1) =

{
uL

i · t1 if t1 < a∗q + xTq ,

uL
i (a∗q + xTq ) otherwise.

Proof. Since τq is the last mode-switched task, τi is dropped before or at the mode switch of J ∗q .

The mode switch of J ∗q happens before or at its VD (a∗q + xTq ). The task demand of τi over [0, t1)
is different depending on whether time t1 is before the VD of J ∗q or not.

6The demand of a task for a time interval indicates the worst-case resource demand to meet deadlines of jobs released by

the tasks for the time interval [4].
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Case (t1 < a∗q + xTq ). In the worst case, the mode switch happens at the VD of J ∗q . Then, the

upper bound of the demand is the same as Lemma 5.4(b).

Case (t1 ≥ a∗q + xTq ). No job of the task executes after the mode switch of J ∗q . To execute be-

fore the mode switch, jobs must have a deadline no greater than the VD of J ∗q . Then, DEMi (t1) =

CL
i (a∗q + xTq )/Ti . �

We consider the task demand on Sk based on the task demand on Sk−1. We know that Sk−1 is a

feasible system state and Sk is the transited state from Sk−1 by the mode switch of HI-task τq . Let

DEMk
i (t ) be the demand of task τi over [0, t ) on the system state Sk . We compute DEMk

i (t1) based

on DEMk−1
i (t1) for task τi depending on whether time t1 is before the VD of J ∗q or not (Lemmas 5.8

and 5.9).

Lemma 5.8. If t1 < a∗q + xTq , then DEMk
i (t1) = DEMk−1

i (t1).

Proof. Task τq belongs to τH 2 when the system state is Sk and belongs to τH 1 when the system

state is Sk−1. Since τq ∈ τH 2 on Sk , we have DEMk
i (t1) = (uL

i /x )t1 by Lemma 5.6. Since τq ∈ τH 1 on

Sk−1, we have DEMk−1
i (t1) = (uL

i /x )t1 by Lemma 5.4(a).

Consider task τi that is dropped by τq . The task belongs to τL2 when the system state is Sk and

belongs to τL1 when the system state is Sk−1. Since τi ∈ τL2 on Sk , we have DEMk
i (t1) = uL

i · t1 by

Lemma 5.7. Since τq ∈ τL1 on Sk−1, we have DEMk−1
i (t1) = uL

i · t1 by Lemma 5.4(b).

Consider task τi ∈ τ that is not tq and not dropped by τq . Since its task mode (execution state)

is not changed from Sk−1 to Sk , we have DEMk
i (t ) = DEMk−1

i (t ) for any t . �

Lemma 5.9. If t1 ≥ a∗q + xTq , then

DEMk
i (t1) ≤ DEMk−1

i (a∗q )+(t1 − a∗q )

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

uL
i /x if τi ∈ τH 1,

uL
i if τi ∈ τL1,

uH
i if τi ∈ τH 2,

x · uL
i if τi ∈ τL2.

Proof. For τi ∈ τH 1, we have DEMk
i (t1) = DEMk−1

i (a∗q ) + (t1 − a∗q )uL
i /x by Lemma 5.4(a). For

τi ∈ τL1, we have DEMk
i (t1) = DEMk−1

i (a∗q ) + (t1 − a∗q )uL
i by Lemma 5.4(b).

Consider τi ∈ τH 2. If a∗i ≤ a∗q , we have DEMk
i (t1) = DEMk−1

i (a∗q ) + (t − a∗q )uH
i by Lemma 5.6.

Otherwise, we have

DEMk
i (t1) = DEMk−1

i (a∗q ) + (a∗i − a∗q )uL
i + (t1 − a∗i )uH

i

(by Lemma 5.6)

≤ DEMk−1
i (a∗q ) + (t1 − a∗q )uH

i .

Consider τi ∈ τL2. By Lemma 5.5, the deadline of J ∗q is no greater than t1: a∗q +Tq ≤ t1. By

Lemma 5.7, we have

DEMk
i (t1) = (a∗q + xTq )uL

i

≤ DEMk−1
i (a∗q ) + x (t1 − a∗q )uL

i (∵ Tq ≤ t1 − a∗q ). �

Based on the relation between the demand on Sk and the demand on Sk−1, we now prove The-

orem 5.3.

Proof of Theorem 5.3. We summarize the proof strategy stated before. Let DEMk (t ) be the sum

of DEMk
i (t ) of all the tasks in τ . Since Sk−1 is a feasible system state, we have DEMk−1 (t ) ≤ t for any

t . With the proof by contradiction, we assume a deadline misses in I . Then, we have DEMk (t1) > t1.
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To lead to a contradiction, we only need to show that DEMk (t1) ≤ t1. Let τq be the last mode-

switched task in I . DEMk (t1) is different depending on whether t1 is before the VD of J ∗q or not.

Case 1 (t1 < a∗q + xTq ). We calculate DEMk (t1):

DEMk (t1) =
∑
τi ∈τ

DEMk
i (t1)

=
∑
τi ∈τ

DEMk−1
i (t1) (by Lemma 5.8)

= DEMk−1 (t1),

which is smaller than or equal to 1 by the assumption on DEMk−1.

Case 2 (t1 ≥ a∗q + xTq ). We calculate DEMk (t1):

DEMk (t1) =
∑
τi ∈τ

DEMk
i (t1)

≤
∑
τi ∈τ

DEMk−1
i (a∗q ) + (t1 − a∗q )�

�
U L

L1 +
U L

H 1

x

+ xU L
L2 +U

H
H 2

�
	

(by Lemma 5.9)

≤ DEMk−1 (a∗q ) + (t1 − a∗q ) (Equation (5) with Sk )

≤ a∗q + (t1 − a∗q ) (by the assumption on DEMk−1)

= t1.

From Cases 1 and 2, we showed that DEMk (t1) ≤ t1. �

5.3 Offline Schedulability Analysis

We looked at online schedulability analysis at a mode switch. However, we do not yet know

whether a task set is schedulable by EDF-AD under any sequences of mode switches, which is

offline schedulability. To know the schedulability, we need to check whether EDF-AD can sched-

ule the task set on any system state satisfying MC-schedulability (Condition A and B in Section 3),

based on the online schedulability analysis (Lemma 5.2 and Theorem 5.3).

Theorem 5.10. A task set τ is MC-schedulable by EDF-AD if

U L
L +

U L
H

x
≤ 1, (6)

xU L
L +

∑
τi ∈τH

max �
�
uL

i

x
,uH

i
�
	
≤ 1. (7)

Proof. To show that τ is MC-schedulable, we need to satisfy both Conditions A and B. Since

Equation (6) holds, by Lemma 5.2, τ is schedulable on S0, which satisfies Condition B. For Condi-

tion A, by Theorem 5.3, we show that Equation (5) holds with any τH 2 � ∅: since each HI-task is

either LO-mode or HI-mode, and all LO-tasks may be dropped in the worst case,

xU L
L +

∑
τi ∈τH

max �
�
uL

i

x
,uH

i
�
	
≤ 1,

which holds from Equation (7). �
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Table 1. The Parameters of an

Example Task Set

Task χi uL
i uH

i

τ1 HI 0.10 0.35

τ2 HI 0.20 0.30

τ3 LO 0.18 N/A

τ4 LO 0.12 N/A

τ5 LO 0.10 N/A

We show an example task set schedulable by EDF-AD.

Example 5.11. Consider the example task set in Table 1. According to the VD assignment, we

have x = 0.3/(1 − 0.4) = 0.5. We show that Equations (6) and (7) hold: 0.4 + 0.3/0.5 = 1 and 0.5 ∗
0.4 +max(0.1/0.5, 0.35) +max(0.2/0.5, 0.30) = 0.2 + 0.35 + 0.4 = 0.95 ≤ 1. Then, the task set is

MC-schedulable by Theorem 5.10.

6 AN ENHANCED MC-ADAPT FRAMEWORK

A straightforward extension of EDF-VD, which is EDF-AD, yields a counter-intuitive result that

EDF-AD does not dominate EDF-VD in schedulability. In Section 6.1, we find the characteristics of

the subset of tasks that cause the schedulability loss. In Section 6.2, we present a new scheduling

algorithm that isolates them from the other tasks.

6.1 The Schedulability Loss of EDF-AD

Let’s look at an example schedulable by EDF-VD but not by EDF-AD.

Example 6.1. We modify the task set in Table 1 by changinguH
1 of τ1 to 0.45. SinceU L

L andU L
H are

not changed, x will not be changed. The task set is schedulable by EDF-VD because Lemmas 4.1 and

4.2 hold: 0.4 + 0.3/0.5 = 1 and 0.5 · 0.4 + 0.75 = 0.95 ≤ 1. However, the task set is not schedulable

by EDF-AD because Equation (7) in Theorem 5.10 does not hold: 0.5 · 0.4 +max(0.1/0.5, 0.45) +
max(0.2/0.5, 0.30) = 1.05 > 1.

We investigate which difference between EDF-VD and EDF-AD causes the schedulability loss.

When checking Condition B in MC-schedulability, both EDF-VD and EDF-AD consider the ini-

tial system state S0. Thus, the loss is related to checking Condition A. We define the critical task

mode as the combination of task modes for HI-tasks where the collective resource demand of HI-

tasks is maximized. While the critical task mode for EDF-VD is system HI-mode (among system

HI-mode and system LO-mode), the one for EDF-AD is not system HI-mode (all HI-tasks are in

HI-mode). Since a HI-task executes with its VD in LO-mode, there may exist a HI-tasks whose re-

source utilization in LO-mode (CL
i /Vi ) is higher than the one in HI-mode (CH

i /Ti ). Thus, the critical

task mode is the combination of the task mode of each HI-task where its resource utilization is

maximized. However, EDF-VD adopting the system-level mode switch (from system LO-mode to

system HI-mode) is irrelevant to the critical task mode of EDF-AD.

We investigate why some HI-tasks have a higher resource utilization in LO-mode. All HI-tasks

execute with their VD (Vi = xTi ) in their LO-mode and the VD coefficient is derived from the

collective utilization of the task set such thatU L
H /x ≤ U H

H . However, the VD assignment may not be

the best choice for an individual task, specially for the HI-tasks that have relatively small difference

between HI-WCET and LO-WCET. Then, the task has uL
i /x > uH

i . From the understanding of the

schedulability loss, we will present a resolution in the next subsection.
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6.2 The EDF-AD-E Scheduling Algorithm

Since a fully-independent task-level mode switch may produce the schedulability loss, we apply

a limited mode switch not to sacrifice schedulability. We propose another scheduling algorithm,

called EDF-AD-E.

Scheduling Algorithm. We formally define the subset of HI-tasks that produces the schedu-

lability loss.

Definition 6.2. HI-mode-preferred tasks (τF ) are defined as a set of HI-tasks s.t. CL
i /Vi > CH

i /Ti :

τF = {τi ∈ τH | uL
i /x > uH

i }.
The schedulability loss may happen when HI-mode-preferred tasks remain in LO-mode and

the other tasks have mode-switched. In addition, since a HI-mode-preferred task has resource

utilization in HI-mode lower than the one in LO-mode, it is better for the task to execute in HI-

mode from system start. We now present the EDF-AD-E (Enhanced) algorithm as follows:

• The VD of each HI-task τi is assigned by Vi = xTi where x = min(1, (1 −U H
H )/U L

L ).
• For HI-mode-preferred tasks, execute them in HI-mode from system start.

• All the other runtime scheduling policies (including the task dropping algorithm) are the

same as EDF-AD.

We cannot use the VD coefficient in EDF-AD because the offline schedulability of EDF-AD-E is

different from EDF-AD. We compute the VD coefficient from EDF-AD-E offline schedulability (The-

orem 6.5). The initial system state of EDF-AD-E is different from EDF-AD: S0 = (τH \ τF ,τF ,τL, ∅).
Online Schedulability Analysis. Since the EDF-AD-E scheduling algorithm is modified from

EDF-AD, we need to check whether online schedulability analysis of EDF-AD is also applicable to

EDF-AD-E. Since S0 is different from EDF-AD, we re-derive online schedulability on S0.

Lemma 6.3. A task set τ is schedulable by EDF-AD-E on S0 if

U L
L +

∑
τi ∈τH

min �
�
uL

i

x
,uH

i
�
	
≤ 1. (8)

Proof. On S0, we have τH 1 = τH \τF , τH 2 = τF and τL1 = τL . Since the demand of task τi ∈ τF

over [0, t ) is no greater than CH
i · t/Ti , we have

τi ∈ τF ,DEMi (t ) = u
H
i · t . (9)

We show that the demand over [0, t ) is no greater than t :

DEM(t1)

=
∑

τi ∈τH \τF

DEMi (t ) +
∑

τi ∈τL

DEMi (t ) +
∑

τi ∈τF

DEMi (t )

= �
�
∑

τi ∈τH \τF

uL
i /x +

∑
τi ∈τL1

uL
i
�
	
t +
∑

τi ∈τF

DEMi (t )

(by Lemma 5.4)

= �
�
∑

τi ∈τH \τF

uL
i /x +U

L
L
�
	
t +
∑

τi ∈τF

uH
i · t (by Equation (9))

= �
�
U L

L +
∑

τi ∈τH \τF

uL
i /x +

∑
τi ∈τF

uH
i
�
	
t

≤ 1 · t (by assumption) �
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Online schedulability on Sk is the same as EDF-AD.

Theorem 6.4. Consider a task set τ . Assume that the task set is schedulable with Sk−1. Let Sk be

the system state that is transited from Sk−1. Then, the task set is schedulable by EDF-AD-E on Sk if

Equation (5) holds.

Proof. The proof is the same as Theorem 5.3. �

Offline Schedulability Analysis. The following theorem derives the offline schedulability of

EDF-AD-E.

Theorem 6.5. A task set τ is MC-schedulable by EDF-AD-E if

U L
L +

∑
τi ∈τH

min �
�
uL

i

x
,uH

i
�
	
≤ 1, (10)

xU L
L +U

H
H ≤ 1. (11)

Proof. To show that τ is MC-schedulable, we need to satisfy both Conditions A and B in MC-

schedulability. Since Equation (10) holds, by Lemma 6.3, τ is schedulable on S0, which satisfies

Condition B. For Condition A, by Theorem 6.4, we show that Equation (5) holds with any τH 2 � ∅:
since each HI-task except HI-mode-preferred tasks is LO-mode or HI-mode, and all LO-tasks may

be dropped in the worst case,

xU L
L +

∑
τi ∈τH \τF

max �
�
uL

i

x
,uH

i
�
	
+
∑

τi ∈τF

uH
i ≤ 1

⇔ xU L
L +

∑
τi ∈τH \τF

uH
i +U

H
F ≤ 1 (by Definition 6.2)

⇔ xU L
L +U

H
H −U

H
F +U

H
F ≤ 1,

which holds from Equation (11). �

Properties. EDF-AD-E strictly dominates EDF-VD in terms of MC-schedulability (Lemma 6.6

and Example 6.7).

Lemma 6.6. If any task set is MC-schedulable by EDF-VD, the task set is also MC-schedulable by

EDF-AD-E.

Proof. Since the task set is MC-schedulable by EDF-VD, by Lemmas 4.1 and 4.2, Equations (1)

and (2) hold. If Equations (10) and (11) holds, by Theorem 6.5, the task set is also MC-schedulable

by EDF-AD-E. Equation (10) holds: U L
L +
∑

τi ∈τH
min(

uL

i

x
,uH

i ) ≤ U L
L +

U L

H

x
≤ 1 from Equation (1).

Equation (11) holds from Equation (2). �

Example 6.7. We modify the task set in Table 1 by changing uH
1 of τ1 to 0.55. We will schedule

the task set by EDF-VD. SinceU L
L andU L

H are not changed, x will not be changed. The task set is not

schedulable by EDF-VD because Equation (2) in Lemma 4.2 does not hold: 0.5 ∗ 0.4 + 0.85 = 1.05 >
1. We will schedule the task set by EDF-AD-E. By the VD assignment, we have x = (1 − 0.85)/0.4 =
0.375. Task τ2 is a HI-mode-preferred task becauseuL

i /x = 0.2/0.375 = 0.53 > uH
i = 0.30. We show

that Equations (10) and (11) hold: 0.4 + 0.1/0.375 + 0.3 = 0.96 ≤ 1 and 0.375 ∗ 0.4 + 0.85 = 1. Then,

the task set is MC-schedulable by Theorem 6.5,
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7 THE SPEEDUP FACTOR

In this section, we quantify the effectiveness of EDF-AD-E based on the metric of the processor

speedup factor [16]. The speedup factor (α ∈ R s.t. α ≥ 1) is a reliable performance metric for com-

paring the worst-case behavior of different algorithms for solving the same problem. The smaller

speedup factor of an algorithm indicates that the behavior of the algorithm is closer to that of the

optimal algorithm. Previously, the speedup factor for the MC scheduling problem is effective to

evaluate MC scheduling algorithms (e.g., [2]). However, it only evaluates MC-schedulability, and

cannot evaluate the quality of task dropping. So, we propose the speedup factor for the task drop-

ping problem which extends the existing MC scheduling problem with the runtime performance

of LO-tasks. First, we define the task dropping problem.

Definition 7.1 (the task dropping problem). For a given feasible MC task set τ , a subset of HI-tasks

(τR ∈ τ ), and scheduling algorithm A, the task dropping problem is: if tasks in τR mode-switch on

runtime, how many LO-tasks are required to be dropped for scheduling τ by scheduling algorithm

A?

Now, we define the speedup factor of scheduling algorithm A for the task dropping problem

(Definition 7.1). Let OPT be the optimal clairvoyant scheduling algorithm with optimal task drop-

ping7. The speedup factor of A for task drop is defined as the smallest real number α (≥ 1) such

that the number of LO-tasks required to be dropped to schedule any given task set τ under any

given mode switch sequence (specified by τR ∈ τ ) by OPT on a speed-1 processor is the same as

the one to schedule τ under the mode switch sequence by A on a speed-α processor.

The speedup factor for the MC scheduling problem evaluates scheduling algorithms in terms of

MC-schedulability. Similarly, the speedup factor for the task dropping problem evaluates schedul-

ing algorithms in terms of the number of the required task dropping under any possible scheduling

scenarios. Although the existing work cannot provide any performance guarantee on LO-tasks via

the speedup factor, we propose the first work to evaluate how many LO-tasks can be scheduled

after mode switch via the speedup factor.

Next, we evaluate EDF-AD-E via the proposed metric.

Theorem 7.2. EDF-AD-E has a speedup factor of 1+
√

5
2 for the task dropping problem.

To prove Theorem 7.2, we present an auxiliary lemma.

Lemma 7.3. Consider a task set τ and a subset of HI-tasks τR ∈ τ . Consider a scheduling scenario

that tasks in τR mode-switches on runtime. EDF-AD-E can schedule τ under the scenario by dropping

a subset of LO-tasks τG ∈ τ if

U L
L +

U L
H

x
≤ 1, (12)

U L
L1 +

U L
H 1

x
+ xU L

L2 +U
H
H 2 ≤ 1 (13)

where τH 2 = τR and τL2 = τG .

Proof. We need to show that τ is schedulable on S0 and any legitimate Sk considering τR and

τG . For schedulability on S0, by Lemma 6.3, we need to satisfy Equation (8):

U L
L +

∑
τi ∈τH

min �
�
uL

i

x
,uH

i
�
	
≤ 1,

which holds by
∑

τi ∈τH
min(

uL

i

x
,uH

i ) ≤ U L
H and Equation (12).

7In MC systems, a clairvoyant scheme is the one that knows the time instant of mode switch before runtime scheduling.
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Consider any legitimate Sk considering τR and τG . Since each task in τR is either HI-mode or

LO-mode, τH 2 in Sk is any subset of τR . In Sk , we set τL2 := τG because any LO-task in τG may

be dropped. To show that the task set is schedulable with Sk , by Theorem 6.4, we need to satisfy

Equation (5):

U L
L1 + xU

L
L2 +

∑
τi ∈τH 1\τF

uL
i

x
+
∑

τi ∈τH 2\τF

max �
�
uL

i

x
,uH

i
�
	

+
∑

τi ∈τF

uH
i ≤ 1

⇔ U L
L1 + xU

L
L2 +

∑
τi ∈τH 1

min �
�
uL

i

x
,uH

i
�
	
+U H

H 2 ≤ 1,

which holds by
∑

τi ∈τH 1
min(

uL

i

x
,uH

i ) ≤ U H
H 1 and Equation (13). �

Proof of Theorem 7.2. Consider a task set τ . Consider a scheduling scenario that tasks in a

set of HI-tasks τR ∈ τ mode-switch on runtime. We will prove that if τ is schedulable under the

scenario by the optimal clairvoyant scheduling algorithm with dropping a set of LO-tasks τG ∈ τ
on a speed-1 processor, τ is also schedulable under the scenario by EDF-AD-E with dropping τG

on a speed- 1+
√

5
2 processor.

Let τH 1 := τH \τR , τH 2 := τR , τL1 := τL\τG , and τL2 := τG . Let b denote an upper bound on the

utilization of τ on the initial state and the minimum utilization of τ on the worst-case task modes

of HI-tasks:

max(U L
L +U

L
H ,U

L
L1 +U

L
H 1 +U

H
H 2) ≤ b . (14)

To show that the task set is schedulable, by Lemma 7.3, it is required that Equations (12) and

(13) hold. Suppose that there exists α s.t. 1/x ≤ α and 1 + x ≤ α for some x ∈ R s.t. 0 < x ≤ 1. We

show that Equation (12) holds:

U L
L +

U L
H

x
≤ U L

L + αU
L
H

≤ α (U L
L +U

L
H ),

which is smaller than or equal to 1 if U L
L +U

L
H ≤ 1/α .

We show that Equation (13) holds. We divide cases depending on whether U H
H 2 −U

L
H 2 ≤ U L

L2 or

not. When U H
H 2 −U

L
H 2 ≤ U L

L2, we show that Equation (13) holds:

U L
L1 +

U L
H 1

x
+ xU L

L2 +U
H
H 2

≤ U L
L1 + αU

L
H 1 + (1 + x )U L

L2 +U
L
H 2

≤ α (U L
L +U

L
H ),

which is smaller than or equal to 1 ifU L
L +U

L
H ≤ 1/α . WhenU L

L2 < U H
H 2 −U

L
H 2, we show that Equa-

tion (13) holds:

U L
L1 +

U L
H 1

x
+ xU L

L2 +U
H
H 2

≤ U L
L1 + αU

L
H 1 +U

L
H 2 + (1 + x ) (U H

H 2 −U
L
H 2)

≤ α (U L
L1 +U

L
H 1 +U

H
H 2),
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which is smaller than or equal to 1 ifU L
L1 +U

L
H 1 +U

H
H 2 ≤ 1/α . In sum, Equations (12) and (13) hold

if b ≤ 1/α .

We need to find the range of α . To do this, we show the existence of x satisfying both of 1/α ≤ x
and x ≤ α − 1:

1/α ≤ α − 1⇔ α2 − α − 1 ≥ 0,

which is always true if α ≥ 1+
√

5
2 . �

8 EVALUATION

We looked at the speedup factor of the EDF-AD-E for task drop, which provides a theoretical

upper bound on the number of LO-tasks to be dropped for a task set and its runtime scenario. In

this section, we evaluate the runtime performance of EDF-AD-E in comparison with the existing

approaches, via simulation with synthetic workloads. In addition, to show that our approach does

not sacrifice schedulability, we compare EDF-AD-E with the existing approaches in terms of MC-

schedulability.

Task Set Generation. We generate random task sets according to the workload-generation

algorithm [2]. Let U b be the upper bound of both LO-criticality and HI-criticality utilizations. A

random task is generated as follows (all task parameters are randomly drawn in uniform distribu-

tion): for a task τi ,

• Ui (task utilization) is a real number drawn from the range [0.02, 0.2].

• Ti (task period) is an integer drawn from the range [20, 300].

• Ri (the ratio of uH
i /u

L
i ) is a real number drawn from the range [1, 4].

• Pi (the probability that the task is a HI-task) is a real number from the range [0,1]. If Pi <
PHI (default value of PHI is 0.5), set χi := LO and CL

i := 
Ui ·Ti �. Otherwise, set χi := HI ,

CH
i := 
Ui ·Ti �, and CL

i := 
Ui ·Ti/Ri �.

Repeat generating a task in the task set until max(U L
H +U

L
L ,U

H
H ) > U b . Then, discard the task

added last.

The Deadline Miss Ratio. We compare EDF-AD-E with EDF-VD [2] in terms of deadline miss

ratio (DMR)8 of LO-tasks. For a given randomly-generated task set schedulable by EDF-VD, we

simulate the behavior of tasks with a given probability of mode switch for any HI-task, denoted as

PMS (the default value of PMS is 0.4), for 10,000 time units. According to EDF-VD [2], on idle tick, the

system is switched back to the initial state (all HI-tasks are in LO-mode and all LO-tasks are active).

Figure 2 shows the average DMR with varying utilization boundU b for different probabilities of

mode switch: PMS = 0.1, PMS = 0.4 and PMS = 0.7. For each utilization bound, we generate 5,000

systems. The result shows that EDF-AD-E significantly outperforms EDF-VD because the resource-

efficient scheduling of EDF-AD-E minimizes the additional resource request at mode switch and the

EDF-AD-E task dropping algorithm selects the minimal set of LO-tasks upon the resource request.

In higher utilization (U b > 0.85), the DMR of EDF-VD is decreasing. We observed that the

schedulable system tends to have a smaller number of HI-tasks in higher utilization. To pass the

schedulability condition in higher utilization, the system should have unbalanced distribution of

HI-tasks and LO-tasks (either relatively a larger number of HI-tasks or relatively a larger number

of LO-tasks). Due to the selection of Ri , relatively large numbers of HI-tasks may not pass the

schedulability test. Thus, the system tends to have relatively small numbers of HI-tasks, which

8DMR is the ratio of the number of the unfinished jobs over the total number of jobs released in a given time interval. We

assume that an LO-task in the dropped state releases its job but does not execute.
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Fig. 2. The DMR for Different PMS .

affects the frequency of mode-switches. As the number of mode switches decreases, the DMR of

EDF-VD (dropping all LO-tasks) decreases. Figure 3 shows DMR varying PHI from 0.05 to 0.95 in

increments of 0.5 (U b = 0.8). EDF-VD shows a higher DMR for a higher PHI (a large number of

mode switches at runtime) while EDF-AD-E shows a little variance for different values of PHI.

Figure 4 shows DMR varying simulation durations (U b = 0.85 and PMS = 0.4). It shows that the

simulation duration does not affect the simulation results. Due to the return protocol to LO-mode,

the DMR of EDF-VD and EDF-AD-E are converged in a large simulation duration.

MC-schedulability. We compare the MC-schedulability of EDF-AD and EDF-AD-E with the

existing MC scheduling algorithms, which are regular EDF, EDF-VD [2], and ICG [14]9. We

9The MC-schedulability of the ICG is maximum when the interference constraint graph is fully connected from HI-tasks

to LO-tasks (which means that any mode switch drop all LO-tasks).
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Fig. 3. The DMR for Different PH I .

Fig. 4. The DMR for Different Simulation Duration.

Fig. 5. MC-schedulability Varying Utilization Bound.

mathematically compute the schedulability of the randomly-generated systems via schedulability

test of each scheduling algorithms.

Figure 5 shows the acceptance ratio (the ratio of schedulable task sets) over varying utilization

bound U b from 0.55 to 1.0 in increments of 0.05. Each data point is based on 5,000 systems. Al-

though EDF-AD has higher acceptance ratio than regular EDF, we confirmed that EDF-AD has

lower MC-schedulability than EDF-VD for all utilization ranges and ICG for some utilization
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ranges. Our goal is to improve runtime performance of LO-tasks without sacrifice in schedulabil-

ity. We already showed that EDF-AD-E strictly dominates EDF-VD in Section 6.2. The simulation

result also confirmed that EDF-AD-E dominates EDF-VD.

9 CONCLUSION

We present the MC-ADAPT framework that makes online adaptive task dropping utilizing the

dynamic system state under task-level mode switch. The framework focuses resource efficiency of

mixed-criticality systems by improving the survivality of low-criticality tasks even under deviance

of high-criticality tasks. To evaluate the quality of task dropping, we propose the speedup factor for

the task dropping problem while the speedup factor for the MC scheduling problem only evaluates

MC scheduling algorithms in terms of the worst-case schedulability. We derive that the speedup

factor of MC-ADAPT for task drop is 1.619.

As a future work, to further support LO-tasks, we would like to extend our framework by de-

veloping an efficient criticality resuming protocol from HI-mode to to LO-mode under task-level

criticality mode. It will be interesting to compare our new scheduling policy with bailout proto-

col [5], system-level criticality resuming protocol. Orthogonally, we plan to conduct real-world

case studies and comprehensive experiments including other adaptive MC scheduling approaches

with different assumption [12, 14, 19] (e.g., [12] assumes a predefined threshold limit parameter for

system-level mode switch and [19] considers only harmonic workloads) in terms of schedulability,

deadline miss ratio, and runtime overheads.
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