
Fault-Resilient Real-Time Communication
Using Software-Defined Networking

Kilho Lee∗, Minsu Kim∗, Hayeon Kim∗, Hoon Sung Chwa†§, Jinkyu Lee‡, Insik Shin∗
School of Computing, KAIST, Republic of Korea∗

Information and Communication Engineering, DGIST, Republic of Korea†

Dept. of Computer Science and Engineering, Sungkyunkwan University (SKKU), Republic of Korea‡

Email: chwahs@dgist.ac.kr

Abstract—The development of complex cyber-physical systems
necessitates real-time networking with timing guarantees even
in the presence of a link fault. Targeting firm real-time flows
with the maximum allowable number of continuous deadline
misses, this paper introduces FR-SDN, a fault-resilient SDN
(Software-Defined Networking) framework that satisfies the tim-
ing requirements of firm real-time flows. To this end, we first
investigate individual steps for path restoration: fault recognition,
path recalculation, and path reassignment. We then design
novel system architecture that reduces the delay of the fault
recognition and path reassignment steps to potentially assign
more time budget to the path recalculation step. Based on the
calculation of tight upper-bounds on the delays in individual
steps under the proposed system design, we derive a necessary
feasibility condition that guarantees the timing requirements of
firm real-time flows, and we calculate a time budget for the
path recalculation step. Finally, we develop a multi-constrained
path finding algorithm that can dynamically adjust the scope of
flows to reroute according to the time budget. To the best of our
knowledge, FR-SDN is the first study on adaptive path restoration
for real-time flows, taking into account path restoration delay
and fault tolerance constraints in case of link fault. We have
implemented and evaluated FR-SDN on top of Open vSwitch to
demonstrate its effectiveness, achieving an order of magnitude
reduction in path restoration delay. In addition, we have deployed
FR-SDN into a 1/10 scale autonomous vehicle and have shown,
via an in-depth case study of adaptive cruise control, that FR-
SDN is able to meet all fault tolerance requirements so that it
can behave similarly as if there were no link failure.

I. INTRODUCTION

Recent advances in embedded processors and software
technologies have fostered the development of complex cyber-
physical systems (CPS) such as autonomous driving vehicles.
CPS typically integrate sensors, actuators, and computing
units to continuously interact with the physical world in real-
time. Thus, it is important to develop network techniques that
meet CPS requirements. In this paper, we focus on two key
requirements on CPS networking, which are deterministic and
fault-tolerant communications.

Automotive and avionics industries seek to develop
Ethernet-based networking standards [1]–[3] in order to meet
higher bandwidth and lower latency requirements of com-
plex CPS applications such as vision/LIDAR-based SLAM
(Simultaneous Localization And Mapping). For deterministic
communication, the IEEE TSN (Time-Sensitive Networking)
working group is developing Ethernet-based new standards,
such as time synchronization [4], bandwidth reservation [5],
and traffic scheduling [6]. For fault tolerance, one approach
is to support fault-free communication such that it continues
to deliver messages without any loss even in the presence
of network failure. To this end, the IEEE TSN [7] and
AFDX [1] standards employ redundant packet transmission.

§A corresponding author.

This approach suits the strong requirements of hard real-time
flows that allow no single packet loss, yet it incurs low network
utilization (≤ 50%) due to duplicate packet transmissions on
multiple paths in parallel. Another approach is fault-resilient
communication where some flows can experience packet loss
or delay in case of network failures but no more packet loss
or delay after recovering from the failures. Such fault-resilient
communication is suitable for a class of real-time flows with
so-called firm deadlines [8]–[13]. Firm real-time flows can
tolerate the occasional loss of some deadlines. As examples,
some advanced control systems are robust enough to react
properly without serious consequences while not receiving
input data, and users may not notice the effect of audio packet
loss in video conferencing systems. It is then important to
recover from failures quickly and in a deterministic way.

In the literature, several studies [14]–[16] propose to lever-
age SDN (Software-Defined Networking) to perform path
restoration for fault-resilient communication on switched Eth-
ernet. Though many SDN-based path restoration techniques
enable to recover from link failure by finding alternative
routes, they are not appropriate for firm real-time flows that
have loss requirements such as at most a couple of consecutive
deadline misses. This is because path restoration inherently
comprises three steps of S1) Fault Recognition, S2) Path
Recalculation, and S3) Path Reassignment on SDN networks,
and each step incurs a long delay in an unpredictable manner.
Our motivational benchmark shows that such delays can
be hundreds of milliseconds. These long delays may have
serious consequences for system safety. For example, a camera
sensor operating at 60 Hz may experience continuous loss of
messages dozens of times.

In this paper, we aim to develop a fault-resilient real-time
networking system using SDN, called FR-SDN, which supports
fast and predictable path restoration to meet the loss (or fault
tolerance) constraints of firm real-time flows (See Figure 1).
Assuming each firm real-time flow comes with its own loss
parameter that indicates the maximum allowable number of
continuous deadline misses upon a single link failure, this
paper seeks to answer the following questions:

Q1. What is a feasibility condition that enables FR-SDN to
meet the loss requirements of firm real-time flows?

Q2. What is a good design to perform path recalculation
on SDN, aiming at maximizing the possibility of fault
recovery without violating any loss requirement.

For Q1, we present feasibility conditions focusing on the
temporal aspect of path restoration, which implies the impor-
tant design directions of FR-SDN towards deterministic and
efficient path restoration. For Q2, FR-SDN first computes the
delay budget (deadline) allowed for path restoration. In order

to maximize the possibility of performing path restoration
successfully within a given delay budget, it is important to
reduce the total time spent in the fault recognition (S1) and the
path reassignment (S3) steps. This is because the performance
of the path recalculation (S2) step directly depends on how
much time can be spent in the S2 step. To this end, FR-SDN
completely changes the way of performing path restoration,
from SDN controller-driven to switch-driven. This changes not
only significantly reduces the communication delays of S1 and
S3 steps, but also enables to derive tight upper-bounds on the
delays. Though we increased the time-budget of S2 via switch-
driven path restoration, its time-budget may be still too short
to carry out an exhaustive search for schedulable alternative
paths. Thus, we employ an adaptive Multi-Constrained Path
(MCP) technique that selectively reroutes only some flows in
the network so as to perform path recalculation effectively
within a limited time-budget. Furthermore, we propose heuris-
tics that select flows for performance improvement.

To evaluate the performance of FR-SDN, we conducted ex-
tensive simulations with randomly generated real-time flows.
The simulation shows our adaptive MCP technique outper-
forms static MCP techniques. In addition, we implemented
FR-SDN on top of Open vSwitch [17] and undertook various
experiments on an actual network testbed which consists of 21
single-board computers. Our experimental results show that
FR-SDN significantly reduces the path restoration delay by
an order of magnitude and improves the reliability of real-
time flows, compared to the standard SDN system. Beyond
the extensive simulations and experiments, we deployed FR-
SDN into a 1/10 scale autonomous vehicle and conducted a
case study (i.e., Adaptive Cruise Control). The case study
shows that FR-SDN results in very reliable control performance
despite a link fault; it can follow the preceding vehicle while
keeping a reference distance. In contrast, the standard SDN
cannot keep the reference distance due to the data losses
caused by the long delay of path restoration.

The contributions of this paper are summarized as follows:
• We introduce FR-SDN, a fault-resilient SDN framework,

which supports firm real-time flows with their own fault
tolerance constraints. To the best of our knowledge, this
paper presents the first study on adaptive path restoration
for real-time flows, taking into account path restoration
delay and fault tolerance constraints in case of link fault.

• We design novel system architecture for SDN/OpenFlow
to offload the path restoration into switches (Section V).

• We derive a feasibility test to guarantee satisfaction of
loss requirements of firm real-time flows, based on the
upper-bounds of individual delay factors in the three path
restoration steps (Section VI).

• We develop a multi-constrained path finding algorithm
that can dynamically adjust the scope of the path finding
according to the path recalculation budget (Section VII).

• We perform extensive simulations for path finding, im-
plement FR-SDN on top of Open vSwitch, and experiment
FR-SDN on an actual network testbed (Section VIII).

• We deploy FR-SDN into a 1/10 scale autonomous car1,
and perform a case study (Section IX).

1See http://cps.kaist.ac.kr/frsdn for the demo video illustrating how well
FR-SDN preserves the autonomous driving performance against a link fault.

II. SYSTEM MODEL AND BACKGROUND

Flow model. We consider a SDN-enabled network modeled
as a graph, N = (V,E), where V is the set of switches
and E is the set of links that are subject to failure. A link
between two switches u and v is represented as (u, v). We
also consider a flow set F composed of periodic real-time
flows. Each flow fi ∈ F is characterized by (si, ti, Ti, Ai,
Di, Bi, Ki), where si and ti ∈ V are source and destination
switches respectively, Ti is a period, Ai is a message size,
Di is an end-to-end transmission deadline, Bi is the maxi-
mum required bandwidth, and Ki is the maximum tolerable
consecutive message losses. We follow the delay/bandwidth
model (i.e., required bandwidth, Bi, and required propagation
delay, Pi = Di − Ai/Bi) from [18] and the firm-deadline
model (Ki) from many existing studies, e.g., [11], [13]. Each
fi is assumed to generate a potentially unbounded series of
messages every Ti time-units with each message needing to
arrive at ti from si within its end-to-end deadline of Di time-
units. Each message can be divided into multiple packets,
depending on the maximum transmission unit (MTU) of the
link (e.g., 1500 bytes on Ethernet).

Fluid-based flow scheduling. We consider fluid-based flow
scheduling. Each switch v ∈ V has a set of queues, and each
queue is assigned a fraction of bandwidth. Any feasible path
assignment guarantees each flow uses the queues on its path
according to its maximum required bandwidth [18]. Every
message of each flow fi can thus be scheduled constantly at
a rate equal to Bi with no queueing delay.

Path finding algorithm. For a given network and flow set,
we consider the Multi-Constrained Path (MCP) problem that
finds a path Φi for each flow fi subject to the bandwidth
and delay constraints of all flows. Since the MCP problem is
known to be NP-complete [19], we take a polynomial-time
heuristic algorithm from [18] that is an extension of [20]. It
solves the relaxed problem, transforming one of the delay and
bandwidth constraints into integers, and proves the correctness
of the solution [18].

Fault detection. We consider fault recovery from any
single link failure.2 Link failure detection is possible by
using the BFD (Bidirectional Forwarding Detection) proto-
col [21], which is supported by most hardware and software
switches [22]–[24]. We assume that the time to detect a link
failure after its occurrence can be bounded via the BFD
protocol.

SDN (Software-Defined Networking). Software-Defined
Networking is an emerging network architecture, which de-
couples the control plane from the data plane to enable flexible
network control with the global view of the network. The
decoupled control plane becomes a software running on the
centralized controller, and controls the data plane through the
standard control interface. OpenFlow [25] is the de facto con-
trol protocol between the control and data planes; it enables to
dynamically manage the data plane including packet forward-
ing rule management, and also enables to maintain the global
network information by collecting the network status from the
data plane. Beyond the limitations of Ethernet such as static
rule management and a lack of network information, SDN

2When multiple links fail simultaneously, we consider this case to be a
sequential occurrence of a single link failure.

SDN Controller

Processor1

Processor2

Sensor2

Actuator1

Sensor1

SW4

SW3

SW2

SW1
 Link fault

happens

Path
restoration

Fig. 1: Path restoration on SDN-based CPS networking system

provides a great opportunity to perform the path restoration
based on its flexible network control capability and the global
view of the network; it enables to calculate alternative paths
on-demand according to the global network view and to update
forwarding rules at runtime.

III. FR-SDN: OVERVIEW

In this paper, we aim to develop a fault-resilient real-time
Ethernet framework that achieves the following goals for every
flow fi ∈ F .
G1. When there is no link failure, all messages of fi should

satisfy their end-to-end delay requirement Di; and
G2. When a link fault occurs, up to Ki consecutive messages

of fi can violate their end-to-end delay requirement Di.
To achieve G1, FR-SDN uses fluid-based flow scheduling

for each individual link, which guarantees the delivery of each
message without violating its end-to-end deadline as long as its
bandwidth and propagation delay constraints are met [18]. We
use the MCP algorithm for finding the path of each individual
flow fi subject to satisfying its bandwidth Bi and propagation
delay Pi constraints, where Pi = Di − Ai/Bi. Then, any
solution that the MCP algorithm finds will satisfy the end-to-
end deadline of each message.

To achieve G2, FR-SDN aims to support a fault-resilient
communication on SDN-enabled switched Ethernet through
on-demand path restoration (see Figure 1). The path restoration
process typically involves the following three steps on standard
SDN environments.

S1. Fault recognition: as soon as a SDN switch detects a
link fault, it sends a link fault notification to the SDN
controller.

S2. Path recalculation: the controller then finds alternative
paths for flows so as to bypass the faulty link.

S3. Path reassignment: the controller deploys new forward-
ing rules for the alternative paths to all switches.

Then, the whole path restoration delay is the sum of delays
incurred in each step.

Figure 2 illustrates a situation where a link fault occurs in
the middle of transmitting the mth message of flow fi. In the
figure, the path restoration process begins immediately when
the link fault is detected, and it finishes when fi still suffers
from the link failure in transmitting the (m + 2)th message.
That is, the path restoration process overlaps three periods
of fi, causing fi to experience the loss of three consecutive
messages with the link fault. Here, if flow fi can tolerate the
loss of at most 2 consecutive messages (i.e., Ki = 2), it violates
the loss requirement of fi.

This motivating example reveals interesting design issues to
consider. First, the time to recover from failure is important.

Path
recalculation

Path
reassignment

𝑇𝑇𝑖𝑖

m m+1 m+2
Link Fault

Fault
recognition

time

(3 Consecutive losses)

m+3
𝑇𝑇𝑖𝑖

S1 S2 S3

𝐿𝐿𝑆𝑆𝑆 𝐿𝐿𝑆𝑆𝑆 𝐿𝐿𝑆𝑆𝑆

𝑡𝑡0 𝑡𝑡0 + 𝐿𝐿𝑃𝑃𝑃𝑃 𝑡𝑡𝑆

Path restoration (𝐿𝐿𝑃𝑃𝑃𝑃)

𝑡𝑡𝑆

th th th th

Fig. 2: An example of the path restoration

In other words, path restoration has a delay budget (or a
deadline) for completion in order to meet the loss requirements
of real-time flows. Second, it is important to reduce the path
restoration delay as much as possible in order to maximize
the possibility of satisfying the loss requirements. However,
we cannot simply reduce the computation time of path re-
calculation in S2, since its performance is directly affected
by its computation time (or its search space). Thus, FR-SDN
takes the following strategy: it aims to substantially reduce
the time taken in the S1 and S3 steps (see Section V) and
enables to find schedulable alternative paths adaptively within
a limited time budget in the S2 step (see Section VII). Third,
one may wonder the following question: would it be feasible
to predict in advance whether each flow fi can still meet its
own loss requirement in the case of link failure? To answer this
question, it is important to derive tight upper-bounds on the
delays in each step and feasibility analysis for firm real-time
flows (see Section VI).

IV. PATH RESTORATION DELAYS ON SDN:
EXPERIMENTAL RESULTS AND ANALYSIS

SDN makes it possible to support fault recovery through on-
demand path restoration on switched Ethernet. However, the
centralized network control architecture of SDN introduces
very long and unpredictable delays in the path restoration
process. Such delays make it difficult to minimize packet
loss and satisfy the loss requirements of real-time flows in
a predictable manner. This section presents our motivating
experimental results in order to see how long such delays can
be and examines major delay factors, which is a key to design
FR-SDN in Section V.

A. Path Restoration Delays

In order to estimate the delay of path restoration, we
undertook a motivating experiment on a real-world network
testbed that consists of tens of single-board computers (refer
to Section VIII-B for more details). For the experiment, we
used a path restoration approach that follows the principle
of the standard request-response SDN protocol, as shown in
Figure 3(a), which is commonly deployed by most SDN-based
path restoration methods [14]–[16]. This standard approach
works as follows: i) a switch sends a link fault notification to
the SDN controller upon detecting a link fault; ii) the controller
then finds alternative paths for flows suffering from the fault;
and iii) the controller deploys new forwarding rules for the
alternative (restored) paths to all switches. Figure 4 shows the
path restoration delay with varying the number of flows from
20 to 100. In the experiment, we emulated a link fault by
taking the interface down (i.e., ifdown command), and we
measured fault restoration delay as an elapsed time between

Path finding with
updated network info

t0

Link fault
notification

Rules for
restored path

1 2 3

Path
recalculation

Fault
recognition

Path
reassignment

sw1

sw2

sw3

controller

Time

(t0: Link fault detection)

Update network
info with fault

(a) Std-SDN: a controller-driven path restoration
process which follows the standard request-response
SDN control protocol

Adaptive path finding with
updated network info t0

Rules for
restored path

2 3

Path
recalculation

Path
reassignment

sw1

sw2

sw3

controller

(t0: Link fault detection)

Time

Link fault & path restoration
notification

Update network
info with fault

Fault
recognition

1

(b) FR-SDN: a switch-driven path restoration pro-
cess

Fig. 3: Path restoration process and its delay analysis

0

100

200

20 40 60 80 100

Pa
th

 r
es

to
ra

tio
n

de
la

y
(m

s)

Number of flows

Fault recognition
Path recalculation
Path reassignment
Worst delay

Fig. 4: Path restoration delay break-
down of the motivational experiment

the fault detection time and the time at which all new rules
are deployed in every switch. The figure shows that the path
restoration delay can be hundreds of milliseconds (e.g., up to
211ms with 100 flows) with high variances. Such a long and
fluctuating delay may damage the timing guarantee of real-
time flows; for instance, it may result in consecutive message
losses of a camera sensor running at 60 Hz, which can bring
serious consequences for system safety.

B. Major Delay Factors

To investigate the cause of the path restoration delay, we
decompose the path restoration delay into three steps, S1, S2,
and S3, as shown in Figure 3(a). We then analyze each step
in terms of delay duration and the main causes of the delay.

S1: Fault Recognition. In this step, upon detecting a link
fault, a switch sends a fault notification to the SDN controller
through OpenFlow channel. Upon receiving the notification,
the controller updates its network information with the fault
status. Note that the computation cost for updating the network
information on the controller is negligible (i.e., few micro-
seconds), since it only requires simple memory update opera-
tions. Then, the major delay factor of this step is the OpenFlow
communication between the switch and the controller.

Figure 4 shows the time taken to handle OpenFlow packets
is long and fluctuated (up to 49 ms) even though the notifica-
tion message is very small (i.e., 74 bytes including headers).3
This is because the SDN controller is typically equipped with
complicated software stack, including an OS network stack, a
SDN controller framework, and a SDN controller application,
and an OpenFlow message needs to pass through those layers
on the controller. Furthermore, the OpenFlow message can be
delayed by a scheduling policy or an optimization technique
(e.g., batching) in each layer on the controller. Thus, it is not
trivial to reduce and bound the delay on the controller.

S2: Path Recalculation. This step performs a heavy path
finding computation, which incurs another long delay. In
this step, we used the MCP solver proposed in [18] to find
alternative paths of all flows against the link fault. The MCP
solver calculates each flow’s path in a sequential manner, by
considering the bandwidth and end-to-end latency constraints
of each flow subject to the path assignment of previous flows.
Thus, its computation complexity is a linear function of the
number of flows. In our experiment, the path calculation delay
takes up to 94 ms for 100 flows (See Figure 4). Since this

3A measurement study [26] has also reported that OpenFlow communi-
cation throughput and latency widely fluctuate depending on the controller’s
setup and load; for instance, the latency varies from 100 µs to 1268 ms.

delay is inevitable for finding new paths, it is impossible to
finish the path calculation step without compromising each
flow’s requirements. For example, the experiment with 100
flows, a flow experiencing a link fault cannot complete its
path restoration within its timing requirement of 100 ms.

S3: Path Reassignment. This step also involves OpenFlow
communication with numerous OpenFlow messages to update
the forwarding rules of each switch. It imposes another long
and unpredictable delay, which takes a significant portion of
the entire path restoration delay. Figure 4 shows that this delay
takes up to 72 ms to reassign forwarding rules for the 100 flow
case; note that the case changes the paths of 20 out of 100
flows. Since this delay is caused by the controller and switch
software stacks for OpenFlow communication, it is not easy
to reduce and bound this delay due to the same reason of the
fault recognition delay.

V. FR-SDN: SYSTEM DESIGN

We propose FR-SDN, a novel SDN-based fault-resilient
networking system, which provides a path restoration func-
tionality with reduced and bounded delays. Note that provid-
ing a bounded path restoration delay is essential to satisfy
the loss requirements of firm real-time flows. As shown in
Figure 3(b), FR-SDN totally changes the way of performing
path restoration from controller-driven to switch-driven, which
is a key principle to eliminate the major delay factors in
the fault recognition (S1) and path reassignment (S3) steps.
Furthermore, FR-SDN employs an adaptive path finding method
that selectively reroutes only some flows in order to complete
the path recalculation (S2) step within a limited time budget.

FR-SDN redesigns the three steps of path restoration as
follows. In S1, when a switch detects a link fault, it reflects the
fault into its own global network information without notifying
it to the SDN controller, while each switch holds its own
copy of the global network information in synchronization
with the controller. In S2, the switch then immediately runs
an adaptive path finding method to discover alternative paths
that bypass the faulty link. In S3, upon completing the path
recalculation step, the switch broadcasts the alternative paths
to all other switches in the network, and the other switches
received the path information then update their forwarding
rules accordingly.

FR-SDN extends the data plane in order to add compo-
nents for path recalculation manager and path reassignment
manager as shown in Figure 5 (colored as dark navy). This
section will explain how each new component in the data plane
effectively reduces and upper-bounds delays incurred in each
path restoration step.

Control
Plane

Forwarding table

Link
status

monitor

Data
Plane

Links
Packets Forward

Path recalculation manager

Adaptive
MCP solver

Global
network info

Rule Manager

Path reassignment manager

Rule manager Path propagator

Global
network info

Fault detect

Update

Synchronize

Restored path

Rule
update

Propagate

Fig. 5: FR-SDN system architecture

Switch-driven fault recognition and path recalculation.
Each switch needs to know the global network information,
such as network topology and bandwidth allocation, in order
to perform path recalculation upon recognizing a link fault.
However, the standard SDN allows only the controller to
maintain such network information alone; and each switch
maintains forwarding rules only for packet handling.

To overcome such limitation, FR-SDN adds Path Recalcu-
lation Manager that enables each switch to gather network
information necessary for finding alternative paths, including
network topology, link information (capacity and delay on
each link), flow information, and bandwidth allocation. When-
ever there is a change to the network status (e.g., addition
of a new flow), the controller updates the copy of global
network information on each switch, enabling the switch
to respond correctly in case of a link fault. Since such a
switch-driven approach eliminates OpenFlow communication,
it is possible to reduce and upper-bound the fault recognition
delay; it allows to replace the longer delays incurred by
complex OpenFlow communication stacks on the controller
and the switch with a much shorter one for simply memory
instructions on the switch.

Moreover, the path recalculation manager employs an adap-
tive MCP (Multi-Constrained Path finding) solver, which en-
ables each switch to start the path recalculation step imme-
diately based on its own global network information. One of
the key features of FR-SDN is that it can dynamically adjust
the number of flows to reroute so as to complete the path
recalculation step within a given limited time budget. This
way, FR-SDN is able to provide timing guarantees to firm real-
time flows subject to successful path recalculation (we will
explain it more in Sections VI and VII).

Switch-driven path reassignment. The controller-driven
path reassignment step causes a significant delay for path
restoration, because the centralized controller should send
multiple OpenFlow messages to every switch. On the other
hand, FR-SDN achieves, via switch-driven path reassignment,
a significant reduction in the path restoration delay.

In particular, FR-SDN adds path reassignment manager that
consists of rule manager and path propagator sub-modules,
providing a new inter-switch communication channel for path
reassignment. Once the path recalculation step is done, the
path propagator sub-module generates a path propagation mes-
sage that encapsulates information about the new paths, de-
scribing each new path as a pair of flow ID and a sequence of
switch IDs. It then broadcasts the message to other switches in
the network through the bandwidth-reserved dedicated queue
of each link. Upon receiving the path propagation message, the

rule manager sub-module decapsulates the message, translates
path information into forwarding rules, and directly updates
them to the forwarding table. This way, it excludes OpenFlow
communication and enables to reduce the path reassignment
delay effectively.

VI. FEASIBILITY TEST FOR FIRM REAL-TIME FLOWS

In this section, we seek to answer whether FR-SDN can
recover from link failure (by performing path restoration)
successfully subject to the loss requirements of any given firm
real-time flows. Note that such success depends on two as-
pects: i) logical correctness in a sense that it finds schedulable
alternative paths that satisfy G1 (without compromising their
bandwidth and delay requirements) after the path restoration
process completes, and ii) temporal correctness in a sense that
it finds the schedulable alternative paths early enough to satisfy
G2 during the path restoration process. While the former will
be addressed in Section VII, this section focuses on the latter.

Different from standard SDN, FR-SDN is capable of reducing
and upper-bounding the path restoration delay, and we leverage
this capability to derive a feasibility test from the temporal
aspect. To this end, we first explain how to calculate and upper-
bound the path restoration delay under FR-SDN. We then derive
a necessary offline feasibility test for every firm real-time flow,
based on a runtime condition for each flow’s loss requirement.
Finally, we define a notion of time budget derived from the
necessary condition to be utilized for adaptive path calculation
in Section VII.

A. Calculation and Upper-Bound of Path Restoration Delay
Now, we derive an upper-bound on the path restoration

delay of FR-SDN in case of a single link failure. As mentioned
in Section III, the path restoration delay is the sum of the
delays incurred in each of the three steps, and therefore we
can express the worst-case path restoration delay of FR-SDN
(denoted by LPR) as follows:

LPR = LS1 + LS2 + LS3, (1)

where LS1, LS2, and LS3 denote the worst-case running
times in the fault recognition, path recalculation, and path
reassignment steps, respectively. We now investigate individual
delay components.

The fault recognition delay LS1 is the time to update the
network information, used for the path recalculation, with
the fault information. Since FR-SDN introduces the switch-
driven fault recognition, this delay is made by a few memory
instructions to access the network information in the switch;
it can be upper-bounded by the worst-case execution time of
the memory instructions.

The path calculation delay LS2 can be upper-bounded by
the worst-case execution time of our adaptive path calculation
algorithm. As detailed in Section VII, our proposed algorithm
takes the number of flows to reroute (denoted by Nroute) as
input and requires O(Nroute)-time. Then, an upper-bound on
LS2 can be derived as

LS2(Nroute) = `S2 ·Nroute + `c−misc, (2)

where `S2 is the maximum time to find a feasible path for
one flow in a given network, and `c−mise is an additional
overhead regardless of Nroute, such as an initialization cost

of the path finding solver. Note that `S2 can be expressed by
O((X +Bmax) · |V | · |E|) [18]. Here, X is a given constant
parameter and Bmax is the maximum bandwidth utilization of
a path, which can be inferred by the network. Therefore, we
can upper-bound `S2 for a given network setup.

The path reassignment delay LS3 is the time to install new
forwarding rules associated with the alternative paths into all
switches. Once a switch that detects a fault finishes the fault
recognition and path recalculation steps, it then propagates the
alternative paths via an inter-switch communication channel
to all other switches; the other switches receiving the paths
update their forwarding table. Thus, LS3 can be expressed
with the function of the number of forwarding rules to update
(denoted by Nrule) as follows:

LS3 = Ldeliver + Lupdate(Nrule), (3)

where Ldeliver is the maximum delivery time of a rule
update message between switches, and Lupdate(Nrule) is the
maximum update time of new forwarding rules on each switch.
Ldeliver can be derived by multiplying the worst-case delay
on each hop by the maximum hop distance between switches
(denoted by Llink):

Ldeliver = (`trans + `prop + `proc + `flood) ·Nlink, (4)

where `trans, `prop, `proc, and `flood are the delays of trans-
mission, propagation, processing, and packet-flooding, respec-
tively. Note that `trans and `prop are determined by physical
properties of the network system such as link bandwidth,
physical link length, and link propagation speed, and `proc and
`flood are dependent on switch architecture. Such delay factors
can be bounded by constant values according to empirical
measurement. Note that there is no queueing delay because
we assume that each flow is assigned to an individual queue.
The upper-bound of Lupdate(Nrule) can be calculated by

Lupdate(Nrule) = `update ·Nrule, (5)

where `update is the maximum required time to update a single
forwarding rule in the forwarding table.

In summary, for a given link fault occurs at t, we can calcu-
late and upper-bound LS1 and LS3. Also, once the number of
flows to reroute (Nroute) is determined (by the adaptive path
calculation algorithm in Section VII), we can calculate and
upper-bound LS2(Nroute). In the next subsection, we derive
an offline necessary feasibility test for firm real-time flows, by
utilizing those upper-bounds.

B. Feasibility Conditions
For ease of presentation, let us define some notations. When

a fault occurs to a link, let FLF ⊆ F denote a set of flows
that pass the faulty link.

We present the following lemma as a necessary and suffi-
cient condition for a flow experiencing a link fault to meet its
loss requirement in the temporal aspect.

Lemma 1. Suppose a link fault occurs at time t0 (see
Figure 2) and FR-SDN completes the path restoration process
at t0 + LPR(t0) finding schedulable alternative paths. Then,
FR-SDN satisfies the Ki loss requirement of flow fi ∈ FLF if
LPR(t0) ≤ Ri(t0) + Ti · (Ki − 1), where Ri(t0) is the time
difference between t0 and the first invocation of fi after t0.

Proof. For given Ki ≥ 1, we need to finish the overall
path restoration so as to successfully reroute the (m+Ki)

th

message of fi, where the mth message of fk is the first
message to be lost. Then, Ri(t0) implies the time between
t0 and the release of the (m + 1)th message, and the time
duration between the release of the (m+1)th and (m+Ki)

th

messages is calculated by Ti ·(Ki−1). Therefore, if the overall
path restoration delay is no larger than Ri(t0) +Ti · (Ki− 1),
a new path for fi is deployed in every switch in the network
until the release time of the (m+Ki)

th message of fi, which
proves the lemma.

Lemma 1 implies the lower-bound of Ki for fi ∈ FLF that
FR-SDN can support in practice is 2. In the worst-case scenario,
Ri(t0) can be a very short duration ε, where 0 < ε < LPR.
That is, the path restoration process can overlap two periods
of fi, and in this case, the two messages of fi can be lost
during the path restoration process.

On the other hand, the following lemma presents a corre-
sponding lemma for a flow that does not experience a link
fault directly.

Lemma 2. Suppose a link fault occurs at time t0 (see Fig-
ure 2), and FR-SDN completes the path recalculation (S2) step
at t2 finding schedulable alternative paths. Then, by definition,
the path reassignment (S3) step starts at t2 and finishes at
t2 + LS3(t2). Then, FR-SDN satisfies the Kj loss requirement
of flow fj ∈ F \ FLF if LS3(t2) ≤ Rj(t2) + Tj · (Kj − 1),
where Rj(t2) is the time difference between t2 and the first
invocation of fj after t2.

Proof. The proof is similar to Lemma 1. When the path
reassignment step overlaps the two periods of fj , the two
messages fj within the overlapped periods can be lost due
to inconsistent forwarding rule updates across switches.

Building upon the above two lemmas that use online in-
formation (i.e., Ri(t)), we can derive an offline necessary
feasibility condition in the following theorem.

Theorem 1. Suppose upon a link failure, FR-SDN completes
the path restoration process successfully finding schedulable
alternative paths for all flows. Then, FR-SDN can satisfy the
loss requirements of flows fi ∈ FLF and fj ∈ F \ FLF ,
respectively, if

LS1 + LS2(|FLF |) + LS3 ≤ Ti · (Ki − 1), (6)

LS3 ≤ Tj · (Kj − 1). (7)

Proof. The LHS (Left-Hand Side) of Eq. (6) implies the
minimum path restoration time. As we explain in the previous
subsection, while LS1 and LS3 are static values, LS2 is a
function of the number of flows to reroute. Then, FLF is the
minimum set of flows to reroute; if any flow in FLF is not
given a new path, it inevitably loses its following messages.
Therefore, LS2(|FLF |) is the minimum time for the path
recalculation step. On the other hand, the RHS (Right-Hand
Side) of Eq. (7) implies the maximum delay for the overall
path restoration obtained offline; this is because, Ri(t) can be
arbitrarily small and cannot be known offline. Hence, Eq. (6)
is a necessary feasibility condition for the loss requirement of
fi ∈ FLF .

f0, f1

f2, f3

f4, f5

f0, f1

f2, f3

f4, f5

Fault!
Link

fault &
recovery

Fig. 6: Motivational MCP example: each link provides band-
width of 100 Mbps and delay of 1 ms, and each flow has
requirements of (33 Mbps, 6 ms)

Similar to Eq. (6), we can derive Eq. (7) as a necessary
feasibility condition for the loss requirement of fj ∈ F \FLF ,
by considering fj does not pass a faulty link.

Although Theorem 1 provides a necessary condition to
meeting the loss requirement of every flow, we need an
effective way to find new paths at run-time that satisfy G2.
To this end, we need to define a notion of time budget as the
time duration we can spend time for the path recalculation
step including a selection of flows to reroute, as follows.

Definition 1. Suppose upon a link failure, FR-SDN completes
the path restoration process successfully finding schedulable
alternative paths for all flows. Also, suppose Theorem 1 holds.
Then, we define the time budget L∗

S2 for fi ∈ FLF as follows
(refer Ri(t0) in Lemma 1):

L∗S2 = min
fi∈FLF

(
Ri(t0) + Ti · (Ki − 1)

)
−

(
LS1 + LS3

)
. (8)

Note that if we apply Ri(t) = 0 for every fk ∈ FLF ,
L∗
S2 ≥ LS2(|FLF |) is equivalent to satisfying Eq. (6) for every

fk ∈ FLF . Also, if the network does not support to calculate
Ri(t0), we can use Ri(t0) = 0.

As defined, the meaning of the time budget is the largest
timing duration for the path recalculation step, which does not
compromise the loss requirement of every flow that passes a
faulty link. In the next section, we present how to efficiently
utilize the time budget at run-time.

VII. ADAPTIVE PATH CALCULATION

In the previous section, we derived L∗
S2, the maximum

available time to spend in the S2 step so as to guarantee the
loss requirements upon successful path recalculation. In this
section, we design our path recalculation method to increase
the possibility of successful path finding within L∗

S2. To this
end, our path recalculation method should be deterministic, in
the sense that it terminates in a predetermined time (i.e., L∗

S2).
Moreover, it should be efficient to improve its performance for
a given limited running time.

Figure 6 gives an intuition on the path recalculation method.
The figure shows a 3 × 3 grid network with 6 flows. In
the figure, for simplicity, 6 flows have the same bandwidth
requirement, and each link can accommodate up to 3 flows due
to its capacity constraint. The figure illustrates a situation—
when a link fault occurs, three flows (f0, f1, and f3 are
rerouted; it reroutes f0 and f1 to bypass the faulty link and
one additional flow of f3 in order to reroute f0 and f1 with an
smaller additional delay to meet their delay constraints. This
example implies that we can consider re-routing only some
flows, instead of all flows, for successful path recalculation in
a shorter running time.

Based on this observation, we present adaptive path calcu-
lation, which utilizes the number of flows to reroute (Nroute)
as a control knob in order to limit the running time of MCP
computation. The minimum Nroute is the number of flows that
pass the faulty link. As shown in Figure 6, however, there are
cases where it fails to find the new path. The more flows we
take into account, the more successful the path recalculation
would be. Hence, we take the best effort approach in choosing
Nroute to maximize Nroute as long as our algorithm can
complete within a given time budget L∗

S2. Then, the maximum
Nroute from L∗

S2 can be derived as N∗
route =

⌊
L∗

S2−`c−misc

`S2

⌋
.

Figure 6 also illustrates the importance of choosing the right
subset of flows to reroute. The problem of finding the mini-
mum subset of flows that makes the solvable MCP problem
is intractable. Therefore, we present a heuristic algorithm to
find the best subset, named nearest neighbor (Adaptive-NN).
This algorithm uses the notion of distance between links.
Specifically, let us assume a link (u, v) experiences a fault.
Then, all the links starting from node u (except (u, v)) have
a distance of 1 with the faulty link (u, v). Then, all the links
that are connected with distance-1 links have the distance of
2, except the incoming links of node u. This way, we can
compute the distance of each link to the faulty link. Then, the
distance of flow i is computed by the minimum distance of
links that make up the path Φi. We make the subset of flows
to reroute by the top-N∗

route minimum distance flows. For
those flows that have the same distance, we select flows with
the large bandwidth first. This is because re-routing the large
bandwidth flows is more likely to help the path calculation.

VIII. EVALUATION

In this section, we evaluate FR-SDN by answering the
following questions.

• How effective is our adaptive path recalculation approach
in improving the success ratio of the path restoration
(Section VIII-A)?

• How effective is FR-SDN in reducing the path restoration
delay (Section VIII-B)?

• How does the path restoration delay affect the consecutive
message losses of real-time flows (Section VIII-B)?

A. Path Finding Simulation

Simulation setup. We evaluated the performance of the
path finding with varying the number of flows and the unit
path finding cost. We estimated the success ratio of path
restoration in a 5×5 grid network, with synthesized flow sets.
A flow set is said to be fault-resilient for a link failure if its
path restoration process correctly finds alternative paths for all
flows without compromising any timing and loss requirements.
The success ratio is defined as the percentage of the number
of fault-resilient flow sets of the total number of generated
flow sets. Each link had a delay of 40, and its bandwidth
was randomly chosen between 50 and 100. We also randomly
set the source and destination of each flow as well as the
delay and bandwidth requirements between 160 and 240, 10
and 15, respectively. We generated 500 network and flowsets
for a given number of flows and evaluated whether each path
finding algorithm gives the solution within the delay budget.
To exclude the unsolvable cases, we only considered cases in

0

50

100

10 20 30 40 50 60 70 80 90 100

Su
cc

es
s r

at
io

 (%
)

Number of flows

Static-Min Static-Full
Adaptive-NN Adaptive-LBF
Adaptive-SDF

(a) With varying the number of flows

0

50

100

1 2 4 8 16 32 64 128 256

Su
cc

es
s r

at
io

 (%
)

Unit path finding cost

Static-Min Static-Full
Adaptive-NN Adaptive-LBF
Adaptive-SDF

(b) With varying the unit path finding
cost

Fig. 7: Path restoration success ratio

which Static-Full succeeds in finding the solution before and
after the link fault, without considering its path recalculation
time budget.

Baseline algorithms. To compare the path restoration per-
formance with baselines, we considered various MCP ap-
proaches as follows:

• Static-Min reroutes the flows that are directly affected by
the fault (i.e., flows that go through the faulty link).

• Static-Full reroutes the entire flows in the network.
• Adaptive-MCP limits the number of re-routing flows to

be within available delay budget with the following
heuristics.

– Adaptive-NN selects the flows that go through the link
nearest to the faulty link first (see Section VII).

– Adaptive-SDF selects the flows with the smallest delay
requirement first.

– Adaptive-LBF selects the flows with the largest band-
width requirement first.

Varying the number of flows. Figure 7(a) shows the path
restoration performance between each algorithm with varying
the number of flows and with a fixed unit path finding cost
of 5. The figure shows that the success ratio of Static-Full
drops significantly when the number of flows exceeds a certain
threshold (40-50 in Figure 7(a)); this is because it requires a
long computation time which exceeds the path recalculation
time budget given by the flow requirements. On the other
hand, the success ratio of Static-Min decreases gradually as the
number of flows increases. This is because Static-Min does not
suffer from the path recalculation time budget excess; however,
since Static-Min only seeks to restore the minimal necessity
flows, it could fail to find the feasible paths that satisfy the
delay and bandwidth requirement of all flows.

Meanwhile, the success ratio of our adaptive approach,
Adaptive-NN, dominates both Static-Full and Static-Min. Adaptive-
NN performs better than Static-Min since it accommodates more
flows for path recalculation within the delay budget; and it also
performs better than Static-Full since it considers the available
delay budget to finish the path restoration process. In addition,
Adaptive-NN also shows the higher success ratio than other
baseline heuristics, Adaptive-SDF and Adaptive-LBF in general.
This result implies that the flows selected first by Adaptive-NN,
which go through links nearest to the faulty link, are critical to
the successful path restoration. In contrast, since Adaptive-SDF
and Adaptive-LBF respectively select flows according to their
given delay and bandwidth requirements, they may choose
flows that go through the links far away from the faulty link,
which are not critical to the successful path restoration.

(a) Testbed with 21 single-board
computers

sw

sw

sw

end

end

sw

sw

sw

end

end

sw

sw

sw

end

end

end

end

end

end

end

end

(b) Grid topology of the testbed

Fig. 8: Network testbed and its topology

Varying the unit path finding cost. Figure 7(b) shows the
path restoration performance of each algorithm with varying
the unit path finding cost of the MCP algorithm (lS2 in
Section VI). The number of flows was fixed to 100 throughout
the simulation. As the unit path finding cost changes, the
number of flows that can be restored by the MCP algorithm
within the path recalculation time budget may vary. However,
the static MCP approaches, Static-Min and Static-Full, do not
consider the time budget. Static-Full works well if the unit cost
is fairly low, but always fails if the cost is greater than or equal
to 8 since it exceeds the time budget. Static-Min works better
than Static-Full when the unit cost is larger than 8 since it can
finish within the time budget, but it always restores only the
minimal set of flows which go through the faulty link.

Our adaptive approach adjusts the number of flows to
reroute according to the available budget. Therefore, Adaptive-
MCP shows better performance than both of Static-Min and
Static-Full regardless of the unit cost of path finding. This
is expected since Adaptive-MCP considers the available time
budget to determine how many flows to recalculate the paths; it
can finish even if the unit cost is high, while Static-Full cannot.
Likewise, Adaptive-MCP performs better than Static-Min since
it always accommodates more flows than Static-Min within its
time budget. Note that Adaptive-NN outperforms Adaptive-SDF
and Adaptive-LBF in general4; this shows Adaptive-NN is a better
strategy than Adaptive-SDF and Adaptive-LBF.

B. Experiment on Network Testbed
We implemented FR-SDN on top of Open vSwitch [17], the

de facto standard software switch for OpenFlow implementa-
tion. We evaluated the performance of FR-SDN on a network
testbed of 21 single-board computers.

Experiment setup. Experiments were performed on a net-
work testbed (see Figure 8(a)), which consists of 12 end
nodes (Beaglebone-Black [27] boards), 9 software switches
(Odroid-XU4 [28] boards), and a SDN controller (Odroid-
XU4). To increase the connectivity of switch nodes, we
equipped each switch node with additional 4 USB Ethernet
interfaces (Realtek r8152 [29]) by using a USB2.0 hub. All
nodes were connected via 100 Mbps Ethernet in a grid
topology as shown in Figure 8(b), and each switch node had a
dedicated Ethernet interface to communicate with the remote
SDN controller. To realize the bandwidth allocation, we used
HTB (Hierarchical Token Bucket) Linux Queueing Discipline
with 8 sub-queues. Since the current OpenFlow does not

4In Figure 7(b), the success ratio of Adaptive-NN is slightly lower than that
of Adaptive-SDF and Adaptive-LBF, when unit cost is 4. This is possible
since we use a heuristic MCP algorithm, instead of an optimal MCP algorithm.

0

100

200

Std FR Std FR Std FR Std FR Std FR

20 40 60 80 100

Pa
th

 r
es

to
ra

tio
n

de
la

y
(m

s)

Number of flows

Fault recognition
Path recalculation
Path reassignment

(a) Path restoration delay breakdown. Note that FR-SDN
has the path recalculation time budget to calculate 25%
of flows

0

50

100

20 40 60 80 100

 D
el

ay
 (m

s)

Number of flows

100%
75%
50%
25%

(b) Path recalculation delay of FR-SDN
with varying the number of path recalcu-
lating flows over the total number of flows

Fig. 9: Path restoration delay

0

1

2

3

4

5

M
ax

im
um

 c
on

se
cu

tiv
e

m
es

sa
ge

 lo
ss

es

Trial

Std-SDN FR-SDN

Fig. 10: The maximum number of
consecutive message losses with ran-
dom generated flowset

support dynamic queue configuration, we set each queue with
a fixed reserved bandwidth. In addition, all switches and end
nodes were synchronized by NTP (Network Time Protocol)
with an accuracy of less than 1 ms.

Metric and baseline. We measured path restoration delay
(LPR) as an elapsed time from the instant at which a switch
detects a fault to the instant at which all switches update their
forwarding tables with new path rules. We measured each of
fault recognition delay (LS1), path recalculation delay (LS2)
and path reassignment delay (LS3) as a breakdown of path
restoration delay. In addition, we also measured the maximum
consecutive message losses when the path restoration took
place while real-time flows generate periodic messages.

To compare the performance with a baseline, we evaluated
two distinct systems as follows:

• Std-SDN: A controller-driven path restoration with the
Static-Full MCP algorithm.

• FR-SDN: A switch-driven path restoration with the
Adaptive-NN MCP algorithm.

Path restoration delay. We measured LPR with varying
the number of flows, and broke it down into LS1, LS2, and
Ls3. Figure 9(a) shows the result; note that each box plot
and each error bar represent the average and the standard
deviation, respectively, derived from 30 repeated trials. The
result shows that LPR of Std-SDN rapidly increases than that
of FR-SDN, as the number of flows increases. This is because
Std-SDN requires heavy OpenFlow communication and the path
finding computation for all flows, while FR-SDN effectively
eliminates OpenFlow communication and adjusts the amount
of computation. Although LS1 involves a single OpenFlow
communication on Std-SDN, it shows a long (up to 49 ms)
and widely fluctuating delay. In contrast, FR-SDN effectively
bypasses OpenFlow communication and reduces LS1 to less
than 3 µs. LS2 of FR-SDN is also around a quarter of time
compared to Std-SDN, since Adaptive-NN effectively adjusts the
number of flows for path recalculation. Note that we set the
recalculation time budget L∗

S2 to cover 25% of the flows. LS3

is reduced with the highest ratio, because FR-SDN effectively
replaces heavy OpenFlow communication for rule update with
inter-switch path propagation.

Figure 9(b) shows LS2 according to the time budget with
varying the total number of flows. Each legend indicates
different time budget which can accommodate p% of flows for
the path recalculation, where p denotes the number of flows to
reroute over the number of total flows. This result is expected;
as the number of flows increases, LS2 linearly increases; and

as the time budget decreases, FR-SDN effectively reduces LS2

by adjusting the number of flows to recalculate the path.
Note that, unlike FR-SDN, it is difficult to apply Adaptive-MCP

to Std-SDN because the safe time budget for path recalculation
(L∗

S2, defined in Eq. (8)) cannot be derived due to the un-
predictable delays (LS1 and LS3) in Std-SDN. Instead, we can
manually set the percentage of the number of path calculating
flows and compare how the path recalculation delay (LS2)
of Std-SDN changes with varying the number of calculating
flows. Note that a similar trend can be seen for Std-SDN as
in the case of FR-SDN shown in Figure 9(b); LS2 is linearly
decreased for all |F | values as the percentage of the number
of path calculating flows decreases from 100% to 25% (e.g.,
94 to 35 ms when |F | = 100). However, in Std-SDN, limiting
the number of path calculating flows has no effect on reducing
LS1 and LS3. On the other hand, FR-SDN significantly reduces
LS1 and LS3 via the proposed switch-driven path restoration
approach and enables adaptive path recalculation with tight
upper-bounds on the delays, resulting a much smaller and
predictable path restoration delay compared to Std-SDN as
shown in Figure 9(a).

Effect on real-time flows. To show the effectiveness of FR-
SDN to guarantee the maximum tolerable consecutive message
loss requirement of real-time flows, we undertook an exper-
iment with randomly synthesized real-time flows. For each
experiment, we generated a set of up to 14 real-time flows.
For each flow, the source and destination nodes are randomly
selected, the period is randomly chosen from 25 ms to 100
ms according to the log-uniform distribution, the bandwidth
is randomly selected between 5 Mbps to 10 Mbps, and the
message size is randomly determined to be transmitted within
80%-90% of the period according to the given bandwidth.
Note that since the reserved bandwidth of the queue is fixed,
each flow was associated with the queue that can support
higher bandwidth than the flow requirement. The maximum
tolerable consecutive message loss requirement of each flow
was fixed as 2, for ease of presentation. Note that all flowset
used in the experiment passed the feasibility test in Theorem 1
with a conservative delay bound of each delay factor obtained
by measurement (i.e., LS1 and LS3 of 3 µs and 10 ms,
respectively, and the bounded LS2 with lS2 and lc−misc of 1.4
ms and 0, respectively). After 2 seconds from the start of each
experiment, we emulated a link fault by taking the interface
down (i.e., ifdown system command) on a randomly selected
switch port that is connected to another switch. Since the link
status monitor takes a while to detect a link fault (i.e., up to
15 ms in our setup), we consider this delay to derive the path

Sensor
(LIDAR)

Actuators (motors)

SDN Controller &
Switches

(Odroid-XU4)

End nodes
(Jetson TK1)

Fig. 11: 1/10 scale autonomous vehicles

recalculation budget.
Figure 10 shows the maximum number of consecutive

message losses of all flows in each flowset. The figure shows
that Std-SDN results in up to 4 consecutive message losses
which violate the flow requirement. This is because of the
long path restoration delay imposed by Std-SDN. In contrast,
FR-SDN effectively reduces the maximum consecutive message
losses compared to the Std-SDN; this is because of the reduced
delay for the path restoration. Besides, FR-SDN strictly limits
the maximum consecutive message losses by 2, thanks to the
bounded delay of the path restoration.

IX. CASE STUDY: AUTONOMOUS VEHICLE

In order to show how real world systems benefit from FR-
SDN, we conducted a case study, supporting the Adaptive
Cruise Control (ACC) system on a 1/10 scale autonomous
vehicle [30].

Adaptive Cruise Control. Adaptive Cruise Control is a
system that automatically adjusts the speed of a car to con-
tinuously maintain the safe distance, by constantly measuring
the distance from the car driving ahead. Since it alleviates the
driving effort, it is considered as the Level 1 automation in
the SAE J3016 standard [31].

Experiment setup and scenario. We implemented a 1/10
scale autonomous car, which is extended from the F1/10
autonomous racing platform [30], as shown in Figure 11. The
car consists of the Traxxas Rally 1/10 body with actuators
(i.e., motors) [32], a LIDAR sensor (Hokuyo UST-10LX [33]),
Jetson TK1 [34] boards for end nodes, and Odroid-XU4 [28]
boards for switch/controller nodes.

In each experiment, two cars ran in a way that a following
car follows a leading car while aiming to maintain a regular
distance (i.e., the reference distance of 1.5 meters). Note that
the two cars used the PID controller to drive and keep the
distance. The leading car drove itself along the straight corri-
dor of 15 meters while alternating accelerating and braking at
the interval of one second. Figure 12(a) depicts the network
topology of the vehicle system, and only the following car is
equipped with the networked system in the figure.

In each experiment, in the following car, the sender node
s1 transmitted the LIDAR sensor data flow to the destination
node d1 through the switches sw1, sw2, and sw4. In the
middle of each experiment (i.e., 6 seconds after departure), we
emulated a fault on the link between sw2 and sw4 by taking
the interface down (i.e., ifdown command). The switch sw2

detected the fault and sought to change the route with FR-SDN
and Std-SDN (see Section VIII-B for more details). Note that
the LIDAR flow generated messages with the period of 25
ms, the amount of 8 Kbytes, and the bandwidth of 3.0 Mbps.
To reflect a real-world situation that multiple flows share the

network, the switches have 100 background flows sharing the
network. Note that each flow required the period of 20 ms, the
amount of 1Kbytes, and the bandwidth of 0.5 Mbps. When the
fault occurs, the LIDAR flow and 50 out of 100 background
flows are re-routed to the new path of sw1, sw3, and sw4.

To compare the control performance of each system, we
used three different scenarios: No-Fault, Std-SDN and FR-SDN.
In No-Fault, no link fault happened; in Std-SDN and FR-SDN, a
link fault happened 6 seconds after from the departure time of
the following car.

Implication. Figure 12(b) shows the distance between two
cars over time. Note that the distance samples were measured
by the LIDAR with the sampling rate of 40 Hz. We consider
the case of No-Fault as a reference control performance case.
The figure shows that Std-SDN cannot keep the reference
distance after it suffers from the fault with the distance reduced
down to 0.7 meters. On the other hand, No-Fault and FR-
SDN maintain the distance more than 1.1 meters. This is
because it takes longer to perform path restoration on Std-SDN
against the link fault. During the path restoration process, the
LIDAR messages cannot reach the destination; thereby, the
PID controller cannot have enough sensor data to properly
control the car. In contrast, FR-SDN shows stable control
behavior comparable to No-Fault despite the link fault. This is
because FR-SDN incurs a much shorter path restoration delay
than Std-SDN and is thus able to limit consecutive message
losses during the path restoration process.

To evaluate how well each path restoration mechanism pre-
serves the control stability, we repeated experiments 20 times.
We evaluate the control performance by comparing the control
behavior with a reference case, which is selected from the No-
Fault trials. Note that the reference has the median control
performance among all No-Fault trials. Then, we quantify the
control performance of each trial as the performance index
of the integral of the absolute error (IAE) criterion [35],
defined as

∫ B

A
|s(t)− r(t)|dt, where s(t) and r(t) denote the

control output and reference value at time t, respectively. The
performance index represents an accumulated state error, i.e., a
deviation from the desired state. Thus, a large value indicates
a larger deviation from the desired states, or worse control
performance. We used the measured distance between two cars
and the desired safety distance as the control output and the
reference value, respectively; to measure the effect after the
link fault, we set A and B to 6 and 7.5, respectively.

Figure 12(c) shows the average and standard deviation
of the performance index for No-Fault, FR-SDN and Std-SDN,
normalized to the average of No-Fault. Note that No-Fault also
has non-zero IAE. This is because we controlled the car
using a simple PID controller; hence, control performance was
slightly different for each trial even with the same setup in
all trials. The figure shows that FR-SDN results in the small
IAE comparable to No-Fault; it implies that FR-SDN effectively
preserves the control performance despite the link fault, thanks
to the minimized LIDAR message losses with the short path
restoration delay. Yet, FR-SDN has a slightly higher IAE than
No-Fault since some LIDAR message losses (1-2 message
losses) are inevitable during the path restoration process. On
the other hand, Std-SDN has an IAE of more than 5 times
higher than No-Fault. This implies that Std-SDN cannot support
stable control performance when the link fault happens, due to

𝑠𝑠𝑠𝑠1
‡

𝒔𝒔𝟏𝟏∗

 (Sensors)

𝑠𝑠𝑠𝑠3
‡

𝒅𝒅𝟏𝟏∗
(Controllers
& Actuators)

𝒄𝒄𝟏𝟏
‡

(SDN Controller)

*Jetson TK1
‡Odroid-XU4

𝑠𝑠𝑠𝑠4
‡

𝑠𝑠𝑠𝑠2
‡

 X

FAULT

(a) Network topology in the vehicle system

FAULT

0.5

1.5

2.5

0 4 8

D
is

ta
nc

e
be

tw
ee

n
ca

rs
 (m

)

Time (s)

No-Fault
FR-SDN with Fault
Std-SDN with Fault

(b) Distance changes over time

0

5

10

No Fault FR-SDN
w/ Fault

STD-SDN
w/ Fault

N
or

m
al

iz
ed

 IA
E

 in
de

x

(c) Normalized IAE index
Fig. 12: Case study with the 1/10 scale autonomous vehicles: Adaptive Cruise Control

the considerable amount of LIDAR message losses during the
path restoration. In the worst case, Std-SDN results in the IAE
9.8 times larger than No-Fault (i.e., the absolute value of 42.03);
it represents that the worst trial shows the average difference
of 0.7 meters with the reference trial in each control tick.

The case study implies that the path restoration delay is
critical to preserve the control stability; and the fast path
restoration thanks to FR-SDN helps to improve the safety of
real-world control systems.

X. RELATED WORK

Fault tolerant Ethernet-based CPS network. Ethernet
standards for CPS, such as IEEE TSN [7] and AFDX [1],
support fault-free communication by employing redundant
packet transmission which simultaneously transmits replicated
packets through multiple routes. In addition, IEEE TSN also
supports fault-resilient communication relying on path pro-
tection approach [36]; upon detecting a link fault, it can
change the path to the pre-allocated backup path. Although
they provide fault tolerance for packet transmission, they incur
inefficient resource use for the duplicated packet transmission
and proactively allocated bandwidth for the backup path.
Instead, our path restoration approach helps to efficiently
utilize the network resources while providing fault resiliency.

Fault tolerant SDN-enabled networks. To support fault
resilient packet transmission through SDN, it employs two
major ways of fault recovery: path restoration and path
protection. In studies for path restoration [15], [16], a fault
detecting switch reports it to the controller. The controller then
seeks to find new paths of the flows that go through the faulty
link; although it can generate alternative paths considering
run-time network status including the fault situation, it yet
imposes a long and unpredictable delay to communicate with
the controller, which is not acceptable for the real-time flows.
FR-SDN changes the path restoration way from the controller-
driven to the switch-driven, and consequently reduces and
bounds the delay. Note that, although FR-SDN applies a switch-
driven approach so as to enable fast and predictable path
restoration, it respects most of essential SDN principles, such
as dynamic network management and global network view.

In studies for path protection [37]–[40], each switch stores
pre-computed alternative paths for fault cases; it immediately
updates its forwarding table with the alternative paths upon a
link fault, while minimizing the fault recovery delay. However,
it incurs inefficient resource use to store alternative paths of
every single fault case; moreover, it should recalculate all the
alternative paths upon any network status change (i.e., adding
a new flow). In contrast, FR-SDN can efficiently utilize the

resource, thanks to the on-demand path recalculation. A hybrid
approach [14] proposes a two-step fault recovery; it first ap-
plies pre-computed alternative paths that only consider end-to-
end connectivity, and later, it replaces the rules with the paths
computed by the controller considering QoS requirements.
This approach still incurs a long delay; the timing requirements
of flows can be guaranteed after the second step is done.

Switch-driven network management on SDN. MC-
SDN [41] proposes switch-driven network management to
support a fast and predictable mode change for mixed-
criticality scheduling. When a mode change happens, switches
notify the event to each other through inter-switch signal
propagation, and immediately update their forwarding table
with proactively stored rules. Although MC-SDN enables the
fast and predictable rule update, it is not suitable for the path
restoration, because it requires to store alternative forwarding
rules in advance of the event (i.e., link failure). In contrast,
FR-SDN effectively supports the path restoration, by generating
alternative rules after the event.

XI. CONCLUSION AND FUTURE WORK

We presented the design and implementation of FR-SDN that
supports fast and predictable path restoration to meet the fault
tolerance constraints of firm real-time flows. This is the first
work on adaptive path restoration in SDN networks, aiming
at safe fault recovery from link failure without violating any
loss requirement. FR-SDN was designed to completely change
the way of performing path restoration from SDN controller-
driven to switch-driven, enabling path restoration operation
with minimal and bounded delays. FR-SDN not only provides
a feasibility test for meeting the loss requirement of individual
firm real-time flows, but also employed an adaptive MCP
technique that selectively reroutes only some flows so as to
perform path recalculation effectively within a limited time
budget. We developed the prototype of FR-SDN to evaluate
its effectiveness in a real-world system such as a 1/10 scaled
autonomous vehicle; and the extensive evaluation and case
study demonstrated that FR-SDN significantly improves the
reliability of real-time communications.

As future work, an important aspect is scalability to support
large network systems, such as smart factories and autonomous
vehicles. In order to make FR-SDN more scalable, it requires to
restrict signal propagation range and path finding search space.
A hierarchical design approach would be helpful to effectively
bound signal propagation range and path finding search space
within each sub-network. In addition, we would like to extend
FR-SDN to support multiple link failures.

ACKNOWLEDGEMENTS

This work was supported in part by BSRP (NRF-
2015R1D1A1A01058713), IITP (2014-0-00065, Resilient Cyber-
Physical Systems Research), ERC (NRF-2018R1A5A1059921),
MSIT (DGIST Start-up Fund Program, 2018080005), MSIT
(2019R1A2B5B02001794), and MSIT (2017M3A9G8084463, Bio
& Medical Technology Development Program).

REFERENCES

[1] J.-P. Moreaux, “Data transmission system for aircraft,” 2005, US Patent
6,925,088.

[2] “Open Alliance,” http://www.opensig.org/.
[3] “AUTOSAR Classic Platform Standard 4.3.0,” 2016.
[4] IEEE, “IEEE standard for local and metropolitan area networks - timing

and synchronization for time-sensitive applications in bridged local area
networks,” IEEE Std 802.1AS, pp. 1–292, March 2011.

[5] ——, “IEEE standard for local and metropolitan area networks– bridges
and bridged networks - amendment 24: Path control and reservation,”
IEEE Std 802.1Qca, pp. 1–120, March 2016.

[6] ——, “IEEE standard for local and metropolitan area networks – bridges
and bridged networks - amendment 25: Enhancements for scheduled
traffic,” IEEE Std 802.1Qbv, pp. 1–57, March 2016.

[7] ——, “IEEE standard for local and metropolitan area networks - frame
replication and elimination for reliability,” IEEE Std 802.1CB, 2017.

[8] M. Hamdaoui and P. Ramanathan, “A dynamic priority assignment
technique for streams with (m,k)-firm deadlines,” IEEE Transactions
on Computers, vol. 44(12), pp. 1443–1451, 1995.

[9] G. Koren and D. Shasha, “Skip-over: Algorithms and complexity for
overloaded systems that allow skips,” in IEEE Real-Time Systems
Symposium (RTSS), 1995.

[10] G. Bernat, A. Burns, and A. Llamosi, “Weakly hard real-time systems,”
IEEE Transactions on Computers, vol. 50(4), pp. 308–321, 2001.

[11] J. Lee and K. G. Shin, “Development and use of a new task model for
cyber-physical systems: A real-time scheduling perspective,” Journal of
Systems and Software, vol. 126, pp. 45–56, 2017.

[12] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, and V. Verdugo, “A
scheduling model inspired by control theory,” in International Confer-
ence on Real-Time Networks and Systems (RTNS), 2017.

[13] H. S. Chwa, K. G. Shin, and J. Lee, “Closing the gap between stability
and schedulability: A new task model for cyber-physical systems,” in
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), 2018.

[14] L. Wang, L. Yao, Z. Xu, G. Wu, and M. S. Obaidat, “CFR: A
cooperative link failure recovery scheme in software-defined networks,”
International Journal of Communication Systems, vol. 31, no. 10, p.
e3560.

[15] S. Paris, G. S. Paschos, and J. Leguay, “Dynamic control for failure
recovery and flow reconfiguration in SDN,” International Conference
on the Design of Reliable Communication Networks (DRCN), 2016.

[16] S. Hegde, S. G. Koolagudi, and S. Bhattacharya, “Path restoration
in source routed software defined networks,” in Proceedings of the
International Conference on Ubiquitous and Future Networks (ICUFN),
2017.

[17] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The design and implementation of open vswitch,” in Proceedings of the
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2015.

[18] R. Kumar, M. Hasan, S. Padhy, K. Evchenko, L. Piramanayagam,
S. Mohan, and R. B. Bobba, “End-to-end network delay guarantees for
real-time systems using SDN,” in Proceedings of the IEEE Real-Time
Systems Symposium (RTSS), 2017.

[19] J. M. Jaffe, “Algorithms for finding paths with multiple constraints,”
Networks, vol. 14, pp. 95–116, 1984.

[20] S. Shigang Chen and K. Nahrstedt, “On finding multi-constrained paths,”
in Proceedings of the IEEE International Conference on Communica-
tions (ICC), 1998.

[21] D. Katz and D. Ward, “Bidirectional Forwarding Detection (BFD),” RFC
5880, Jun. 2010.

[22] “Cisco NX-OS Software,” https://www.cisco.com/c/en/us/products/
collateral/ios-nx-os-software/nx-os-software/data sheet c78-652063.
pdf.

[23] “PICOS®-Pica8,” https://www.pica8.com/wp-content/uploads/
PICA8-Datasheet.pdf.

[24] Open vSwitch, “An Open Virtual Switch,” http://openvswitch.org/.
[25] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[26] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood,
“On controller performance in software-defined networks,” in Proceed-
ings of the USENIX Workshop on Hot Topics in Management of Internet,
Cloud, and Enterprise Networks and Services (Hot-ICE), 2012.

[27] “BeagleBone Black,” https://beagleboard.org/black.
[28] “Odroid-XU4,” https://magazine.odroid.com/odroid-xu4.
[29] “RealTek RTL8152,” http://www.realtek.com.tw/products/productsView.

aspx?Langid=1&PNid=14&PFid=55&Level=5&Conn=4&ProdID=323.
[30] “F1/10 Autonomous Racing Competition,” http://f1tenth.org/.
[31] “Taxonomy and Definitions for Terms Related to On-Road Motor

Vehicle Automated Driving Systems ,” SAE International Standard
J3016, 2014.

[32] “Traxxas Models,” https://traxxas.com/products/showroom.
[33] Hokuyo Automatic Co., “UST-10LX Specification,” http:

//www.senteksolutions.com/application/files/2414/7196/1936/
UST-10LX Specifications.pdf.

[34] NVIDIA, “NVIDIA Jetson TK1 developer kit product page,” http:
//www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html.

[35] P. Sarkar, Advanced process dynamics and control. PHI Learning, 2014.
[36] IEEE, “IEEE Draft Standard for Local and metropolitan area networks–

Link Aggregation,” IEEE P802.1AX, 2014.
[37] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,

“Openflow: Meeting carrier-grade recovery requirements,” Computer
Communications, vol. 36, no. 6, pp. 656 – 665, 2013.

[38] X. Zhang, Z. Cheng, R. Lin, L. He, S. Yu, and H. Luo, “Local fast
reroute with flow aggregation in software defined networks,” IEEE
Communications Letters, vol. 21, no. 4, pp. 785–788, April 2017.

[39] C. Cascone, D. Sanvito, L. Pollini, A. Capone, and B. Sansò, “Fast
failure detection and recovery in sdn with stateful data plane,” Int.
Journal of Network Management, vol. 27, 2017.

[40] Y. Lin, H. Teng, C. Hsu, C. Liao, and Y. Lai, “Fast failover and
switchover for link failures and congestion in software defined net-
works,” in Proceedings of the IEEE International Conference on Com-
munications (ICC), 2016.

[41] K. Lee, T. Park, M. Kim, H. S. Chwa, J. Lee, S. Shin, and I. Shin, “MC-
SDN: Supporting mixed-criticality scheduling on switched-ethernet us-
ing software-defined networking,” in Proceedings of the IEEE Real-Time
Systems Symposium (RTSS), 2018.

