
User Mobility-Aware Decision Making for Mobile
Computation Offloading

Kilho Lee and Insik Shin
Dept. of Computer Science, KAIST, Republic of Korea

{kh.lee,ishin}@kaist.ac.kr

Abstract—The last decade has seen a rapid growth in the use
of mobile devices all over the world. With an increasing use of
mobile devices, mobile applications are getting more diverse and
complex, demanding more computational resources. However,
mobile devices are typically resource-limited (i.e., a slower-speed
CPU, a smaller memory) due to a variety of reasons. Mobile users
will be capable of running applications with heavy computation
if they can offload some of their computations to other places,
such as desktop or server machines. However, mobile users are
typically subject to dynamically changing network environments,
particularly, due to user mobility. This makes it hard to make
good offloading decisions in mobile environments. In general,
user’s mobility can provide some hints for upcoming changes to
network environments. Motivated by this, we propose a mobility
model of each individual user taking advantage of the regularity
of his/her mobility pattern, and develop an offloading decision
making technique based on the mobility model. We evaluate
our technique through trace-based simulation with real log data
traces from 14 Android users. Our evaluation result shows that
the proposed technique can help mobile devices to boost its
performance in terms of response time and energy consumption,
when users are highly mobile.

I. INTRODUCTION

Cyber-physical systems (CPS) are next-generation em-
bedded systems featuring a tight integration of computing
and physical elements. Emerging applications of CPS include
avionics, automobiles, medical devices, robotics, and consumer
electronics. Many of them are mobile in nature. For instance,
passengers ride cars for the convenience of moving, patients
carry implanted medical devices for health, and people bear
mobile phones for a variety of purposes. As such, user mo-
bility is one of the key components of mobile systems that
actually moves the systems. Thereby, it often entails a good
understanding of user mobility in addressing many problems
of mobile systems.

Many mobile devices are typically subject to limited re-
sources, such as low computing powers, instable wireless
communications, and scarce energy capacities. In spite of such
limitations, mobile CPS applications are getting more diverse
and complex, requiring heavy computation and network com-
munication. As an example, Google Glass project [1] proposes
next-generation AR (Augment-Reality) based services that
combine virtual information with real world images.

Since these applications usually involve heavy vision pro-
cessing, it may take tens of seconds, which is hardly accept-
able. The device can apply dynamic computation offloading to
the heavy application. With dynamic computation offloading,
if the device is in a situation favorable towards computation

offloading (i.e., at a hotel with WiFi connection), OS chooses
to do it and the application can benefit from offloading to
get the result quickly. On the other hand, in an unfavorable
situation for offloading (i.e., in a bus or in driving), OS would
not choose it because offloading could make it even longer to
complete the computation compared to no offloading.

Such dynamic computation offloading essentially raises
many technical challenges. Especially, it entails a mobile
computation platform which provides offloading mechanism
and offloading decision making policy for dynamic computa-
tion offloading. Existing studies [2], [3], [4] are focusing on
offloading mechanisms, providing technical basis for compu-
tation offloading such as programming models, run-time envi-
ronments, and program structure analysis techniques. Beyond
those offloading mechanisms, offloading decision making pol-
icy is important to provide beneficial computation offloading.

Mobile network environments have a great influence on
the performance of computation offloading. For example, if a
mobile device has a stable network connectivity and plenty of
network bandwidth, then computation offloading will result in
better performance in terms of both response time and energy
consumption. However, mobile users are typically subject to
dynamically changing environments due to their mobility.
Thus, a high-quality decision requires a good understanding
of network condition changes and taking near-future network
condition into account to make a decision, while user mobility
makes it hard to predict. Thereby, this paper aims to have
a good understanding of user mobility and to incorporate it
into good offloading decision making. Then it proposes an
offloading decision making technique based on user’s mobility
model.

II. BACKGROUND

A. Related works

Recently, a few studies [2], [3], [4] have been reported
for development of computation offloading frameworks in
mobile environments, focusing on offloading mechanisms. For
example, MAUI [2] proposes a dynamic offloading framework
with their own run-time mechanism. It first requires explicit
user annotation specifying which methods are allowed to be
offloaded. For instance, methods should not be marked for
offloading if they make use of native function calls, such as
device-specific function calls. It then profiles the execution
time of offload-able methods both when they run on a mobile
device and on cloud, respectively. MAUI makes offloading
decision offline through ILP (integer linear programming) op-
timization based on the profiled execution time and measured



Fig. 1. Mobility model. sti and bwi indicate staying time and bandwidth on
a state si, respectively. An edge weight represents a probability of moving to
a certain AP from the current AP.

network quality. Similar to MAUI, CloneCloud[3] proposes its
own computation offloading framework. The main difference
between them is that CloneCloud considers migrating an entire
virtual machine, while MAUI considers offloading a unit
of computation (i.e., function/method). CloneCloud thereby
proposes a modified Dalvik VM [5] as a run-time, and it does
not need explicit annotation for distinguishing offload-able
computation. Odessa[4] aims to support applications which
have dependencies between data flows, and it support to offload
a portion of parallel executions to maximize parallelism.

B. Computation offloading

In our system, both a mobile machine and a remote
machine (i.e., a server in the cloud) have the same program
logic. The modules on the remote are faster. When the mobile
machine wants to offload a computation, it transfers input data
to a remote machine, triggers the execution of a corresponding
module on the remote machine, and receives result data back.
We define such a sequence of operations as an offloaded
computation. In contrast, when the mobile machine executes
a module on the machine itself, we define it as a local
computation. Under the above definition, the response time of
an offloaded computation is defined as the sum of input/result
data transmission time and the execution time of a method
running on a remote machine. This paper does not focus on
how to estimate exact execution time of each method on local
or remote machines. We assume that the decision maker can
apply the state of the art [2], [3] profiling techniques to get
those parameters.

C. Problem statement

The main goal of this work is to develop a good policy
for offloading decision making. An offloading decision is
considered as good if an offloaded computation runs faster
than a local computation. In order to meet the goal, the
technique should address the following challenges: making
high-quality decisions under dynamically changing mobile
network conditions, in an energy efficient way.

III. MOBILITY-AWARE OFFLOADING DECISION MAKING

We propose a mobility-aware offloading decision maker,
named Mob-aware, which takes into account near-future net-
work changes based on the user’s mobility. The Mob-aware

Fig. 2. Prediction engine. Qi indicates each possible path, P (Qi) represents
the probability of taking a path Qi. It calculates expected response time of
an offloaded computation considering every possible path.

decision maker gathers previous user movements and network
changes corresponding to the movements, builds mobility
model with gathered data, and then makes offloading decisions.

A. Mobility modeling

We propose a mobility model, which reflects a certain
user’s mobility patterns. By using the mobility model, Mob-
aware decision maker predicts near-future network condition
changes. User mobility often has some regularity [6], [7], and
this can provide some hints for what kind of changes can occur
to the network in the near future. This motivates modeling of
user’s mobility patterns.

In our technique, user’s mobility is characterized by a
sequence of networks to which users are connected. For
example, if a user is connected to WiFi, the location of the
user is specified by its WiFi access point (AP) ID. Then, the
trajectory of a user is represented as a sequence of WiFi access
point IDs. Based on such data, we build a 2nd-order Markov
model as a mobility model (see Figure 1) and train the model
with mobility patterns of a certain user. The model represents
the probability of visiting certain APs in the near future subject
to the currently associated AP, an expected network quality
under each AP, and an expected staying time under each AP.
Each user shows a distinct mobility patterns, thus every user
has an individually trained mobility model. Figure 1 shows an
instance of the mobility model. Each vertex represents each
state, modeled by WiFi APs. Each edge represents hand-over
between APs, and a weight of an edge means a probability of
moving to a certain AP from the current AP. In each state si,
bwi and sti represent average network bandwidth and average
staying time under a certain AP, respectively.

B. Prediction engine

With the mobility model trained individually, the Mob-
aware decision maker can predict how a user moves from
the current location. We propose a prediction engine, which
predicts near-future network condition based on the mobility
model, calculates expected response time of a computation.
The prediction engine estimates expected response time of an
offloaded computation and a local computation, respectively.
Especially, an offloaded computation involves data transmis-
sion, the engine has to estimate the data transmission time
based on predictions of near-future network conditions. The
prediction engine explores every possible path in the mobility
model. For each possible path, the engine calculates a response



time of the computation based on expected network through-
put, bwi, and expected staying time on each AP, sti, in the
model. Then the engine calculates probabilities of that the
user takes each possible path. Based on these calculations, it
estimates expected response time considering every possible
paths. Figure 2 depicts the prediction engine. Let Qi be a
possible path (a plausible sequence of APs), and sk be a
state of model. The probability of taking a path Qi (denoted
by P (Qi)) can be derived by Eq.(1) based on the Markov
assumption [8].

P (Qi) = P (s0, s1, s2, · · · , sn) =
n∏

k=2

P (sk|sk−1, sk−2) (1)

R =
∑
i

P (Qi)×Ri(Qi, du, dr) (2)

The prediction engine estimates expected response time of
the offloaded computation, R, through Eq.(2); Where P(Qi) is
a possibility of that the user takes Qi as his/her future trajec-
tory, and Ri is the response time of the offloaded computation
on the trajectory Qi. The engine predicts network throughput
changes on the trajectory Qi by using bwi and sti in the model.
Then the engine calculates each Ri on Qi with given input and
result data size (denoted by du and dr, respectively).

C. Adaptive decision making

After calculating R, the prediction engine compares the
R with the response time of the local computation. Finally,
it chooses the faster one as an offloading decision. After
the prediction engine makes offloading decision, either an
offloaded or a local computation runs. While a computation is
running, unexpected move of a user or rapid network condition
changes can occur. For example, when a WiFi connection is
suddenly disconnected, an offloaded computation will suffer
severe performance degradation. In order to alleviate such a
problem, our decision maker adaptively responds to dynamic
network changes, periodically identifying any changes to net-
work quality, an associated AP, and the portion of completed
computation.

IV. EVALUATION

We implement a trace-based simulator to evaluate our pro-
posed mobility-aware offloading decision making technique.
This section presents evaluation methodology, evaluation tools,
and experimental environments, and discusses results.

A. Experimental methodology

Comparative evaluation. We propose Mob-aware decision
maker which takes network changes into account with mobility
model. In order to show effect on performance of Mob-aware
decision maker, we consider other decision makers, Net-aware
and Dual decision makers, as baselines. Net-aware decision
maker takes advantage of the current network conditions,
under the assumption that the current network conditions
would not change much in the near-future. It estimates the
data transmission time of an offloaded computation by using
current network throughput. Dual decision maker allows a
computation to run on local and remote simultaneously. It takes
the offloaded computation only when it finishes faster than the
local computation. Thus, it always makes an optimal decision

in terms of response time. In this evaluation section, we present
comparison between those different decision making policies
according to the response time and energy consumption.

Trace-based simulation. Our technique is evaluated
through trace-based simulation. We gathered user data traces
including user locations and network conditions. The simula-
tor then builds mobility model of each user for Mob-aware
decision maker by using gathered data. Upon the traces and
the models, the simulator repeatedly carries out the following
steps:
1) the simulator chooses a time instant in data traces randomly;
2) at the chosen time instant, each decision maker makes an
offloading decision for a given computation;
3) according to each decision at step 2, the simulator calculates
the response times of the computation.

B. Data logging

In order to gather real user mobility data, we develop an
Android logger application that collects log data traces. The
traces of each user are used for building an individual mobility
model, and those are used for evaluating the performance of
decision making policies. The logger periodically collects log
data which include a time stamp, network connectivity, GPS
coordinates, WiFi status and network throughput. The logger
was deployed to 14 users (6 undergraduate students and 8
graduate students), and data traces were collected for at least
3 weeks per user. They consist of 3,770 hours of traces, as
well as about 4 million log records.

C. Trace-based simulator

We implement a simulator which consists of a decision
maker and a response time calculator. The decision maker in
the simulator reads data traces and builds a mobility model
for each user. After that, it can make a decision based on the
mobility model. The response time calculator also reads data
traces, especially network throughput changes over time. It
then calculates the response time when a given computation
follows the decision made by the decision maker.

For a certain moment on data traces, the simulator makes
an offloading decision for a computation and calculates the
response time of the computation. Thus it can evaluate the
performance of the decision making technique. Clearly, the
offloading decision considered as good when the decision
maker makes an offload decision and the response time of
the offloaded computation is shorter than the response time of
the local computation.

The simulator not only calculates response times, but
also calculates energy consumption based on a power model.
Table I describes the power model according to machine states.
A state of a machine depends on usage of CPU, WiFi, and
3G. It is measured by Monsoon power monitor [9] with actual
power consumption of Samsung Nexus S [10].

CPU : Idle (mW) CPU : Running (mW)
WiFi 1788 2415
3G 1377 2473
No Network 554 1629

TABLE I
POWER CONSUMPTION (MW)



Fig. 3. Average response time. It compares different decision making policies
in terms of response time. When user mobility becomes higher (going through
more than three WiFi APs), Mob-aware shows around 20% better performance
than Net-aware.

D. Simulation results

Large scale simulations. For traces of each user, the
simulator chooses time instants for offloading decision making
in a way that it selects 3 time instants randomly within each
interval of a single WiFi AP association. Finally, 23,637 of
time instants are selected. We perform the simulations with the
computation that has 30Mbits of input data size, 10Mbits of
result data size, 1s of remote execution time, and 10s of local
execution. We also use adaptive decision making technique
with 5s periods. At every time instant selected, the simulator
makes offloading decisions with three different policies: Mob-
aware, Net-aware, and Dual. It then calculates the response
time of the computation according to each decision.

In order to characterize the degree of mobility of each
experiment case, results are broadly classified into a couple
of categories according to the number of WiFi hand-over
occurrences during each computation runs. User mobility is
considered as high if it experiences more hand-overs. In
general, when user mobility becomes higher, the network
condition goes less stable and it makes it more difficult to
make a good offloading decision.

Figure 3 depicts the performance of different decision
making policies in terms of the response time of computation.
The x-axis represents the number of hand-over occurrences,
and the y-axis represents the average response time. The figure
shows that Mob-aware and Net-aware provide the average
response times comparable to each other when user mobility is
low. However, Mob-aware significantly outperforms Net-aware
by around 20%, when user mobility is high. It indicates that
the network condition becomes unstable when user mobility
is high and Mob-aware makes better decisions than Net-aware
in this case. This result implies it is thereby important to
consider mobility to make a proper offloading decision in
mobile environments.

Figure 4 plots the average energy consumption of a given
computation for different decision making policies. The x-axis
indicates the degree of user mobility in terms of the number
of hand-overs, and the y-axis represents the average energy
consumption of a given computation. The figure shows that
Dual consumes more energy than Mob-aware and Net-aware.
This is because Dual always employs both local and offloaded
computations simultaneously, while Mob-aware and Net-aware
have either a local or an offloaded computation at a time.

Fig. 4. Average energy consumption. The figure shows that Mob-aware is
able to save 7%-12% more energy than Net-aware when user mobility is high.

The figure also shows Mob-aware consumes 7.7%-12.6% less
energy than Net-aware when user mobility is high. This is
interesting because Mob-aware provides even smaller response
times than Net-aware in the same cases. This is because Net-
aware changes its decisions more frequently than Mob-aware
when network conditions are unstable with high user mobility.

V. CONCLUSION

This paper proposes a mobile computation offloading
technique, focusing on user mobility-aware decision-making,
which can predict near-future network condition through user
mobility models. Our evaluation results show that our tech-
nique can be particularly beneficial when users are moving
around, causing fluctuation in network quality. In this paper,
we consider only trajectory as user’s mobility. However, other
factors in user’s mobility, such as moving speed, may also
affect offloading performance. Furthermore, computation of-
floading can show different behavior depending on context of
user’s location. Thereby, we plan to extend our technique by
considering such factors, for example, developing a location-
aware decision-making framework.

REFERENCES

[1] “Google glass project,” http://www.google.com/glass/start/.
[2] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu,

R. Chandra, and P. Bahl, “Maui: making smartphones last longer with
code offload,” in MobiSys, 2010.

[3] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud,” in EuroSys, 2011.

[4] M. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govin-
dan, “Odessa: enabling interactive perception applications on mobile
devices,” in MobiSys, 2011.

[5] D. Bornstein, “Dalvik vm internals,”
http://sites.google.com/site/io/dalvik-vm-internals.

[6] W. Su, S. Lee, and M. Gerla, “Mobility prediction in wireless networks,”
in MILCOM, 2000.

[7] T. Liu, P. Bahl, and I. Chlamtac, “Mobility modeling, location tracking,
and trajectory prediction in wireless atm networks,” Selected Areas in
Communications, IEEE Journal on, vol. 16, no. 6, 1998.

[8] B. Everitt and A. Skrondal, The Cambridge dictionary of statistics.
Cambridge University Press Cambridge, 2002.

[9] “Monsoon power monitor,” http://www.msoon.com.
[10] “Samsung nexus s,” http://www.samsung.com/us/article/meet-the-

nexus-s-with-android-2-3.


