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Abstract

Unlike uniprocessor scheduling, EDF (categorized into
job-level fixed-priority (JFP) scheduling) shows relatively
poor performance on global multiprocessor scheduling. As
no other global JFP multiprocessor algorithms are illumi-
nated beyond EDF, this work proposes one, called EQDF
(earliest quasi-deadline first), as a generalization of EDF.
We define the quasi-deadline of a job as a weighted sum
of its absolute deadline (capturing “urgency”) and its
worst case execution time (capturing “parallelism”) with
a system-level control knob to balance urgency and paral-
lelism effectively. This paper then seeks to explore how it
can improve the schedulability of global JFP scheduling.
In addition to providing a new schedulability analysis for
EQDF scheduling, it addresses the problem of priority as-
signment under EQDF by controlling the system-level con-
trol knob. It presents optimal and heuristic solutions to the
problem subject to our proposed EQDF analysis. Our em-
pirical results show the proposed heuristic solution outper-
forms EDF significantly, giving close to optimal results.

1 Introduction

Real-time scheduling has been extensively studied for
several decades over various scheduling categories. In gen-
eral, priority-driven preemptive scheduling algorithms can
fall into three categories: task-level fixed-priority (TFP),
job-level fixed-priority (JFP)1, and job-level dynamic-
priority (JDP) algorithms. A TFP algorithm assigns the
same priority to all the jobs in each task, and the priority of
each task is fixed relative to other tasks. Good examples in-
clude RM (rate-monotonic) and DM (deadline-monotonic).
A JFP algorithm can assign different priorities to the indi-
vidual jobs in each task, but the priority of each individual
job is fixed relative to other jobs. A good example is EDF
(earliest deadline first). Under JDP scheduling, each job is
assigned a priority that can change dynamically during the

1This category is also called task-level dynamic-priority in the litera-
ture [25]. However, we use the term JFP in order to emphasize the static
nature of the priority of an individual job.

job’s execution. A good example is LST (least-slack-time
first).

Those three categories have been well studied in unipro-
cessor scheduling. DM [23], EDF [24], and LST [18] are
proved to be optimal in each of the three categories, re-
spectively. However, they have not been developed as ma-
turely yet in multiprocessor scheduling as in uniprocessor
scheduling. In particular, JFP multiprocessor scheduling
has not been yet much explored beyond EDF.

A considerable amount of work has been made to study
TFP multiprocessor scheduling. Many heuristic schemes
were proposed for priority assignment in this category [3,
16], and an optimal priority assignment subject to some
given schedulability test was presented under some condi-
tions [16].

There has been a growing attention to JDP multiproces-
sor scheduling. The pFair algorithm [12] is known as op-
timal for implicit-deadline task systems (deadline equal to
task period) but no longer optimal for constrained-deadline
task systems (deadline no larger than task period). Recent
studies showed that JDP algorithms, such as EDZL (EDF
until zero-laxity) [22, 9], FPZL (fixed-priority until zero-
laxity) [17], and LST [20], outperform TFP and JFP algo-
rithms. In general, JDP algorithms incur relatively signifi-
cant runtime scheduling overheads, for examples, with fre-
quent context switches and/or with keeping track of laxity
dynamically, compared to TFP and JFP algorithms.

A substantial body of research was made to investi-
gate global EDF multiprocessor scheduling. Unlike unipro-
cessor scheduling, EDF is no longer optimal but exhibits
significantly lower performance in multiprocessor schedul-
ing [19, 7]. Despite this, however, little work has been re-
ported to explore JFP scheduling beyond EDF on multipro-
cessors. This motivates the research described in this paper
with a curiosity to understand how effective JFP schedul-
ing algorithms can be on multiprocessors. We believe that
EDF performs poor on multiprocessors because it assigns
priority with a sole focus on the deadline constraints (or
“urgency”) but neglecting the “parallelism” aspect of multi-
processor platforms. According to a few studies [3, 16, 20],
assigning a higher priority to the job with a larger execu-
tion time helps to maximize the potential for concurrency.
This is because it is generally easier to schedule on multi-
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processors a larger number of jobs with shorter remaining
execution times than a smaller number of jobs with longer
remaining execution times even though they have the same
remaining execution times in total. Inspired by this, we de-
fine the quasi-deadline (qi) of an individual job (Ji) as a
weighted sum of its absolute deadline (di) and its worst-
case execution time (Ci) such that qi = di − kCi, where
k is a real value that the system designer configures stati-
cally and/or the system determines dynamically. We then
introduce a new JFP scheduling algorithm, called EQDF
(earliest quasi-deadline first), that assigns priority to jobs
according to their quasi-deadlines. EQDF is a generaliza-
tion of EDF; EQDF becomes EDF with k = 0.

We present a new schedulability analysis for EQDF
scheduling, and this facilitates the comparison between the
only, well-known JFP algorithm, EDF, and a new JFP al-
gorithm, EQDF, on the basis of schedulability. A criti-
cal factor to improve the effectiveness of EQDF schedul-
ing is quasi-deadline assignment. In this paper, we consider
the k-controlled quasi-deadline assignment that determines
the value of k to make a given task set deemed schedu-
lable according to the proposed EQDF schedulability test.
A naive approach of examining all possible values of k is
prohibitively expensive and even inapplicable to continu-
ous values of k. We thereby present an optimal solution
algorithm, called OQDA-k, that finds a solution value of
k, if there exists any. Our empirical results show that the
proposed EQDF optimal solution does not simply dominate
EDF but outperforms it significantly. Our EQDF solutions
find 40%-60% more task sets deemed schedulable than the
state-of-the-art EDF analysis. Our empirical results also re-
veal that the OQDA-k algorithm employs a certain amount
of running time, leaving the algorithm only suitable for de-
sign time. Thereby, we present a heuristic solution to the
problem as well. A key factor to performance is where
and how densely the heuristic algorithm examines k val-
ues. Based on thorough understanding of empirical results,
we are able to reduce the search space of the heuristic so-
lution quite effectively. Our simulation results show that
the proposed heuristic algorithm can find a solution close
to optimal (1% loss of optimality) while reducing running
time by two orders of magnitude. It is also shown that the
heuristic algorithm is able to find 40%-57% more task sets
deemed schedulable than EDF with a comparable running
time.

Related Work. Several schedulability tests for global
EDF scheduling of sporadic task systems have been devel-
oped [7, 19, 10, 14, 26]. Baker [7] developed a general strat-
egy using the notion of processor load for determining the
schedulability of sporadic task sets. Baker’s test computes
a necessary amount of processor load to cause a deadline
to be missed and take the contra-positive of this to derive a
sufficient schedulability test. Building upon Baker’s work,
Bertogna et al. [14, 26] developed a sufficient schedulability
test for any work conserving algorithms based on bounding
the maximum workload in a given interval. Bertogna et al.

extended this test via an iterative schedulability test that cal-
culates a slack value for each task, and then uses this value
to limit the amount of carry-in workloads.

Priority assignment has been studied in global TFP mul-
tiprocessor scheduling. Audsley [4, 5] developed an opti-
mal priority assignment (OPA) policy for some given test on
uniprocessor platforms. Davis and Burns [16] showed that
Audsley’s OPA algorithm is applicable to the multiproces-
sor case when a given test satisfies some conditions. Several
heuristic priority assignments are devised [15, 1, 3, 16] for
global TFP multiprocessor scheduling, and some of them
are related to our notion of quasi-deadline. Andersson and
Jonsson [3] designed the TkC priority assignment policy
which assigns priorities based on (Ti−k ·Ci), where Ti is a
task period and k is a real value computed on the basis of the
number of processors. Davis and Burns [16] developed the
D-CMPO policy that assigns priorities according to Di−Ci,
where Di is a task’s relative deadline. However, no work
addresses optimal priority assignment in global JFP multi-
processor scheduling.

Organization. Section 2 presents system models and
terminologies. Section 3 derives a new, interference-based
schedulability condition for EQDF scheduling on the basis
of understanding of worst-case inter-task interference sce-
narios under EQDF. Section 4 formulates the k-controlled
quasi-deadline assignment problem and proposes optimal
and heuristic solutions. Section 5 provides empirical results
that illuminate the characteristics of optimal solutions thor-
oughly and evaluates the effectiveness of our EQDF solu-
tions. Section 6 concludes with future work.

2 System model and terminology

Task model. In this paper, we assume a sporadic task
model, where a task τi ∈ τ is specified as (Ti, Ci, Di) such
that Ti is the minimum separation, Ci is the worst-case ex-
ecution time requirement, and Di is the relative deadline
(Ci ≤ Di ≤ Ti). A task utilization Ui is defined as Ci/Ti,
and the system utilization Usys is defined as the total utiliza-
tion of a task set. A task τi invokes a series of jobs, each sep-
arated from its predecessor by at least Ti time units. When a
job Jh

i of task τi has a release time rh
i , its absolute deadline

dh
i is given as dh

i = rh
i + Di. The scheduling window of

a job Jh
i is then defined as the interval between its release

time and deadline [rh
i , dh

i ). We define the quasi-deadline
qh
i of a job Jh

i is as qh
i = dh

i − kCi, where k is a knob
that controls the ratio of execution time to deadline. We
assume that the quasi-deadline control knob k is a system-
wide variable that the system designer determines statically
and/or the system sets dynamically. We also assume that a
single job of a task cannot execute in parallel.

Multiprocessor scheduling. We consider global job-
level fixed-priority preemptive scheduling on m identical
unit-capacity processors. In particular, we consider the
EQDF scheduling algorithm that assigns priority according
to quasi-deadlines; a job with an earlier quasi-deadline has
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a higher priority. Like most existing studies in multiproces-
sor scheduling (for example, see [12]), we assume that the
system does not incur any penalty when a job is preempted
or when a job is migrated from one processor to another.

Interference. The total interference on a task τj in an
interval [a, b) is defined by the cumulative length of all in-
tervals in which τj is ready to execute but is not executing
due to higher priority jobs of other tasks. We denote such
interference with Ij(a, b). We also define the interference
Ij←i(a, b) of a task τi on a task τj over an interval [a, b) is
defined as the cumulative length of all intervals in which τj

is ready to execute but it is not executing since τi is execut-
ing instead. The relation between Ij(a, b) and Ij←i(a, b) is
as follows:

Ij(a, b) =

∑
i�=j

Ij←i(a, b)

m
. (1)

3 EQDF Schedulability Analysis

In this section, we derive a schedulability condition
for the EQDF scheduling algorithm. We first introduce
existing interference-based schedulability analysis of any
work-conserving scheduling algorithms (Section 3.1), then
present the worst-case interference scenarios between two
tasks under EQDF scheduling (Section 3.2), compute an
upper bound on the amount of execution that a task can in-
terfere with another task on the basis of those worst-case
scenarios under EQDF (Section 3.3), and finally provide a
schedulability condition for EQDF scheduling (Section 3.4)
and its iterative version (Section 3.5).

3.1 Interference-based Schedulability Condition

Schedulability analysis of global multiprocessor
scheduling algorithms is presented based on the concept of
worst-case interference [7, 26]. A job of a task τj can meet
its deadline, if and only if the total interference on task τj

over the job’s scheduling window is less than or equal to its
slack time Dj − Cj [26]. Let J∗j denote the job instance
that receives the maximal total interference among the jobs
of τj , and let Ij denote the worst-case interference on task
τj . Then, notice that by definition

Ij = max
h

(Ij(r
h
j , dh

j )) = Ij(r
∗
j , d∗j ). (2)

For notational convenience, we also define

Ij←i = Ij←i(r
∗
j , d
∗
j ). (3)

With the above reasoning and notations, the necessary
and sufficient schedulability condition of global multipro-
cessor scheduling algorithms is derived as follows [14, 26].

Lemma 1 (from [14, 26]) A task set τ is schedulable on a
multiprocessor composed by m identical processors iff for
each task τj∑

i �=j

min(Ij←i, Dj − Cj + 1) < m(Dj − Cj + 1) (4)

Note that it is known to be difficult to compute Ij←i pre-
cisely, so exiting approaches [14, 26] have used an upper
bound on the interference, and therefore the test derived is
changed to only a sufficient condition. Then, it needs to
identify the worst-case interference scenario in which a task
τi has the largest workload to interfere with a job of task τj .

3.2 Worst-Case Interference Scenarios

In this section, we identify the worst-case interference
scenarios in which the interference of a task τi on the job
J∗j over the scheduling window of J∗j is maximized under
EQDF scheduling.

To simplify the presentation, a job is said to be a carry-in
job of an interval [a, b) if it has a release time before a but
a deadline after a, a body job if it has a release time and a
deadline within [a, b), and a carry-out job if it has a release
time within [a, b) but a deadline after b.

Under EDF scheduling, the underlying principle behind
its worst-case interference scenario is that only the carry-in
and body jobs of τi over [r∗j , d∗j ) can interfere with J∗j and
the interference of those jobs can be maximized when they
are periodically released and they execute as late as possi-
ble (i.e., moving their deadlines as late as possible), as long
as their deadlines are in the scheduling window. This is
because moving their deadlines later does not affect the in-
terference of body jobs, but it can only increase (and cannot
decrease) the interference of a carry-in job [7]. Therefore,
the worst-case interference scenario of τi is the one where
one of its jobs has a deadline at the end of the scheduling
window of J∗j .

However, the above principle is not directly applicable to
EQDF scheduling. Unlike EDF scheduling, even the carry-
out job of τi can interfere with J∗j under EQDF scheduling
if the quasi-deadline of the carry-out job is earlier than or
equal to that of J∗j . Furthermore, the worst-case interfer-
ence scenarios vary depending on the relationship between
J∗j and the carry-out job.

Let us consider the situation in which jobs of τi are pe-
riodically released and one of the jobs has the same quasi-
deadline as that of J∗j . We refer to this situation as quasi-
deadline alignment. For notational convenience, we denote
by J+

i the job of τi which has the same quasi-deadline as
that of J∗j at quasi-deadline alignment. We refer to the dif-
ference between the deadline of J∗j and the deadline of J+

i

as φ = d+
i − d∗j . If the deadline of J+

i is before that of
J∗j (φ ≤ 0), the carry-out job of the scheduling window
of J∗j has a lower priority than J∗j , so the carry-out job
cannot interfere with J∗j . Therefore, for the same reason
as EDF scheduling, quasi-deadline alignment is the worst-
case interference scenario when φ ≤ 0 (depicted in Fig-
ure 1(a)). If φ > 0, the carry-out job can also interfere
with J∗j , and the interference of the job on J∗j is maximized
until φ ≤ (Di − Ci). If 0 < φ ≤ (Di − Ci), the carry-out
job corresponds with J+

i and makes the maximal interfer-
ence of Ci on J∗j when it starts execution as soon as it is
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Figure 1. Worst-case scenarios with k = 1

released as described in Figure 1(b). Therefore, the quasi-
deadline assignment is the worst-case interference scenario
in the case of 0 < φ ≤ (Di − Ci). This is because moving
deadlines of τi’s jobs later until one of them meets the quasi-
deadline of J∗j does not incur any loss of the interference of
the carry-out job and does maximize the interference of both
carry-in and body jobs.

However, if φ > (Di − Ci), there can exist a situation
(shown in Figure 1(c)) where the interference of the carry-
out job is not maximized even though the job has a higher
priority than J∗j at quasi-deadline alignment. This is be-
cause the carry-out job is able to have a δ amount of ex-
ecution remaining, where δ > 0, after the deadline of J∗j
(shown in Figure 1-(c)). We can see that moving the dead-
lines of τi’s jobs earlier can increase (and cannot decrease)
the total interference of τi on J∗j , compared to that in the
quasi-deadline alignment situation. This is because, firstly,
moving those deadlines earlier by δ will not affect its pri-
ority order with J∗j , and secondly, it will add the interfer-
ence of the carry-out job into the total interference exactly
as much as δ but decrease the interference of a carry-in job
by at most as much as δ. Thereby, in this case, the worst-
case interference scenario is that the jobs of τi are periodi-
cally released in a way that one of its jobs is released exactly
Ci before the deadline of J∗j (depicted in Figure 1(d)).

To summarize, we identify two types of the worst-case
interference scenarios according to the relationship between
φ and (Di − Ci) at the quasi-deadline alignment situation.
J+

i has the same quasi-deadline as that of J∗j , that is, d+
i −

kCi = d∗j − kCj , so the deadline of J+
i is determined by

d+
i = d∗j − kCj + kCi. The difference φ can be expressed

in only relative terms as follow:

φ = d
+

i − d
∗
j = d

∗
j − kCj + kCi − d

∗
j (5)

= kCi − kCj .

We finally define two types of the worst case scenarios
according to the relationship between φ and (Di − Ci).

Worst-case scenario I. In the case where it holds (kCi−
kCj) ≤ (Di − Ci), the worst-case interference scenario is
that the jobs of τi are periodically released in a way that one
of the jobs has the same quasi-deadline as that of J∗j (i.e.,
identical with quasi-deadline alignment).

Worst-case scenario II. In the other case of (kCi −
kCj) > (Di − Ci), the worst-case interference scenario
is that the jobs of τi are periodically released in a way that
one of its jobs is released Ci before the deadline of J∗j .

In both two scenarios, the carry-in and carry-out jobs
start executing as close as possible to the scheduling win-
dow of J∗j to maximize their interference.

3.3 Bounding Interference

For presentational convenience, we call a job of τi the
last interfering job (denoted by J�i ) of τi on J∗j if the job is
released latest among those that can interfere with J∗j over
its scheduling window. We also define the interference win-
dow IWi,j of τi on J∗j as the interval from the release time
of J∗j to the deadline of J�i , that is, IWi,j = [r∗j , d�i ). Fig-
ure 1 shows the interference window in each scenario. Note
that under EDF scheduling, since the worst-case interfer-
ence scenario is the one where d�i = d∗j , IWi,j is exactly
the same as [r∗j , d∗j ). Under EQDF scheduling, however, d�i
can be before or after, or equal to d∗j .

The interference Ij←i is then bounded by the largest
workload of task τi in its interference window on J∗j ac-
cording to the worst-case scenarios. This is because even
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though J�i can be the carry-out job of the scheduling win-
dow of J∗j (i.e., the length of the interference window is
greater than that of the scheduling window of J∗j ), J�i can
make the maximal interference of Ci on J∗j under the both
worst-case interference scenarios.

In the worst-case scenario I, J�i has the same quasi-
deadline as that of J∗j , so the deadline d�i is determined by
d∗j − kCj + kCi. If the deadline of J�i is before the release
time of J∗j (i.e., d�i ≤ r∗j ), no single job of τi can interfere
with J∗j and the interference of τi on J∗j is thereby zero.
Otherwise, all the jobs of τi within the interference win-
dow [r∗j , d�i ) can actually interfere with J∗j . In this case, the
length of the interference window IWi,j is computed as

|IWi,j | = d
�
i − r

∗
j = d

∗
j − kCj + kCi − r

∗
j

= Dj − kCj + kCi. (6)

We denote by Φi(L) the maximal number of τi’s jobs
that contribute with the entire execution times (Ci) to the
workload within the interval of length L, and it is described
as

Φi(L) =

⌊
L

Ti

⌋
. (7)

The contribution of the carry-in job can then be bounded by

min(Ci, L− Φi(L) · Ti). (8)

Therefore, under the worst-case interference scenario I,
the interference Ij←i is bounded by

Ij←i ≤
[
Φi(Dj − kCj + kCi) · Ci+

min (Ci, Dj − kCj + kCi − Φi(Dj − kCj + kCi) · Ti)
]
0

(9)

where it is bounded by zero when Dj − kCj + kCi < 0.
In the worst-case scenario II, J�i is released such that its

deadline d�i is equal to d∗j−Ci +Di. Then, the length of the
interference window of τi on J∗j is equal to Dj − Ci + Di.
Therefore, the interference Ij←i is bounded by

Ij←i ≤ Φi(Dj − Ci + Di) · Ci+

min (Ci, Dj − Ci + Di − Φi(Dj − Ci + Di) · Ti) .
(10)

3.4 EQDF Schedulability Analysis

In the previous sub-sections, we identify the worst-case
interference scenarios and compute the upper bound on the
interference Ij←i based on them.

We denote by IEQDF
j←i (L, k) an upper bound on the in-

terference Ij←i in any interval of length L under the EQDF
scheduling policy with a system-wide variable k and de-
scribed as

I
EQDF
j←i

(L, k)= (11)⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
Φi(L− kCj + kCi) · Ci+

min (Ci, L− kCj + kCi − Φi(L− kCj + kCi) · Ti)
]
0

if (kCi − kCj) ≤ (Di − Ci)
Φi(L + Di − Ci) · Ci+

min (Ci, L + Di − Ci − Φi(L + Di − Ci) · Ti)
otherwise.

A schedulability test for EQDF immediately follows.

Theorem 1 A task set τ is schedulable under EQDF
scheduling with a system-wide variable k on a multipro-
cessor composed by m identical processors if for each task
τj∑

i�=j

min(IEQDF
j←i (Dj , k), Dj − Cj + 1) < m(Dj − Cj + 1).

(12)

Note that the above EQDF schedulability test is a general-
ization of the existing EDF schedulability test [14].

3.5 Iterative Test

In general, bounding interference involves much pes-
simism, particularly, in computing the workload of a carry-
in job. Hence, the slack-based iterative approaches [13, 26]
are introduced to reduce such pessimism effectively. Let Sj

denote the slack of a task τj and is defined as

Sj = Dj − Cj −

⌊ ∑
i�=j min(Ij←i, Dj − Cj + 1)

m

⌋
(13)

when (13) is positive. A lower bound Slb
j on the slack Sj of

a task τj is then given by

Slb
j = Dj − Cj −

⌊ ∑
i�=j min(IEQDF

j←i (Dj , k), Dj − Cj + 1)

m

⌋

(14)

when this term is positive.
Fortunately, the iterative test exploiting a slack value can

be directly adopted into EQDF schedulability analysis. In
this paper, the iterative test can be easily incorporated by
replacing the bound of the carry-in job’s contribution (Eq.
(8)) with min(Ci, L− Slb

i − Φi(L) · Ti).

4 Quasi-Deadline Assignment

In this section, we consider the problem of priority as-
signment under job-level fixed-priority scheduling. Specif-
ically, we examine the k-controlled quasi-deadline assign-
ment problem; given a task set, this problem finds a value of
the quasi-deadline control knob k such that each individual
job Jh

i is assigned a quasi-deadline qh
i equal to dh

i − kCi

and the task set is deemed schedulable under global EQDF
scheduling by the schedulability test in Eq. (12). For
presentational convenience, a value of k is referred to as
schedulable for a given task set τ if τ is deemed schedu-
lable with this k value according to Eq. (12). A solution
algorithm to the k-controlled quasi-deadline assignment is
referred to as optimal, if the solution algorithm can find any
schedulable value of k for a task set τ if and only if there
exists some schedulable value of k for τ .

Section 4.1 presents an optimal solution to the problem,
and Section 4.2 discusses heuristic solutions.
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Figure 2. example graph representing inter-
ference made by higher priority tasks accord-
ing to value k

4.1 Optimal quasi-deadline assignment

In this section, we present an algorithm, called OQDA-k
(optimal quasi-deadline assignment by k), that finds a set
of all the schedulable values of k for a given task set. A
brute-force approach would examine all possible values of k
for schedulability. This approach is prohibitively expensive,
and it is not even applicable to the case of continuous values
of k. Instead, we seek to identify a finite set of k values that
guarantees the discovery of all the schedulable values of k.

The OQDA-k algorithm first carries out efficient dis-
covery of a finite number of certain k values (denoted by
Aj←i), taking advantage of interference patterns between
every two tasks τi and τj (step A1). It then aggregates those
k values into a single set (denoted by Aj) per each task τj

(step A2) and constructs a set of intervals (denoted by Sj)
from Aj for each task τj such that each interval represents a
set of continuous schedulable values of k for an individual
τj (step A3). Finally, the algorithm generates a set of inter-
vals (denoted by S) such that each interval contains the con-
tinuous schedulable values of k for an entire task set (step
A4). Algorithm 1 summarizes the OQDA-k algorithm, and
we describe each step in more details as follows.

Algorithm 1 OQDA-k (task set τ )
1: for each task τj do
2: for each task τi do
3: if τj �= τi, construct Aj←i

4: end for
5: end for
6: Aj ←

⋃
∀τi

Aj←i

7: for each task τj do
8: construct Sj from Aj

9: end for
10: S ←

⋂
∀τj

Sj

11: return S

A1. In the first step A1, the algorithm generates a num-

ber of discrete k values for all possible pairs of tasks, ex-
ploiting the relationship between k and the interference be-
tween two tasks. The interference of a task τi with a job of
task τj varies with k (c.f. IEQDF

j←i (Dj , k) in Eq. (11)), and
k makes a different impact on the interference depending on
the relationship between τi and τj .

It is easy to see that each job is assigned an earlier quasi-
deadline as k increases. In particular, when a task τi is has
a greater execution time requirement than another τj has
(i.e., Ci > Cj), an increase on k results in a larger re-
duction to the quasi-deadline of τi than that of τj . In this
case, τi is then likely to have a higher priority and thus
impose a greater amount of interference on τj . This leads
to IEQDF

j←i (Dj , k) monotonically increasing with a growing

value of k when Ci > Cj . Likewise, IEQDF
j←i (Dj , k) de-

creases monotonically as k increases if Ci < Cj . When
Ci = Cj , on the other hand, IEQDF

j←i (Dj , k) remains con-
stant because the quasi-deadlines of τi and τj and their pri-
orities remain relatively the same even though k varies.

Figure 2 illustrates the impact of k on IEQDF
j←i (Dj , k). A

value of k is said to be a turning point of IEQDF
j←i (Dj , k)

if IEQDF
j←i (Dj , k) changes its slope at this k value. The

formula IEQDF
j←i (Dj , k) defined in Eq. (11) is a combi-

nation of linear and constant shape functions as shown in
Figure 2. By definition, IEQDF

j←i (Dj , k) is lower-bounded
by zero, and it is also upper-bounded by the amount of the
interference in the worst-case scenario II. This is because
the condition of kCi − kCj ≤ (Di − Ci) (c.f. Eq. (11))
makes the interference in the worst-case scenario I always
lower than or equal to that in the worst-case scenario II.

When IEQDF
j←i (Dj , k) is a monotonically increasing

function, it starts from the lower-bound point increasing lin-
early as k increases. It then becomes staying constant while
the contribution of the carry-in job is bounded by Ci and
the number of body and carry-out jobs does not change as k
increases. It resumes increasing linearly again when a new
body comes in. The process of increasing linearly and stay-
ing constant repeats until it reaches the upper-bound point.
Therefore, IEQDF

j←i (Dj , k) has a finite number of turning
points. We can then easily calculate all turning points with
this understanding of the dynamics of IEQDF

j←i (Dj , k).
Let Aj←i denote a set of all turning points of

IEQDF
j←i (Dj , k). In this step, the OQDA-k algorithm con-

structs Aj←i for all tasks τi and τj .
A2. The previous step looked at the relationship between

k and the interference of a single task τi on τj , and this step
explores the relationship between k and a total interference
imposed on τj by an entire task set. Let us define Ij(Dj , k)

as the sum of individual interferences (IEQDF
j←i (Dj , k)). It

is also a combination of linear and constant shape functions.
Then, Ij(Dj , k) also has a sequence of turning points. Let
Aj denote a set of whole turning points of Ij(Dj , k). If a
value of k is a turning point of IEQDF

j←i (Dj , k), then it is also
a turning point of Ij(Dj , k). So we can construct Aj as the
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union of all the turning points of IEQDF
j←i (Dj , k) for all tasks

i �= j. Even though Ij(Dj , k) is a combination of linear
and constant functions, unlike IEQDF

j←i (Dj , k), Ij(Dj , k)
does not increase (or decrease) monotonically over all k
values. However, Ij(Dj , k) remains constant or increase
(or decrease) linearly within an interval between two con-
secutive turning points.

A3: How to find schedulable k. Recall that a value of
k is schedulable for a task τj if τj is deemed schedulable
with this k value according to Eq. (12). The third step finds
out all the schedulable values of k (denoted by Sj) out of
a set of turning points (Aj) for each task τj . Consider two
consecutive turning points of τj (ph

j ∈ Aj and ph+1
j ∈ Aj).

That is, there does not exist p′ ∈ Aj such that ph
j < p′ <

ph+1
j . We consider four cases in constructing Sj with ph

j

and ph+1
j according to their schedulability.

Firstly, if both ph
j and ph+1

j are schedulable for τj , then

all the values of k within the interval [ph
j , ph+1

j ] are also
schedulable. This is because Ij(Dj , k) remains constant or
moves linearly within the two consecutive turning points.
So, the interval [ph

j , ph+1
j ] is added into Sj . Secondly, if

neither ph
j nor ph+1

j is schedulable, there is no schedula-

ble value of k within the interval [ph
j , ph+1

j ] and nothing is

added into Sj . Thirdly, if ph
j is schedulable but ph+1

j is not,

there must exist k′ ∈ [ph
j , ph+1

j ] such that [ph
j , k′] is the in-

terval of schedulable values of k but (k′, ph+1
j ] is not. Then,

[ph
j , k′] is inserted into Sj . In the fourth case where ph

j is not

schedulable but ph+1
j is, another interval is added into Sj in

a similar way to the third case.
A4. The four step finally constructs a set of all the

schedulable values of k (denoted by S) for a given task set
τ . The set S is indeed the intersection of all Sj . For each
element s ∈ S, there exists sj ∈ Sj for all tasks τj such that
s ∈ sj .

Theorem 2 The OQDA-k algorithm is optimal.

Proof. We show this theorem by contradiction. Suppose
the set S computed by the OQDA-k algorithm is empty even
though there exists a schedulable value of k (denoted as k∗).
We consider two cases depending on whether k∗ is a turning
point.

Suppose k∗ is a turning point of the interference func-
tion IEQDF

j←i (Dj , k) for tasks τi and τj . According to the
OQDA-k algorithm, k∗ is then placed into Aj←i (i.e., line
3 in Algorithm 1) and subsequently included in Aj , Sj , and
S (i.e., lines 6, 8, and 10 in Algorithm 1). This contradicts
the assumption that S is empty.

Consider the other case where k∗ is not a turning point.
Then, there exist two consecutive turning points of Aj (de-
noted as ph

j and ph+1
j ) such that ph

j < k∗ < ph+1
j . From the

assumption that S is empty, neither ph
i nor ph+1

j is schedu-
lable. Otherwise, any schedulable turning point should be

added into Sj and thereby into S, contradicting the as-
sumption of the empty S. So, ph

i and ph+1
j must be not

schedulable. Then, k∗ should not be schedulable either,
since IEQDF

j←i (Dj , k) is constant or linear within the inter-

val [ph
i , ph+1

j ]. This contradicts the assumption that k is
schedulable. This concludes the proof of Theorem 2. �

Complexity. We denote the number of tasks in a task set
by n. For each task τj , the OQDA-k algorithm performs as
many schedulability tests as |Aj | at most. The complexity
of constructing S as the intersection of all Sj is O(n·|Sj |

2).
Since |Sj | ≤ |Aj |, the running time of this algorithm is
thereby O(n · |Aj |

2).

Algorithm 2 HQDA-k (task set τ,K1,K2,Ks)
1: S ← ∅
2: for k = K1 to K2 step Ks do
3: if τ is schedulable with k then
4: S ← S ∪ {k}
5: return S
6: end if
7: end for
8: return S

4.2 Heuristic Priority Assignment

The OQDA-k algorithm identifies and explores all the
turning points of an entire task set to find out all optimal
values of k. As the number of tasks increases, the optimal
algorithm has a fast growing number of turning points to
explore and thereby its running time also increases rapidly.
Thus, the OQDA-k algorithm is good for optimal quasi-
deadline assignment at design time. However, it may not be
appropriate for reconfiguring quasi-deadlines dynamically
at run-time.

Therefore, we introduce a heuristic algorithm (HQDA-
k) that finds a schedulable value of k in a sub-optimal but
efficient way. Algorithm 2 summarizes this heuristic algo-
rithm. This algorithm is given a set of k values and repeats
the process of examining whether there exists a schedulable
value of k in the given set until it finds any solution or there
is no more element in the set to examine. The set is given as
an interval [K1,K2] with a stepsize Ks, and the algorithm
checks with k = K1,K1 + Ks,K1 + 2Ks, · · · ,K2. The
evaluation of this heuristic algorithm is provided in the next
section.

5 Experimental results

This section presents simulation results to evaluate the
proposed EQDF schedulability tests and quasi-deadline as-
signment algorithms.

Simulation environment. Task sets are generated based
on a technique proposed earlier [6], which has also been
used in many previous studies (e.g., see [2, 26, 21]). We

303



 0

 500

 1000

 1500

 2000

 2500

 2  4  6  8

T
h
e 

n
u
m

b
er

 o
f 

d
ed

ic
at

ed
 s

et
s

System Utilization

TOT     
I-EQDF*

EQDF*
I-EDF

EDF

Figure 3. Schedulability of EDF and EQDF

have two input parameters. One is the number of processors
(m = 4 or 8), and the other is a task utilization parameter.
For each task τi, Ti is uniformly chosen in [100, 1000], and
Ci is chosen based on a bimodal or exponential task uti-
lization parameter2. Although our proposed EQDF analysis
is applicable to both implicit and constraint deadline mod-
els, because of page limit, we only show the results of the
implicit deadline model: Di is set equal to Ti. For each
task utilization model, we repeat the following procedure to
generate 1,000 task sets.

1. Initially, we generate a set of m + 1 tasks.

2. We check whether the generated task set can pass a
necessary feasibility condition [8, 11].

3. If it fails to pass the feasibility test, we discard the gen-
erated task set and return to Step 1. Otherwise, we in-
clude this set for evaluation. Then, this set is used as
a basis for the next task set; we create a new set by
adding a new task into the old set and return to Step 2.

For any given m, we create 1,000 task sets for an individual
task utilization model, resulting in 10,000 task sets in total.

EDF vs. EQDF. Our first simulations were run to com-
pare the EQDF schedulability tests derived in this paper
with the existing tests of the only, well-known job-level
fixed-priority (JFP) scheduling algorithm, EDF. Aiming at
seeing how effectively the schedulability of JFP schedul-
ing can improve with EQDF, the quasi-deadline control
knob k is set to an optimal value for each task set through
the OQDA-k algorithm. The following schedulability tests
were considered:
• the EDF test in [26] (EDF)

• the iterative EDF test in [26] (I-EDF)

• our EQDF test in Theorem 1 with an optimal value k∗

(EQDF∗)

• our iterative EQDF test in Eq. (14) with an optimal
value k∗ (I-EQDF∗)

2For a given bimodal parameter p, a value for Ci/Ti is uniformly cho-
sen in [0, 0.5) with probability p, where p = 0.1, 0.3, 0.5, 0.7, or 0.9.
For a given exponential parameter 1/λ, a value for Ci/Ti is chosen ac-
cording to the exponential distribution whose probability density function
is 0.5 · λ·exp(-λ·x), where λ = 0.1, 0.3, 0.5, 0.7 or 0.9.

Figure 3 compares EDF and EQDF on the basis of
schedulability with m = 8. Each line represents the num-
ber of task sets deemed schedulable by one specific test,
except that the curve labeled with TOT; it represents an
upper bound on the feasible task sets. Figure 3 shows
that EQDF∗ significantly outperforms EDF. In particular,
I-EQDF∗ dominates all the other tests, making significant
differences when the system utilization is between m/3 and
2m/3. Table 1 also shows that EQDF∗ finds 160%-320%
more task sets schedulable than EDF does, and I-EQDF∗

detects 40%-60% more task sets schedulable than I-EDF

does on 4 and 8 processors, respectively. Our simulation re-
sults indicate that the schedulability of JFP scheduling can
improve significantly when the priorities of individual jobs
are well assigned. That is, it is important to determine a
good value of k for the effectiveness of EQDF scheduling.
The OQDA-k algorithm is able to find an optimal value of
k. However, as shown in Table 1, it is computationally ex-
pensive. Its running time is four orders of magnitude greater
than that of EDF tests, leaving the OQDA-k algorithm inap-
propriate for online priority assignment. This entails good,
cost-effective, alternative solutions to online quasi-deadline
assignment.

m EDF I-EDF EQDF
∗

I-EQDF
∗

Schedulability 4 11.1 26.7 30.4 37.8
(%) 8 6.5 18.3 20.7 29.1

Running 4 0.4 5.3 5.4×103 1.42×105

Time(μs) 8 0.7 23.4 2.26×104 1.85×106

Table 1. EDF and EQDF tests

Characterizing schedulable k values. We seek to un-
derstand the impact of k on schedulability in order to gain
good insights towards online quasi-deadline assignment.

To simply the presentation, we define N(a, b) as the
number of task sets in which there exists a schedulable value
k∗ ∈ [a, b]. We also define F (a, b) as the ratio of the num-
ber of task sets that have a schedulable value k∗ ∈ [a, b] to
the number of schedulable task sets with any schedulable
value k∗ ∈ [−∞,∞]. That is, F (a, b) is defined as the ratio
of N(a, b) to N(−∞,∞).

Figure 4 shows how schedulable values k∗ are dis-
tributed over k on m = 8 processors. More specifically,
Figure 4(a) plots F (−∞, k′), representing the cumulative
distribution of schedulable k values in a direction from−∞
to the value of k′. On the other hand, Figure 4(b) plots
F (k′,∞) in the other direction from ∞ to k′. Each curve
represents the cumulative distribution of one specific task
utilization model (with either a bimodal or exponential pa-
rameter). It is consistently shown across those 10 different
task utilization models that there is a sharp increase in a
short range of k′ values before and after zero, reaching at
the 95th percentile or higher. This implies that we can find
a schedulable value k∗ with a high probability by looking
at a short range of k values, instead of exploring the whole
range of [−∞,∞], if any schedulable value k∗ exists.
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Figure 4. Cumulative distribution of schedulable k values on m = 8 processors
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This motivates investigation into how likely a schedula-
ble value of k belongs to an interval of length L. For a given
length L, we find a real value t∗ such that N(t∗, t∗ + L)
is maximized. Figure 5 plots F (t∗, t∗ + L) over different
values of L with m = 4 and m = 8, and Table 2 shows
corresponding intervals [t∗, t∗ + L]. It is shown that even
a single value of k, such as k = 0.7 on m = 4 and k = 1
on m = 8, makes a schedulable value k∗ with a higher

probability than 78% and 87%, respectively. Such a proba-
bility increases sharply with a small value of L and grows
slowly going beyond the 99th percentile when L is close to
20. This presents a good intuition into how long an interval
of interest should be enough to include a schedulable value
of k with a certain degree of probability.

m
Interval length (L)

0 1 4 8 16
4 [0.7,0.7] [0.2,1.2] [-2.4,1.6] [-4.9,3.1] [-9.0,7.0]
8 [1.0, 1.0] [0.3,1.3] [-2.5,1.5] [-5.3,2.7] [-10.8,5.2]

Table 2. Intervals ([t∗, t∗ + L])

Table 2 show where those intervals [t∗, t∗ + L] are lo-
cated, and this provides an idea into which interval of k
should be examined for the efficient discovery of schedula-
ble k value. We are then interested in how densely to sample
a given interval. Recall that the OQDA-k algorithm gener-
ates a set S that contains all schedulable values of k for a
given task set. Each element s ∈ S is an interval that holds
a series of continuous k schedulable values. Let us define
S(L) as a subset of S such that S(L) includes s ∈ S if
|s| ≥ L. Figure 6 shows the ratio of the size of S(L) to the
size of S. As shown in the figure, every interval s ∈ S has a
length greater than or equal to 0.001, and more than 99% of
the intervals of S have a length greater than or equal to 0.01.
The percentage drops significantly when L becomes larger
than 0.1. This gives an insight into how densely our heuris-
tic algorithm samples a given interval to locate a schedula-
ble value of k.

m

Length (L) & Interval
0 4 16 32 64

[1,1] [-2,2] [-8,8] [-16,16] [-32,32]
Schedulability 4 77.4 95.1 98.2 98.7 99.2

ratio (%) 8 86.6 96.9 98.6 99.1 99.2
Running time 4 0.3 2.7 12.2 24.4 47.4
ratio (10−3) 8 0.06 0.6 4.1 5.1 15.6

Table 3. The ratio of heuristics to optimal
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Optimal vs. heuristic solutions. Based on understand-
ing of the characteristics of optimal solutions, we determine
where and how densely the HQDA-k algorithm examines
k values. Table 3 shows the interval that HQDA-k exam-
ines for a given value of L, and we set the sampling step
to 0.1. For example, when L = 4, HQDA-k examines the
interval [−2, 2] with the step size of 0.1. This way, we can
effectively reduce the search space of HQDA-k. Table 3
also shows that the ratio of heuristic solutions to optimal in
terms of schedulability and running time. It is shown that
when L = 4, the heuristic algorithm finds a solution 95%
close to optimal with a shorter running time by three to four
orders of magnitude. This translates into that the heuristic
solution has a comparable running time with EDF analy-
sis but produces 40%-57% better results than EDF. When
L = 64, heuristic solutions have only less than 1% loss of
optimality reducing running time by two orders of magni-
tude on 4 and 8 processors, respectively.

6 Conclusion

In this paper, we presented the EQDF algorithm (cat-
egorized into job-level fixed-priority (JFP) scheduling) to
overcome poor performance of the existing JFP algorithm
on multiprocessor platforms. EQDF assigns priority to jobs
according to their quasi-deadlines (di − kCi), and the con-
trol knob k allows to balance efficiently between urgency
and parallelism in quasi-deadline assignment. We also pre-
sented an optimal solution to the quasi-deadline assignment
subject to the proposed EQDF schedulability analysis for
design time, and a heuristic solution for runtime. We per-
formed an extensive empirical study to gain good insights
into how the search space of the heuristic solution can be
effectively reduced. Based on our understanding of empiri-
cal results, we can reduce the running time of our proposed
heuristic algorithm significantly (two to four orders of mag-
nitude) at the expense of 1∼5% optimality loss.

In this paper, the notion of quasi-deadline has been ex-
plored for job-level fixed-priority scheduling. We plan to
extend this notion towards job-level dynamic-priority algo-
rithms such as EDZL.
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