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Abstract—Program obfuscation is a popular cryptographic
construct with a wide range of uses such as IP theft prevention. Al-
though cryptographic solutions for program obfuscation impose
impractically high overheads, a recent breakthrough leveraging
trusted hardware has shown promise. However, the existing
solution is based on special-purpose trusted hardware, restricting
its use-cases to a limited few.

In this paper, we first study if such obfuscation is feasible
based on commodity trusted hardware, Intel SGX, and we
observe that certain important security considerations are not
afforded by commodity hardware. In particular, we found that
existing obfuscation/obliviousness schemes are insecure if directly
applied to Intel SGX primarily due to side-channel limitations.
To this end, we present OBFUSCURO, the first system providing
program obfuscation using commodity trusted hardware, Intel
SGX. The key idea is to leverage ORAM operations to perform
secure code execution and data access. Initially, OBFUSCURO
transforms the regular program layout into a side-channel-
secure and ORAM-compatible layout. Then, OBFUSCURO ensures
that its ORAM controller performs data oblivious accesses in
order to protect itself from all memory-based side-channels.
Furthermore, OBFUSCURO ensures that the program is secure
from timing attacks by ensuring that the program always runs
for a pre-configured time interval. Along the way, OBFUSCURO
also introduces a systematic optimization such as register-based
ORAM stash. We provide a thorough security analysis of
OBFUSCURO along with empirical attack evaluations showing
that OBFUSCURO can protect the SGX program execution from
being leaked by access pattern-based and timing-based channels.
We also provide a detailed performance benchmark results in
order to show the practical aspects of OBFUSCURO.

I. INTRODUCTION

Program obfuscation [1, 2] is a popular cryptographic
construct which has interesting and wide-ranging applications
towards protecting the intellectual property of software owners.
As computing trends are rapidly shifting towards cloud-based
computing, there exists a strong need for systems supporting
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this notion of program obfuscation. One could envision various
cases where the owner of a program would want to shield his/her
proprietary algorithm from the cloud provider and/or other
tenants. For example, consider a company like 23andMe [3],
the frontrunner in DNA testing, which could prevent the theft
of their algorithm from competitors despite it being hosted on
cloud servers.

Under program obfuscation, a sender, who owns a program,
transforms it to create an obfuscated version of the program
which is: (a) functionally identical to the original version,
and (b) runs for a fixed time before returning an output. The
sender then sends this obfuscated program to a receiver. The
receiver runs the obfuscated program within a black box-like
environment — the receiver cannot see (or infer) intermediate
computational results and/or footprints from the obfuscated
program. Consequently, even though the receiver can run the
obfuscated program using any input of his/her choice, he/she
will learn nothing about the original program. Therefore, as far
as the attacker is concerned, he/she is interacting with a virtual
black box, which takes an input and gives the intended output.

In the past, there has been significant (mostly cryptographic)
research [4–7] in achieving program obfuscation, but with
crippling performance overheads. Recently, there has been
a systematic breakthrough, HOP [8], in achieving program
obfuscation through relaxed assumptions of trust on the
underlying hardware. However, HOP relies on special-purpose
hardware, severely limiting its practicality. In particular, their
system relies on custom RISC-V processors to conveniently
transplant the root of trust to implement the core security
logic and securely contain the program code. We believe
such convenience is not free — it would be challenging and
unrealistic to deploy such custom-built hardware to a majority
of end-user machines or cloud-computing machines.

In this paper, we propose OBFUSCURO, the first sys-
tem achieving program obfuscation on commodity hardware.
Unlike existing work relying on special-purpose hardware,
OBFUSCURO is specifically designed to run on Intel SGX,
already shipped with millions of machines in the market. Since
the trusted boundary of Intel SGX terminates at the CPU,
OBFUSCURO enforces the security protocol of Oblivious RAM
(ORAM) [9] to support secure code/data access between CPU
and memory subsystems, similar to HOP. However, it is quite
challenging to support program obfuscation on commodity
hardware since commodity hardware comes pre-packaged with
a plethora of features which can be abused to invalidate a
key security assumption behind program obfuscation (i.e., the
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obfuscated program should be running within a black box-
like environment). Furthermore, the unprivileged execution of
Intel SGX ensures that these features cannot be controlled (or
disabled) by SGX programs.

More specifically, researchers have identified that Intel SGX
has critical access pattern-based side-channel security flaws.
These allow adversaries to infer computational semantics within
SGX thereby breaking the black box execution environment.
Memory-based side-channels, namely page fault [10, 11],
cache [12–14], and branch-prediction [15] attacks, allow system
components with high privileges, e.g., OS, to infer substantial
information from the execution of an SGX enclave. For example,
previous work [13] has shown how cache attacks can be abused
to leak an RSA private key from an SGX enclave.

As far as access pattern-based side-channels are concerned,
the root cause of the problem is that it is challenging to
completely hide memory access patterns from privileged
adversaries in the current Intel SGX architecture. The reason for
this is that the CPU is designed to rely on other subsystems to
perform computation. In particular, Intel SGX is not designed to
secure communication patterns between the CPU and memory-
management hardware units (e.g., the MMU/TLB, cache,
DRAM, branch-predictors, etc.). For performance reasons, the
communication channels and hardware units are designed to be
partially shared between trusted and untrusted entities, allowing
potentially adversarial entities to observe and collect memory
traces exhibited by an SGX enclave.

To address these challenges, OBFUSCURO1 makes use of
three main ideas. First, OBFUSCURO employs a data-oblivious
ORAM implementation. Our work improves on the previously
proposed secure ORAM implementations [16–18] by designing
an efficient register-based stash. Second, OBFUSCURO designs
side-channel resistant scratchpad-based code execution and
data access models, in order to neutralize the memory access
patterns observed by attackers as well as bridge the gap
between traditional ORAM and native program execution.
Lastly, OBFUSCURO ensures start-to-end obfuscation of the
target programs by providing execution time normalization
to all applications thereby protecting the programs against
information leakage through timing-based channels.

Our implementation of OBFUSCURO is based on the LLVM
compiler suite with an installed runtime library. Through
compiler instrumentation, we transform a native SGX program’s
code into cache-line-granular (and ORAM-compatible) basic
blocks. OBFUSCURO restricts each basic block to a single
data and code access, at fixed offsets within the basic blocks
thereby neutralizing branch targets. The code and data access
instructions are translated into equivalent branch instructions
targeting OBFUSCURO’s runtime library functions. The runtime
library obliviously serves the program with code and data blocks
extracted from the ORAM storage onto pre-allocated memory
regions called C-Pad and D-Pad respectively. Code execution
and data access (irrespective of the target program) is always
performed at these locations, thereby neutralizing the program’s
memory footprints. Lastly, the program is instrumented to keep
executing till a user-configured time interval has elapsed to
mitigate the threat of timing channels.

1OBFUSCURO is a play on words combining Obscuro and Obfuscation. The
former is a memory charm in the Harry Potter series.

Furthermore, we highlight that although OBFUSCURO’s
performance overhead is quite high, it is still much faster
than the state-of-the-art cryptographic obfuscation schemes. In
particular, cryptographic obfuscation techniques (which rely on
homomorphic encryption and/or circuit construction as security
primitives) are still far away to be adopted in practice largely
due to severe performances overheads or limited generality to
support generic programs (detailed discussion in §IX). However,
leveraging the root of trust in the underlying commodity
hardware, OBFUSCURO demonstrates comparatively moderate
performance overheads on real-world programs.

In broad terms, the contributions made by this paper can
be described as follows:

• We dissect commodity-off-the-shelf hardware to find out
the key hardware features which hinder the adoption
of program obfuscation in Intel SGX. We also provide
a comparison with existing work illustrating how their
approaches are insecure if directly applied to Intel SGX.

• We present, OBFUSCURO, the first program obfuscation
system built on top of commodity hardware. Motivated by
the hardware limitations of Intel SGX, OBFUSCURO pro-
vides a complete start-to-end program obfuscation solution
which can be readily-adopted without any modifications
to legacy code written for Intel SGX.

• We provide a thorough security analysis of OBFUSCURO
showing how it can prevent information leakage through
both access pattern-based and timing-based side-channels.

• We provide a performance comparison of OBFUSCURO
using a diverse set of benchmarking applications as well
as a real-world application, OpenSSL. Our experiments
indicate that OBFUSCURO incurs an average overhead
of 51× over native SGX execution for our custom
benchmarks and an overhead of 16−57× while executing
OpenSSL [19].

II. BACKGROUND

A. Intel SGX

Intel SGX [20] is a new set of x86 instructions which were
introduced with the Intel Skylake architecture. SGX allows
user-level programs to create a protected memory region called
an enclave which is inaccessible from other user-level programs
as well as privileged components such as BIOS, OS, hypervisor,
etc. At boot-time, the processor reserves contiguous physical
memory pages, called the Enclave Page Cache (EPC). The CPU
explicitly revokes access to EPC pages outside an enclave. Each
enclave process is provided its own virtual address space which
is divided into trusted and untrusted parts. The trusted part is
allocated pages from the EPC to provide memory integrity and
confidentiality. The page tables that deal with translation of
virtual to physical address for EPC pages are maintained by
untrusted system components.

B. SGX Side-Channel Attacks

The three most prominent categories of side-channel attacks
against Intel SGX are summarized as follows.

Page Table Attacks. As with regular non-enclave processes,
the untrusted OS handles page tables for the EPC pages to
flexibly provision EPC resources. Previous works [10, 11] have
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shown that a privileged attacker can exploit page faults and
page table walks in order to gain page-level granular insight
into the execution of an enclave process. Since the OS handles
the page tables, it can invalidate access onto all EPC pages
which will result in page faults, thereby capturing trace of all
page accesses performed by the enclave. Similarly, the attacker
can monitor the access/dirty bit present within the page table
to find out which page was last accessed without invoking a
page fault.

Cache Attacks. Caches are designed to reduce the access
latency of code and data by exploiting temporal and spatial
locality of an application’s execution. The caches are divided
into a number of cache-sets, which are further divided into fixed-
size cache-lines (64 B). Recent reports [12–14] have shown
that the SGX enclave is insecure against the Prime+Probe [21]
attack. As part of this attack, the attacker runs an attack appli-
cation which monitors the cache usage of a victim application,
performing some security critical operations. During the Prime
phase, the attacker fills one or more cache sets with his/her
own data and during the Probe phase, he/she tries to access
the data. If the victim has accessed any of these cache sets,
it must have evicted some of the cache lines of the attacker,
and subsequent access by the attacker will take longer time
than if the lines had not been evicted. Therefore, an attacker,
with prior knowledge of the victim application, can infer what
operation took place (assuming different operations will access
different cache sets).

Branch Prediction Attacks. Last Branch Record (LBR)
saves the history of the recently taken branches which can
be referenced by developers for further optimization The LBR
stores information including source/target address of a branch,
and a flag whether the branch is taken or not, etc. SGX
disables direct reporting of the LBR information outside the
enclave. However, recent reports [15] have shown how it can
be indirectly inferred from outside the enclave. To perform this
attack, the attacker leverages prior information on the source
and destinations of the branches in a target program. Next, the
attacker writes a shadow code for a set of branches within the
program. The attacker executes both victim and shadow code
in parallel. Finally, the attacker monitors the shadow code for
mis-predictions (penalized by extra CPU cycles), to figure out
which branch was taken by the enclave.

C. ORAM

ORAM [9] is a well-known cryptographic technique which
provides secure access to an encrypted memory region located
in a remote and untrusted server. ORAM achieves secure
memory access by (a) accessing multiple memory locations
instead of a single memory location and (b) re-shuffling and
re-encrypting the extracted memory regions with a random seed.
Path ORAM [22] is an improved variant of ORAM which uses
a binary tree-like formation to store the encrypted memory
on the server. Each node within the tree is composed of K
blocks, where K is a constant defined during initialization. An
ORAM tree contains both real blocks, i.e., with actual client
data, and dummy blocks, i.e., with dummy data, meant to fool
an attacker. The number of real blocks within a tree of L leafs
can be at most L in order to provide the security guarantees
of ORAM. The tree is stored within the untrusted storage in
an encrypted format.
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Fig. 1: Path ORAM illustration

Using Path ORAM, the client runs an ORAM controller
within a small, completely trusted memory region. There are
two key data structures for Path ORAM, i.e., the Position
map and the Stash. The position map can be a simple integer
array, which links the real block to its corresponding leaf-index
within the ORAM tree. Whenever the client needs to access
a block from the ORAM tree, the ORAM controller finds the
corresponding leaf from the position map and extracts the path
from the root to the leaf. The extracted blocks are stored within
the stash memory.

Figure 1 illustrates the Path ORAM algorithm. In this figure,
the client attempts to access the block D from the untrusted
storage containing the ORAM tree ( 1 ). First, the client looks-
up the leaf index corresponding to block D, which is 11 in our
example( 2 ). Then, the client extracts the complete path from
the root of the tree to the leaf (i.e., d1, d3, D) and saves it in the
stash as shown. The dummy blocks (i.e., d1, d3) are discarded
at this point to keep the stash size small. After accessing the
block D, the client randomizes its position, i.e., initial leaf was
11 and final leaf is 10, and re-encrypts the block with a random
seed ( 3 ). The client then tries to write-back to the tree from
the old leaf (11) back to the root. To ensure consistency, the
client only writes back a real block on a certain node, iff, that
node is the new leaf, i.e., 10, or that node is in the path to the
new leaf. If the client does not have a real block to put into
the node, it generates dummy data, encrypts it (using random
nonce) and writes it to that node. For example, in the figure,
(d4, d5) corresponds to the generated dummy data.

III. THREAT MODEL

We assume a scenario where a user runs an SGX enclave
program with some security-sensitive program. The enclave
program, OBFUSCURO’s runtime and compiler, and the CPU
are the only trusted components, and all other software and
hardware components (including operating systems, hypervisors,
memory hardware units, etc.) are untrusted. The user’s goal
is to ensure that the program’s logic is not leaked to any
attacker observing the enclave’s execution. Therefore, the
program executable is securely provided to the remote SGX
enclave through an encrypted channel (e.g., Diffie-Hellman [23]
between enclaves). We assume that the enclave is already
provisioned with all prerequisite memory and/or files that it
would require to correctly execute before it starts executing.
Therefore, we can safely assume that the enclave does not
perform a synchronous exit (e.g., for system call) after the start
of its execution till termination. The attacker’s goal is to obtain
the underlying algorithm or program logic. To achieve this,
the attacker can probe2 the enclave using any input of his/her
choice and get the correct output. Furthermore, the attacker can
observe the program’s access patterns through a combination of

2This assumption can be easily relaxed to ensure input/output confidentiality
as we describe in §IX
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bus snooping attacks and software side-channel attacks using
page tables, caches, and branch prediction units. The attacker
can also measure the program’s execution time and use that to
leak some information.

As far as access patterns are concerned, we assume a
worst-case attack scenario: a powerful attacker who learns
perfect execution traces at their finest resolution (i.e., 64 B
from a combination of page table, cache and bus-snooping, and
exact branch targets from branch prediction attacks) of both
physical and virtual memory addresses that an enclave program
accesses. More formally, let Φ be an SGX enclave program,
and its runtime memory access trace Φk(I) (0 ≤ k ≤ n)
denotes a sequence of stripped code and/or data addresses
(i.e., stripped addresses depending on the attacking method’s
granularity) while running an input I . Φ0(I) denotes the first
address that the program accesses (i.e., an instruction at the
program’s entry point) and Φn(I) denotes the last address that
the program accesses (only if the program terminates on the
input I). Furthermore, the attacker can learn some information
about the program by monitoring timing channels. The attacker
can infer the entire execution time T of the program on his/her
provided inputs to leak some information. Given these memory
and timing traces, attacker tries to learn the security sensitive
information (e.g., the algorithm or some part of it) of the
program.

We do not consider software vulnerabilities in an en-
clave program (i.e., memory corruption vulnerabilities or
semantic/logical vulnerabilities) or physical attacks (power-
based, electromagnetic etc.) and security solutions [24, 25] to
these issues are orthogonal to OBFUSCURO. Furthermore, we
consider Spectre [26] and Meltdown [27] attacks out of scope as
well. Traditional program obfuscation assumes that the program
cannot directly disclose the memory contents of the application
which is what these attacks do. Also their patch [28] has already
been provided by Intel and can be rigorously checked through
the CPUSVN number provided during SGX remote attestation.

IV. CHALLENGES

As mentioned before, the goal of OBFUSCURO is to achieve
a strong notion of security — program obfuscation (also referred
to as virtual black box (VBB) obfuscation) on market-available
commodity trusted hardware, Intel SGX. Unlike supporting
program obfuscation on special-purpose hardware, such as
HOP [8], there are numerous challenges involved in supporting
the same on Intel SGX. These challenges can be attributed to
the unprivileged execution supported by SGX enclaves, which
either creates new side-channels or amplifies existing side-
channels. In particular, these challenges include — (a) how
to enforce secure ORAM-based program execution in SGX?
and (b) how to secure the ORAM controller in SGX? Unlike
special-purpose hardware, SGX enclaves cannot control the
page tables, caches and/or the branch-predictor, which can be
abused by an attacker to infer significant information from
naive ORAM-based execution. Also, while special-purpose
hardware supports a large trusted on-chip memory which holds
the ORAM controller as well as the target program’s code, SGX
enclaves only provide a very small trusted memory region (i.e.,
CPU registers) due to side-channels.

A. Comparison with Existing Schemes

In this subsection, we provide a comparison of OBFUSCURO
with all existing schemes tailored to provide oblivious and/or
obfuscated execution. For the ensuing discussion, it is imper-
ative that we make a clear distinction between side-channel
obliviousness (and its weaker version, memory trace oblivi-
ousness) and program obfuscation. In particular, side-channel
obliviousness assumes that the program is known to the attacker
but the input (securely provided to the program) is sensitive and
therefore has to be protected. Program obfuscation assumes that
the program is unknown and is itself sensitive whereas input
and output pairs can be known to the attacker. It is also worth
mentioning that program obfuscation can also be extended to
protect the input and output pairs to the program (through
employing encryption/decryption of input and output pairs) but
it is not its primary goal. Figure 2 provides a comparison of
all existing work with OBFUSCURO.

First, we compare the existing side-channel oblivious
systems with OBFUSCURO. In general, these systems are based
on custom hardware [29, 31], software-level [18, 32, 33] or
hybrid [30] defenses. The most notable example of a side-
channel oblivious system is Raccoon [18] which can protect
the input to a known program against all access pattern leakage
(page table, cache, bus-snooping and branch-prediction) on
commodity hardware. However, all of these schemes do not
fulfill the requirements of traditional program obfuscation and
are only concerned with protecting the input provided to the
program. On the other hand, program obfuscation protects the
identity of the program itself, and can also be used to protect
the input provided to the program.

The closest existing work is HOP [8], which is the only
system apart from OBFUSCURO, which guarantees virtual
black box obfuscation to a program. However, HOP is based
on special-purpose hardware and further utilizes an on-chip
trusted storage for storing and executing the code segments
of the program and the ORAM controller. Thanks to the
special-purpose hardware, HOP remains unconcerned with
protecting its ORAM controller and the program against sophis-
ticated cache and branch-prediction attacks. Conversely, since
OBFUSCURO supports obfuscated execution on commodity
hardware, its design revolves around the limitations of the
hardware and therefore has to deal with the cache and the
branch-predictor, to provide the same theoretical guarantees of
program obfuscation.

B. Achieving Obfuscation on Commodity Hardware

In this subsection, we attempt to elaborate on the design
choices taken by OBFUSCURO in order to achieve the goals
set out by program obfuscation. Just to reiterate, to support
program obfuscation, OBFUSCURO has to answer the following
questions — (a) how to execute a target program’s code without
leaking memory traces?; (b) how to provide secure access to
its data regions (e.g., stack, heap etc.) without leaking memory
traces?; and (c) how to ensure that the program leaks no timing
information?

The answer to (a) and (b) lies in the design of fixed
scratchpad regions for code execution and data access. In fact,
simply doing so is enough for specialized hardware (such
as the one used by HOP) but not for commodity hardware,
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Scheme Architecture Protection Scope Secure Program

Bus Snooping Cache Attacks Branch Prediction Page-level Attacks ORAM Obfuscation

Raccoon [18] commodity hardware ✓ ✓ ✓ ✓ ✓ ✗

Phantom [29] special purpose hardware ✓ ✗ ✗ ✗ ✗ ✗

GhostRider [30] special purpose hardware ✓ ✗ ✗ ✓ ✗ ✗

HOP [8] special purpose hardware ✓ ✗ ✗ ✓ ✗ ✓

OBFUSCURO (this paper) commodity hardware ✓ ✓ ✓ ✓ ✓ ✓

Fig. 2: An overview of the differences in OBFUSCURO and existing oblivious execution schemes.

since OBFUSCURO risks leaking information within these
regions through page table, cache and branch-prediction attacks.
OBFUSCURO ensures that the scratchpad regions are a single
cache-line (i.e., 64 B) in size to prevent page table and cache
attacks. To further secure the code scratchpad against branch-
prediction, OBFUSCURO ensures that all branches to/from the
scratchpad are at fixed locations. Although the above design
nullifies memory-based side-channels, it raises two important
questions — (i) how to support code execution and data access
at the granularity of cache-line?; and (ii) how to securely fetch
these blocks onto the scratchpads?

In order to support cache-line-granular code execution,
OBFUSCURO breaks the target program’s code into 64 B
basic blocks, normalizes branch instructions within each block
and instruments each code access instruction. Furthermore,
OBFUSCURO also breaks the data region into blocks of 64 B
and instruments each data access to ensure correctness of
program execution. Lastly, in order to securely fetch code and
data blocks onto the scratchpad regions, OBFUSCURO utilizes
ORAM to hide access patterns from a privileged attacker. As
shown by previous work [16, 17], the ORAM controller has
to be further provisioned to avoid leaking information in SGX
enclaves. OBFUSCURO supports both the traditional scheme
for securing ORAM whilst also providing an alternative and
efficient approach.

Finally, to counter the threat of timing channels and conse-
quently answer (c), OBFUSCURO normalizes the execution time
of the target programs by extending the program’s execution
using dummy (but indistinguishable) code blocks. OBFUSCURO
automatically provisions the program with these code blocks
such that the program runs indefinitely. OBFUSCURO directs
the enclave to stop executing after the execution of a fixed
number N of code blocks. As we show in §VII-B, each code
block execution takes similar time, resulting in execution-time-
normalization for the program.

V. DESIGN

A. Overview

OBFUSCURO is a software framework enabling obfuscated
execution for SGX enclave programs. The key idea behind
OBFUSCURO is to enable cache-line-granular code execution
and data access, secured through the use of ORAM operations,
thereby exhibiting memory traces oblivious to program exe-
cution (illustrated in Figure 3). The core design features of
OBFUSCURO can be summarized as follows.

• Secure ORAM Scheme. OBFUSCURO implements its
ORAM controller using data oblivious algorithms, in or-
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Fig. 3: OBFUSCURO’s system-level overview.

der to protect it from side-channel attacks (§V-B). Also,
OBFUSCURO implements a register-based stash which im-
proves on the existing side-channel resilient ORAM imple-
mentations [16, 17].

• Repurposing Native Programs. OBFUSCURO transforms
native programs (§V-C) through memory layout transfor-
mation and virtual address translation in order to bridge
the semantic gap between native program execution and
ORAM-based operations.

• Code Execution Model. OBFUSCURO ensures that the code
execution (of a target program) is exclusively performed
within a fixed location, C-Pad (§V-D). All instructions are
loaded onto the scratchpad using ORAM operations and
executed from the start to the end of the scratchpad ( 1 ∼
3 ). Furthermore, the C-Pad is designed with SGX-aware
protections unlike previous work [8, 30].

• Data Access Model. OBFUSCURO ensures that all data
access is performed at a data scratchpad, D-Pad, which
is a fixed memory location updated using ORAM opera-
tions (§V-E). The target program’s read and write operations
are performed at the same memory location regardless
of execution context ( 1 ∼ 5 ). OBFUSCURO also ensures
that the data access is always performed once per C-Pad,
normalizing the number of data accesses patterns.

• Start-to-End Obfuscation. OBFUSCURO ensures that the
target program continues executing till a certain predefined
time to mitigate timing-based channels, irrespective of
the program logic (§V-F). OBFUSCURO achieves this by
instrumenting the target application to introduce dummy
memory blocks, after the termination of the intended logic.

Workflow. The input to OBFUSCURO is the source code of
a target enclave application. Using the input, OBFUSCURO
produces an instrumented executable, fully loaded with a
runtime library (containing the ORAM controller). During
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initialization, the runtime library populates the code and data
blocks into different ORAM trees. Afterwards, the ORAM
controller extracts the first code-block to be executed, loads it
onto the code scratchpad, and ensures execution starts from the
beginning of code scratchpad. When the code block performs
a branch instruction, the branch instruction is replaced with
new jump instruction to the ORAM controller for codes. Then,
the ORAM controller loads the required code block onto the
code scratchpad using ORAM operations, and jumps back to
the beginning of the code scratchpad (§V-D). While accessing
data (i.e., global/heap/stack objects), the access instruction is
replaced with new jump to the ORAM controller for data.
The ORAM controller for data always loads the corresponding
data block onto the data scratchpad using ORAM operations,
and returns the appropriate address (i.e., base address of
data scratchpad + access offset) (§V-E). Finally, OBFUSCURO
ensures that the program keeps executing till a certain time
period has elapsed before returning an output to the user thereby
ensuring complete start-to-end obfuscation (§V-F).

B. Secure ORAM Scheme

In this subsection, we explain how OBFUSCURO designs a
secure ORAM scheme to ensure oblivious program execution.
Firstly, OBFUSCURO places both the ORAM controller and
trees within an SGX enclave. Secondly, in response to side-
channel threats against SGX enclaves, OBFUSCURO secures
working mechanisms of its ORAM controller, i.e., ensuring that
each operation is branch-free (to mitigate the risk of branch-
prediction) and data-independent (to mitigate the risk of page
table and cache attacks). In this regard, OBFUSCURO constructs
two stash designs: CMOV-based and register-based stash for the
ORAM controller (§V-B1). Furthermore, OBFUSCURO employs
a data-oblivious population scheme to securely populate the
ORAM trees (§V-B2).

1) ORAM Controller: In the following, we describe how
OBFUSCURO secures the two main data structures of the
ORAM controller, i.e., position map and stash, against access-
pattern leakage. By securing access onto these data structures,
OBFUSCURO also ensures that its code is devoid of conditional
branches (i.e., secure against branch-prediction attacks).

Oblivious Position Map. The position map contains sensitive
information regarding ORAM blocks, i.e., mapping from block-
id to the leaf in ORAM tree. An attacker can leak sensitive
information about program execution by observing the access
patterns onto the position map. OBFUSCURO employs data
oblivious access mechanism to prevent information leakage
from the position map. The key security primitive of this
mechanism is in leveraging cmov instruction in x86 to stream
through the entire data structures. Similar to Raccoon [18],
we devise a wrapper function for the cmov instruction to add
additional bogus memory access. Depending on the flag value
provided to the wrapper function of the cmov instruction, the
function performs either the actual memory write (if the flag
is true) or a bogus memory access without writing (if the flag
is false).

Next, we describe how OBFUSCURO secures access onto the
stash. Naively accessing the stash would leave memory traces
that can be used to distinguish between real and dummy blocks
in the extracted ORAM tree path. OBFUSCURO can utilize two
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D-pad

DRAM

Genuine access Bogus access

Stash block Target block
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Fig. 4: Register-based stash versus CMOV-based stash. CMOV-based stash
has to access an entire array placed in DRAM whereas register-based
stash can directly retrieve an item from CPU’s AVX registers.

void retrieve_from_stash_cmov(void* cpad, int required_blk) {
bool flag = false;

for (int i = 0; i < NUM_STASH_BLOCKS; i++) {
// Check the validity of the condition, i.e.,
// is this the block to retrieve from the stash
flag = ((stash[i].blocknum == required_blk));

// Based on the flag, either perform a real or a dummy copy
x86_cmov(cpad, stash[i].memblk, flag);

}
}

(a) CMOV-based stash

; %rsi points to the base address of ORAM tree block.
movaps (%rsi), %xmm0
vinserti128 $0x0, %xmm0, %ymm5, %ymm5
add $16, %rsi
movaps (%rsi), %xmm0
vinserti128 $0x1, %xmm0, %ymm5, %ymm5
add $16, %rsi
movaps (%rsi), %xmm0
vinserti128 $0x0, %xmm0, %ymm6, %ymm6
add $16, %rsi
movaps (%rsi), %xmm0
vinserti128 $0x1, %xmm0, %ymm6, %ymm6

(b) Register-based stash

Fig. 5: Implementation snippets of OBFUSCURO’s stash access:
(a) OBFUSCURO obliviously retrieves a block from the stash using
CMOV; and (b) OBFUSCURO leverages YMM registers to obliviously
access stash indices. As can be observed, there are no conditional
branches and/or data-dependent access in both cases.

different stash designs, CMOV-based stash and a novel register-
based stash. While both completely secure stash accesses, it
imposes different performance characteristics depending on the
underlying hardware architecture.

CMOV-based Stash. OBFUSCURO can use data-oblivious ac-
cess (using CMOV) to stream through the complete stash memory
region (Figure 4-a), similar to previous schemes [16, 17]. As
a result, the CMOV-supported access guarantees that the attacker
learns nothing from the leaked access patterns as the attacker
observes accesses onto all stash indices. One caveat of this
approach is that the stash is a large memory region, i.e., >=
Blog2N bytes; where B is the block-size in bytes and log2N
is the size of the ORAM tree containing N nodes. Therefore,
using CMOV within the stash can result in performance overhead
as noted by previous works and reported in §VIII-1. Figure 5a
shows a code snippet illustrating how the CMOV-based stash
functions.

Register-based Stash. OBFUSCURO also designs a novel
register-based stash, which leverages Advanced Vector Ex-
tensions (AVX) instruction set along with the XMM and
YMM registers. We collectively refer to these registers as
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AVX registers. The key idea is to reserve these registers for
ORAM stash only and restrict the program and associated
libraries from using them. An operation performed on any
CPU register does not imprint traces on memory-related units
(cache, TLB/MMU, DRAM etc.) and is therefore oblivious
to even privileged attackers such as the OS (Figure 4-b).
Therefore, OBFUSCURO copies each tree block onto a set of
AVX registers and performs all required operations on these
registers. This limits the involvement of CMOV and therefore
provides a performance improvement of 30−40% as compared
to the CMOV-based stash as shown in §VIII-1. Figure 5b shows
an example of where the memory located at rsi is moved in
chunks of 32-bytes into ymm5 and ymm6.

However, there are two things to consider while opting for
the register-based stash over the CMOV-based stash. Firstly, the
register-based stash limits the involvement of AVX registers for
other important operations such as AES-NI instruction set and if
the enclave program requires these operations, it would be better
suited to use the CMOV-based stash. Secondly, current desktop
hardware only supports AVX2 [34] which provides 16 YMM
registers of 32 B memory each, totaling to 512 B of memory
for the stash. This size is enough for small ORAM tree size
(e.g., 4-8KB) but is insufficient for larger tree sizes. However,
the AVX-512 [35] instruction set architecture introduces larger
AVX registers (ZMM registers), currently present on high-end
hardware [36, 37]. The ZMM registers are 32 registers in total,
with each being 512-bit wide and can support a total stash
size of 2-kilobytes which increases our tree size that can be
supported from 8KB to 256MB.

Workflow. Based on the above building blocks, we now illus-
trate how OBFUSCURO performs a secure ORAM access. First,
OBFUSCURO uses CMOV to scan through the whole position
map to find the required ORAM block. Then, OBFUSCURO
sequentially copies the tree blocks to either memory (if CMOV-
based stash is used) or the registers (if the register-based stash is
used). Afterwards, OBFUSCURO performs an oblivious retrieval
of the required block from the stash. In the case of CMOV-based
stash, it performs a sequential CMOV access on each individual
stash index and in the case of register-based stash, it performs an
inline assembly move operation to move it from the register to
the memory. After performing the relevant tasks on the ORAM
block, we rewrite the block back using similar approach as
mentioned above.

2) ORAM Bank: OBFUSCURO places the ORAM bank,
comprising of the ORAM trees, within the enclave memory.
OBFUSCURO performs secure ORAM tree population to miti-
gate side-channel leakage.

Allocation. The ORAM trees are allocated as global arrays
within the enclave program’s memory space (i.e., within the
EPC). OBFUSCURO can avoid encrypting ORAM trees, which
is an important step in the ORAM protocol, because the Memory
Encryption Engine (MEE) in SGX [38] implicitly performs the
encryption. There are two things to note here: (a) the allocation
step does not leak any important information to the attacker
apart from the location of the ORAM tree (which is public
information in the ORAM attack model) and (b) the size of
the code and data trees should be carefully considered prior to
allocation since as per Path ORAM’s design, the size of the
trees cannot be dynamically adjusted.

Population. As per Path ORAM’s requirement, the population
of each block into the ORAM tree should be performed as
a regular ORAM access. To further illustrate, the population
of code and data blocks in C-Tree and D-Tree respectively,
is carried out as follows: (a) OBFUSCURO picks a block
which is to be added to the ORAM tree. (b) OBFUSCURO
determines a random position to store the block within the
ORAM tree. The random position is determined using the
RDRAND hardware instruction, which only involves the trusted
CPU. (c) OBFUSCURO performs an ORAM access onto the
path that corresponds to the selected position. At first glance,
this might leak some information to the attacker. However,
since this is an ORAM access, the final destination of the block
will be randomized within the path once more which ensures
strong secrecy. (d) OBFUSCURO repeats the above steps until
all real blocks are populated to the ORAM tree.

C. Repurposing Native Programs

In order to bridge the semantic gap between native and
oblivious execution, OBFUSCURO transforms the target pro-
gram’s memory layout into an ORAM-compatible memory
layout, provides virtual address translation to support dynamic
memory relocation, and introduces scratchpad regions for code
execution and data access.

Memory Layout Transformation. OBFUSCURO separates
the target program into two sections, i.e., code and data, and
allocates a dedicated ORAM tree for each section, namely
C-Tree for code and D-Tree for data. OBFUSCURO can estimate
the size of the C-Tree since the program’s code size remains
static. Since the size of dynamically allocated data (e.g., heap
and stack) cannot be precisely estimated, OBFUSCURO sets
a maximum limit on the size of the D-Tree. This is not
a limitation since SGX programs themselves are initialized
with a user-provided stack and heap size. Code blocks are
prepared during the compilation phase, where the code is
divided into blocks of the same size and filled with instrumented
instructions by OBFUSCURO (more details in §V-D). During
program initialization, OBFUSCURO populates both the code
blocks and data blocks into the C-Tree and D-Tree respectively.
The initialized data objects (i.e., global variables) are filled in
their corresponding blocks whereas the blocks corresponding
to uninitialized data blocks are zero-initialized.

Virtual Address Translation. All memory accesses in a
traditional program are realized through virtual addresses,
while ORAM operations deal in blocks of the ORAM tree.
To reconcile this, OBFUSCURO performs on-the-fly translation
of virtual addresses into ORAM block indices. OBFUSCURO
linearly maps the virtual address space of a program into ORAM
blocks and performs bitwise right-shift to secure translation.

Heap Management. Since SGX enclaves do not have support
for dynamic memory allocation, the maximum heap size
required for the application has to be decided at compilation
time. To handle runtime requests, OBFUSCURO provides a
wrapper for the malloc and free function calls, i.e., malloc_ob
and free_ob, which are responsible for managing the heap
memory (alongside the metadata) requested by the enclave
program. In particular, malloc_ob obliviously picks a block
from the D-Tree which is already provisioned with blocks to
handle heap memory requests during program initialization. The
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wrapper function returns the virtual address corresponding to
the selected block. Later, when free_ob is called, it deallocates
the heap memory region, figures out which blocks from the
D-Tree are now free and simply tags them as such.

Scratchpad. In traditional ORAM, the program can simply
access the extracted block from the stash. However, doing so
within the SGX environment will leak a considerable amount of
information. To deal with this problem, OBFUSCURO prepares
two fixed locations (determined during program initialization)
of fixed size (one cache line, i.e., 64 B) to access code and data
blocks, called C-Pad and D-Pad respectively. These memory
regions are provisioned with SGX-specific defenses (refer
to §V-D and §V-E). After OBFUSCURO performs oblivious
operation and locates a target block in stash, OBFUSCURO
copies the target block in stash to scratchpad. Note that this
copy from stash is oblivious as described in §V-B1. Therefore,
by normalizing access location and size through scratchpads,
OBFUSCURO can successfully hide actual memory location and
the attacker can not infer that information. We provide more
details as to how this is accomplished in the next two sections.

D. Code Execution Model

OBFUSCURO ensures the following three security properties
in its code execution model: C1) Code execution is always
performed within the C-Pad3; C2) Code access instructions (i.e.,
branch instructions which impact the control-flow of a program,
including call, return, unconditional branch, and conditional
branch instructions) are only executed at a fixed location (i.e.,
the end of the C-Pad); C3) All code access instructions are
replaced with an instruction jumping to a runtime function (i.e.,
code_oram_controller), which performs an ORAM operation
to fetch the code block required.

The above mentioned security properties of OBFUSCURO
protect code execution from access-based side-channel attacks.
Since the size of the C-Pad is the same as the minimum
granularity of page table and cache-based attacks (i.e., 64 B), C1
prevents these attacks from gaining any meaningful information.
C2 and C3 prevent a branch prediction attack, because all the
control-flow changes are made from the same location (i.e., the
end of C-Pad as specified by C2) to the same destination (i.e.,
code_oram_controller as specified by C3), irrespective of the
semantics of the original branch instruction.

To meet the property C1, OBFUSCURO restricts all basic
blocks to be at the size of C-Pad (i.e., 64 B) during the
compilation phase. Specifically, OBFUSCURO breaks up larger
basic blocks into smaller ones equaling the size of the C-Pad.
If the size of the basic block is smaller than the C-Pad,
OBFUSCURO inserts nop instructions to fill the space. To
meet the properties C2 and C3, OBFUSCURO replaces all
branch instructions with a sequence of equivalent instructions
invoking code_oram_controller. This invocation is always
performed using jmp instruction to code_oram_controller,
which is aligned at the end of the basic block.

For example, Figure 6a shows how OBFUSCURO replaces
a unconditional branch instruction. Given the original jmp

3The C-Pad is a writable and executable region but it can be secured against
memory corruption by employing SFI similar to SGX-Shield [24] and/or
dynamic page protection to be available in SGXv2.

; Before
jmp jump_target

; After
mov R15, jump_target ; Pass jump_target through R15
jmp code_oram_controller ; code_oram_controller loads the code

; block to C-Pad and then jumps to the
; beginning of C-Pad.

(a) Unconditional branch (code access)

; Before
mov 4(RAX), RBX ; Store RBX at where (RAX + 4) points to

; After
lea R15, 4(RAX) ; Pass the store address through R15
mov R14, after_fetch ; Pass the return address through R14
jmp data_oram_controller ; data_oram_controller fetches data block

; and returns address of (D-Pad + offset)
; through R15

after_fetch:
mov (R15), RBX ; Write a value RBX to (D-Pad + offset)

(b) Store (data access)

Fig. 6: Instrumentation on code and data access.

instruction, OBFUSCURO first instruments an instruction storing
the virtual address of the jump target in R15. Then, OBFUSCURO
inserts a jmp instruction to the code_oram_controller. The
code ORAM controller computes the ORAM block index using
the virtual address stored in R15 (as mentioned in §V-C), and
retrieves the required code block from the C-Tree through
an ORAM access. Afterwards, OBFUSCURO overwrites C-Pad
using the obtained code block and resumes execution from the
beginning of C-Pad. In this manner, OBFUSCURO translates all
types of control flow instructions, including conditional jump,
function call, return.

E. Data Access Model

OBFUSCURO ensures the following security properties in
the data access model: D1) Data access is always performed
within the D-Pad of size 64 B; D2) Data access instructions
are only executed once per C-Pad at a fixed location (i.e., the
beginning of the C-Pad); and D3) All data access instructions
are replaced with an instruction jumping to a runtime function,
data_oram_controller, which performs an ORAM operation
to load the corresponding data block onto the D-Pad. Similar
to the code execution model (§V-D), these properties prevent
cache and page table attacks. This is because attackers will
always observe the same data access patterns onto D-Pad.

One thing to note here is that D2 enforces each code block
to perform a single jump to the data_oram_controller. This
restriction is partly due to the constraint of the 64-byte code
block. In particular, OBFUSCURO’s data access instructions
take 28-bytes and the code access instructions (mentioned in
§V-D) take 20-bytes. Since a code block requires at least one
code access instruction, i.e., to access the next code block, it
leaves room for only a single data access. However, as a result
of this, OBFUSCURO ensures that there is a normalized number
of data access per code block, which cannot be exploited by an
attacker. OBFUSCURO also prevents branch-prediction attacks
by placing the data access instruction at a fixed location. If a
certain code block does not require a data access, OBFUSCURO
performs a dummy data access in order to portray the same
memory footprints for each block.

Unlike the code execution model, the data access model
allows offset-based access within the D-Pad such that a memory
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target_main()

{

[original_function_body]

*V = ret_val

continuous_dummy()

}

entry()

{

RT_return_addr = R

target_main ()

R:

ret_val = data_oram_controller(V)

}

code_oram_controller (code_block_id)

{

*C-Pad = obtain_oram_block (code_block_id)

flag = ( num_executed_blocks < limit )  

num_executed_blocks++

CMOV(flag, C-Pad, RT_return_addr)

jmp C-Pad

}

Instrumented Target Application

Obfuscuro Runtime Library

1

2

3

4

5

6

Original Target Application

target_main()

{

[original_function_body]

return ret_val

}

entry()

{

ret_val = target_main()

}

continuous_dummy()

{

while(true)

{

}

}

Obfuscated reigion Return valueReturn

Fig. 7: OBFUSCURO’s continuous execution.

access can be directly performed at any location within D-Pad.
This offset-based access is secure against memory-based side-
channel attacks since the D-Pad is the size of the minimum
granularity of attack resolution, i.e., 64 B. In order to reflect
changes made by the enclave code on the D-Pad back to the
ORAM tree, OBFUSCURO flushes the extracted data block after
performing required memory access.

For example, Figure 6b illustrates how OBFUSCURO in-
struments the store instruction. Similar to the code execu-
tion model, OBFUSCURO uses the reserved R15 register to
pass the virtual address (i.e., the memory operand of a
store instruction) to the data_oram_controller. Then the
data_oram_controller translates the virtual address into the
corresponding ORAM block index, and updates D-Pad after
extracting the data block using an ORAM access. Afterwards,
the data_oram_controller returns the virtual address through
R15, which points within D-Pad (i.e., p1 + p2, where p1 is the
base address of D-Pad and p2 is the offset within the D-Pad).
Therefore, the enclave program correctly performs the store
instruction using R15, and the data block is later flushed back
into the D-Tree.

F. Start-to-End Obfuscation

In the previous subsections, we explain how OBFUSCURO
ensures that the target program’s code blocks perform a
normalized sequence of operations, irrespective of their original
logic. However, that is not enough for complete obfuscation.
In particular, there is one further distinguishing factor in the
program, i.e., execution time of the program. For example,
running different programs or just running the same programs
with different inputs can result in drastically different execution
times, which can be abused by an attacker.

OBFUSCURO handles both of these cases to ensure that,
irrespective of program logic, the obfuscated execution always
terminates after a fixed amount of time. In order to fix the
execution time, OBFUSCURO inserts dummy code blocks within
a native program’s code ensuring that the program keeps

executing even after completing the intended program logic.
OBFUSCURO instruments the target application as shown in
Figure 7. As shown in the figure, OBFUSCURO injects a
dummy function called continuous_dummy into the program.
The dummy function is meant to execute a while loop
indefinitely, ensuring that program will not terminate of its
own will. As mentioned in §V-D, each code access will go
through the code_oram_controller. Therefore, OBFUSCURO
can stop the program execution after a certain predefined
number of code blocks, even if the dummy function never
stops executing. However, to do so and provide the required
output back, OBFUSCURO needs an address to jump to after
reaching the limit on code blocks.

Now, we explain the workflow of the instrumented target
program. The application code is defined as target_main
whereas the enclave officially starts execution from the entry
function ( 1 ). At the start of the entry, OBFUSCURO ensures
that the return address R is passed to the runtime library by
writing RT_return_addr ( 2 ). Afterwards, OBFUSCURO starts
running the target_main function and writes its output to a
global memory within the program ( 3 ). It is worth noting that
this write will also be achieved through an ORAM access (as
per all data access mentioned in §V-E) and is therefore oblivious
to the attacker. Then, OBFUSCURO invokes continuous_dummy
( 4 ), ensuring that the program continues executing.

As the program executes, it will jump to the
code_oram_controller on each code access. At this time,
OBFUSCURO checks that the predefined limit on the number
of code blocks has been reached or not. If the limit has
been reached, the program jumps back to RT_return_addr
instead of jumping to the C-Pad ( 5 ). At this point, we
completed the execution of original program logic but have not
obtained the output. To get the output, OBFUSCURO calls the
data_oram_controller to extract the output from the D-Tree
( 6 ). Through the above mentioned steps, OBFUSCURO ensures
that there is a start-to-end obfuscation of the target program,
which always executes the same number of code blocks and
thus terminates after a fixed amount of time.

VI. IMPLEMENTATION

We have implemented a prototype of OBFUSCURO based
on the LLVM Compiler project 4.0 as well as Intel SGX
SDK’s enclave loader. OBFUSCURO modified following two
components in LLVM: a) LLVM backend to emit 64B of code
blocks as well as to instrument code and data access instruction;
and b) Compiler runtime library for ORAM controllers. In the
LLVM backend, especially the assembly emitter, we arranged
a new code emitter to measure the size of instructions in
parallel with default emitter. We also utilized built-in machine
code builder to redirect the codes and data accesses to the
runtime ORAM controllers. The compiler runtime library
includes the implementation of data-oblivious ORAM, and
interfaces for LLVM backend and applications to employ it. The
oblivious stash access is implemented with vinserti128, and
vextracti128 AVX register manipulating instructions in the
assembly language level. The oblivious position map access is
based on the CMOV instruction, and we generalized its operation
to variable lengths. We also changed the enclave loader of the
Intel SGX SDK to make C-Pad using SGX’s EADD instruction.
In total, OBFUSCURO introduces 3,117 LoC in LLVM backend,
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Fig. 8: Data oblivious execution cycle of OBFUSCURO

2,179 LoC in compiler runtime library, and 25 LoC in Intel
SGX SDK.

VII. SECURITY ANALYSIS

This subsection provides a security analysis of OBFUSCURO.
In general, there are two ways an attacker can steal information
from SGX enclaves using side-channels. Firstly, an attacker
can abuse observed access-patterns to infer some information
about the program and/or its input. Secondly, an attacker can
perform timing-based attacks to leak some information. We
provide a systematic security analysis of OBFUSCURO against
both of these attack avenues.

A. Access Pattern Attacks

As OBFUSCURO is composed of multiple components
to realize obfuscated program execution, we start by show-
ing the security properties of the individual components of
OBFUSCURO. Then we show how these components interact
with each other and show that these interactions are completely
oblivious as well. Finally, we present the results of an
empirical study showing that OBFUSCURO achieves access
pattern obliviousness.

Obliviousness of Individual Components. OBFUSCURO
introduces newer components to legacy programs in order
to achieve obfuscated execution, as shown in Figure 8. In the
figure, we show the four components of OBFUSCURO (labeled
as 1 ∼ 4 ). We comment on each component individually in
the following.

1 Code ORAM controller: The code ORAM controller takes
the virtual address of next required code block as input, and it
places the corresponding code block on the C-Pad. An attacker
cannot decipher the virtual address because OBFUSCURO
performs secure computation based on this address. In particular,
the address is first translated to a specific ORAM block
using data oblivious right-shift operation (§V-C), which returns
the corresponding block number in the ORAM tree. Then,
OBFUSCURO finds the corresponding leaf for this block through
sequential CMOV-based scanning of the position map.

For the stash, OBFUSCURO uses two variants, a CMOV-based
and a register-based. The CMOV-based stash performs CMOV-based
memory access similar to how OBFUSCURO shields the position
map. This includes both (a) while copying the required block
from the stash to the C-Pad or D-Pad and (b) while writing
back the blocks from the C-Pad or D-Pad to the stash. For
the register-based stash, the AVX registers are retrofitted as
stash space. Since all operations on the AVX registers are
oblivious to the underlying system, we can perform a direct
memory access to/from a specific register while ensuring that
no information is leaked. Please refer to Figure 9 for detailed
operations performed by the code controller.

2 C-Pad: OBFUSCURO ensures that the C-Pad has a fixed
location (determined at the program loading) and a fixed size
(i.e., 64B), and ensures that all oblivious code execution occurs
from this location. Since 64B is the cache-line size (i.e., the
finest visible granularity through access pattern-based side-
channel attacks), the attacker learns no useful information to
infer semantics during the C-Pad execution. In other words, as
OBFUSCURO runs the target program, the attacker will keep
observing the same memory activity over C-Pad, which is
completely independent of the code block being executed.

3 Data ORAM controller: The data ORAM controller takes
the virtual address of data objects as input, and places the
corresponding data block to D-Pad. The data controller follows
the exact same workflow of the code controller except that it
operates on the D-Tree instead of the C-Tree. As previously
shown for the code controller, the data controller also does not
leak any sensitive information.

4 D-Pad: The D-Pad is functionally and structurally similar
to the C-Pad, except that data access is performed on it and not
code execution. Similar to the C-Pad, it has a fixed location
and the same size, thereby showing the same memory activity
for each data access.

Oblivious Interactions b/w Components. The aforementioned
components perform five interactions between them (labeled
as a ∼ e ). We illustrate below how each of these interactions
is secure against access pattern-based attacks.

a Jump from Code ORAM controller to C-Pad after fetching
code block: After obliviously extracting a block from the
C-Tree and copying it to C-Pad, the code controller performs
a single jump to the start of the C-Pad. This step only reveals
that some code block of a target program will now be executed,
which entails no semantics behind the code block being
executed.

b Jump from C-Pad to Data ORAM controller for fetching
data block: Each code block (executing within the C-Pad) is
strictly enforced to perform a single jump to the data controller,
because OBFUSCURO normalizes the number of data access
within each code block to be exactly one (refer §V-E). Moreover,
this jump is performed at a fixed offset within C-Pad to mitigate
the risk of branch prediction attacks. The target address of this
jump is also fixed, i.e., the start of the data controller’s logic.

c Return from Data ORAM controller to C-Pad: There is
only a single jump from the data controller to the C-Pad at
a fixed offset within the C-Pad, after fetching/updating the
required data block on the D-Pad.

d Single D-Pad access: There is only a single access to the
D-Pad per code block. Since the size of the D-Pad is 64B, this
access does not reveal offset information either.

e Jump from C-Pad to Code ORAM controller: Finally,
OBFUSCURO enforces that there is only one jump from C-Pad
to the code controller at a fixed address located towards the
end of the C-Pad. The target address of this jump is also fixed
at the start of the code controller logic.

Empirical Study. Lastly, we present the results of our
empirical study on obfuscated memory traces exhibited by
various applications. The results are depicted in Figure 10.
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ORAM operations Sensitive information OBFUSCURO defense Observed traces by adversaries

1. Locating corresponding pos.map element Offset in pos.map CMOV-scanning read Sequential read traces on pos.map

2. Extracting requested ORAM path to stash No sensitive info. - Sequential copy traces from requested ORAM path to stash

3-a. Copying ORAM block in stash to scratchpad (CMOV-based) Offset in stash CMOV-scanning copy Sequential copy traces from stash to scratchpad

3-b. Copying ORAM block in stash to scratchpad (Register-based) Offset in stash Register operations No traces since registers are oblivious to memory

4. Updating pos.map with new leaf number Offset in pos.map CMOV-scanning write Sequential write traces on pos.map

5-a. Writing back scratchpad to stash (CMOV-based) Offset in stash CMOV-scanning write Sequential write traces from scratchpad to stash

5-b. Writing back scratchpad to stash (Register-based) Offset in stash Register operations No traces since registers are oblivious to memory

6. Writing back stash to requested ORAM path No sensitive info. - Sequential write traces from stash to requested ORAM path

Fig. 9: Security analysis of secure ORAM implementation used by the code and data controller.

1.0

-1.0

0.0

anagram

pi

mattrans-

pose
sum

fibonacci

palin-

drome

(a) Before (b) After

Fig. 10: Confusion matrix for native access patterns vs. obfuscated
patterns shown by OBFUSCURO.

We choose six target applications for the study, including
anagram, pi, mattranspose, sum, fibonacci, and palindrome.
These applications were chosen due to the diversity of their
computational complexity.

In Figure 10, we attempt to show that there is no correlation
between native and obfuscated memory traces of the same
program. We measure multiple runs for each aforementioned
application, and for each run we accumulate data corresponding
a timing sequence to the address accessed by the program.
Using the accumulated data, we calculate the Pearson cor-
relation value between the test applications and populate
the corresponding cell in the confusion matrix. For example,
consider the (anagram, anagram) cell in Figure 10-(a), the
Pearson correlation value is very close to 1 because this cell
is comparing the memory traces between two runs of the
same program. On the other hand, the correlation value in the
(anagram, pi) cell is nearly 0 because their access patterns
are quite unique to each other.

Figure 10-(b) shows the confusion matrix formed while
comparing obfuscated programs (using OBFUSCURO) to their
native access patterns. Since OBFUSCURO ensures that all
applications proceed in a fixed pattern of execution, the access
patterns of these programs are completely different from their
counterparts in native execution. Furthermore, all cells in
Figure 10-(b) are almost 0 because none of obfuscated programs
have any correlation with any of the native programs.

B. Timing-based Attacks

Apart from access pattern attacks, a privileged attacker
can also break program obfuscation within Intel SGX by

ADD SUB IMUL IDIV pi sum fibonaccianagramNOP

# of ORAM tree leaves = 128

19.5K

18.5K

17.5K

20.5K

800M

760M

840M

880M

Fig. 11: (a) Distributions of code execution cycles of different types
of code blocks (y-axis) with 10%∼90% percentile intervals. (b)
Distributions of total execution cycles of various test programs (y-axis)
with 10%∼90% percentile intervals.

abusing timing channels. In particular, we expect following
two ways in which an attacker can abuse timing channels to
leak information from OBFUSCURO—(a) observing the time
it takes for individual code blocks (in C-Pad) to execute, and
(b) observing the total time it takes for an obfuscated program
to execute. We individually show the infeasibility of each of
these timing channels.

C-Pad Execution Time. Timing differences in executing
each code block (i.e., C-Pad) can leak information about the
execution semantic of the program. We statistically prove that
this side channel is infeasible within OBFUSCURO’s execution.
The reason for this is that the execution time for the data ORAM
access (which is performed exactly once per C-Pad) dominates
the entire execution time of the C-Pad, and the time taken to
perform the ORAM access is independent to which data block
it accesses. We conducted a statistical experiment measuring
CPU cycles in executing different classes of code blocks. We
constructed five different code blocks, including NOP, ADD, SUB,
IMUL, IDIV code blocks. Each code block initially jumps to the
data controller to fetch a data block and the remaining space
is filled using one of the instruction type. Furthermore, we
impose data dependencies within the instructions to prevent
out-of-order execution. We accumulated the execution times
for each class over 10,000 repetitions, and the distribution is
shown in Figure 11-(a). As illustrated, the 10%∼90% percentile
intervals for each type (marked as two broken lines) largely
overlap, which is hardly possible for an attacker to distinguish.

Program Execution Time. As mentioned in §V-F,
OBFUSCURO ensures that a program continues executing until
its number of executed code blocks reaches a fixed user-
configured limit. In particular, OBFUSCURO allows the user to
define the total number of C-Pad executions a program should
perform. If the program’s logic terminates before that number is
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Fig. 12: Performance benchmarks from our test applications. The
average performance overhead of OBFUSCURO-CMOV is 83× and
for OBFUSCURO-AVX (simulated) is 51×.

reached, OBFUSCURO continues executing dummy code blocks
to complete the number of C-Pad executions.

In order to prove that this results in a uniform execution
time irrespective of the target program being executed, we
performed an experiment on a diverse set of applications as
shown in Figure 11-(b). In the experiment, we fixed the total
number of C-Pad executions for each of these applications to
30, 000 and measured the total execution time. We accumulate
100 executions for each program, and plot the distributions of
them. As shown in the figure, the ranges of total execution
times for the chosen evaluation set largely overlaps, despite
computational diversity of these applications. The reason for this
is that each C-Pad execution, as illustrated before, is bounded
at very similar execution times irrespective of the underlying
CPU instructions. Therefore, it is expected that the program
execution time (with same number of C-Pad executions) will
also be very similar.

VIII. PERFORMANCE EVALUATION

In this section, we report a detailed performance benchmark
through both micro-benchmarking custom applications and
macro-benchmarking by running openSSL [19].

Experimental Setup. All our evaluations were performed on
Intel(R) Core(TM) i7-6700K CPU @ 3.40GHz (Skylake with
8 MB cache, 8 cache-slices and 16-way set-associativity) with
64 GB RAM (128 MB for EPC). Our system ran Ubuntu 16.04
with Linux 4.4.0.59 64-bit. We performed our experiments
using Intel SGX SDK [39] and the Intel SGX drivers [40].
Due to the current unavailability of AVX-512 for SGX-enabled
computers, most of our experiments (having large code and data
sizes) used CMOV-based stash. However, we experimented with
AVX2 registers to find the expected benefit of using the register-
based stash and have accordingly simulated the performance
improvement achieved by register-based stash on our target
applications.

1) Micro-Evaluation: Firstly, we start by providing a
detailed performance evaluation result by running several
programs with OBFUSCURO. Next, we show the performance
improvement achieved by the novel register-based stash de-
signed by OBFUSCURO.

Benchmarks. We ported simple benchmarking applications
on OBFUSCURO in order to show the feasibility of obfuscated

Data Size (Bytes) CMOV (cycles) AVX (cycles) Improvement

1,024 272M 206M 32%
2,048 521M 388M 34%
4,096 1,044M 741M 41%
8,192 2,050M 1,481M 38%

Fig. 13: Performance improvement achieved by using the AVX2
register extensions as the ORAM stash compared to CMOV-based stash.

execution using commodity hardware such as Intel SGX. In
particular, we ported a diverse set of applications from simple
applications like finding the maximum within a given array to
complex binary searching.

Figure 12-(a) shows the performance shown by
OBFUSCURO while running the test set of applications
described above. We also simulate the performance of
OBFUSCURO-AVX (the version of OBFUSCURO which uses
register-based stash. These simulated results are based on
the experiments we performed on AVX2. In general, the
performance overhead of OBFUSCURO-CMOV is on average
83× and OBFUSCURO-AVX is 51× The performance overhead
of OBFUSCURO is expected since it has to cater to the plethora
of side-channels plaguing Intel SGX. In no particular order,
the overhead is attributed to: (a) code access control especially
dealing with branch-alignment, (b) data access normalization
and (c) side-channel-resistant ORAM-based access inside Intel
SGX.

Comparison: CMOV-based vs Register-based Stash. We
provide a comparison of the CMOV-based stash versus the register-
based stash. We attempt to answer the question — what
is the performance benefit attained by using register-based
stash over the CMOV-based stash? One caveat is that all our
experiments are based on the AVX2 registers but we expect
the performance benefits to be similar while using the AVX-
512 registers. Figure 13 attempts to illustrate the performance
benefit achieved by AVX extensions over CMOV while accessing
data of variable size through ORAM. Compared to the CMOV-
based stash, since the register-based stash performs just a single
oblivious access onto the AVX registers, it outperforms the
CMOV-based stash. The average improvement is around 30-40%.

2) Macro-Evaluation: In order to show how real-world
applications perform with OBFUSCURO, we provide a case-
study with OpenSSL [19]. Figure 12-(b) shows the result of
our evaluations using OpenSSL with OBFUSCURO and without
OBFUSCURO. In this experiment, we perform a variable number
of consecutive encryptions and compare the results. As the
number of encryptions increase, the difference between the
performance of OBFUSCURO and native also increases. The
reason for this is that OBFUSCURO has to perform a fixed
number of ORAM operations which adds significant overhead
per-encryption whereas the per-encryption overhead of native
execution is very small.

IX. DISCUSSION

Timing Channels. Based on our statistical analysis,
OBFUSCURO provides accurate execution-time-normalization
(see §VII-B). But, it is hard to conclusively prove that
OBFUSCURO would leak no timing information regardless
of the underlying application. However, if even that is the
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case, we believe that OBFUSCURO can still be used to defeat
all timing channels. For example, OBFUSCURO could profile
the execution time of each code block of the target program
and, if a discrepancy is encountered, carefully modify the
code blocks such that they would have identical execution
times. This would, in turn, also provide accurate execution-
time-normalization. We believe that, if required, this profiling
and subsequent modification would not require help from the
program developer either. We leave a thorough exploration of
timing channels that could affect OBFUSCURO as part of future
work.

AVX-512. As shown in §VIII, the register-based stash can
provide a performance improvement over CMOV-based stash.
But, our experiments were performed on AVX2 instructions
due to the current unavailability of AVX-512 for SGX-enabled
processors. Intel states that AVX-512 register instructions result
in frequency reduction [41] which could potentially slow down
the entire application. However, there are two reasons why this
might not be an issue — (a) linux-based systems (in particular)
allow control of frequency scaling [42] and (b) users have
found out that only heavy (e.g., floating point) instructions
cause frequency scaling [43]. Especially for the latter, it has
been reported that load/store instructions on AVX-512 registers
(which OBFUSCURO is concerned with only) provide similar
performance as AVX2 registers.

Comparison with Cryptographic Schemes. On par with
what OBFUSCURO provides, we discuss following two security
properties: 1) computational confidentiality and 2) integrity.
Towards these security properties, we focus our discussion on
theoretical program obfuscation techniques, which construct
a virtual black box (VBB). We note that, unlike OBFUSCURO
which performs hardware-assisted secure remote computation,
theoretical program obfuscation techniques [44–46] do not rely
on specific architectural characteristics and thus are designed
to be resistant to memory-based side-channel attacks.

More specifically, two well-known cryptographic primitives,
fully-homomorphic encryption (FHE) and garbled circuits are
generally used for the program obfuscation, but both of them are
limited in terms of either performance and generality. In the case
of FHE [47], its performance overhead is in twelve orders of
magnitude scale in string search [48] without ensuring integrity.
On the other hand, garbled circuits [49] incur a performance
overhead of around four orders of magnitude. Moreover, they
cannot be used for generic programs (i.e., a loop structure
in a program cannot be supported), and the integrity cannot
be guaranteed similar to FHE. To ensure integrity, verifiable
computing techniques can be adopted but verifiable computing
itself imposes huge overheads (i.e., about 104 times [50]).

Compared to theoretical solutions, OBFUSCURO efficiently
achieves confidentiality and integrity, leveraging memory
protection and remote attestation mechanisms of SGX. From
the performance perspective, OBFUSCURO is a more practical
solution since it imposes two orders of magnitude performance
overhead, as opposed to twelve and four orders in the case
of FHE and circuit representation, respectively. OBFUSCURO
also supports generic programs since it retains the form of the
host-architecture instruction.

Protecting Input/Output. Traditional program obfuscation
assumes that the attacker has an oracle-like access to the obfus-

cated program. Therefore, the attacker can provide input and
get the corresponding correct output. However, OBFUSCURO
can be further leveraged to guarantee that an attacker does not
figure out the input/output either. For the input, since it is not
controlled by OBFUSCURO, we assume that the user of the
enclave will provide us a fixed-length encrypted memory buffer
to extract the input from. OBFUSCURO will execute for a fixed
time T based on the input and extract a fixed-size output from
the D-Tree at the end of T . Then, OBFUSCURO will encrypt
this data and send it back to the user.

Potential Applications. There are various potential appli-
cations for OBFUSCURO ranging from protection of a intel-
lectual property to securely patching vulnerabilities. Firstly,
OBFUSCURO can ensure that machine learning services re-
quiring huge computing resources can safely outsource their
computational load to cloud servers. For example, companies
like 23andMe [3] want to outsource genomic analysis but also
want to stay ahead of the competition by preventing the theft
of their algorithm. Secondly, developers can securely patch
vulnerabilities without disclosing the vulnerabilities through
the patches, rendering their exploitation highly unlikely.

Generic Side-channel Defense. OBFUSCURO can be utilized
as a general-purpose side-channel defense, whose main objec-
tive is to protect the input of a known program from attackers.
The attackers usually exploit unique memory access patterns
leaked from side channels consisted of caches, page fault, and
branch predictor [10, 12–15]. Since OBFUSCURO is specifically
designed to protect all these channels, OBFUSCURO can protect
the target program. Furthermore, we could utilize OBFUSCURO
to constrain its protection scope to a small, sensitive portion
of the code, which would result in performance gains as well.

Other Use-cases. Our current design for an oblivious execution
framework is SGX-specific. However, we believe its design
characteristics and optimization techniques are general, which
can be applied to other trusted platforms such as AEGIS [51],
Ascend [52], XOM [53], Bastion [54], Sanctum [55]. For
example, our register-based stash (§V-B1) can be considered
as a generic optimization for ORAM, if the underlying trust
architecture shares any of memory-related subsystem such as
cache, TLB, MMU, and DRAM.

X. RELATED WORK

SGX-based Systems. Haven [56], Graphene [57, 58] and
Panoply [59] provide LibOS for SGX, which enable easier appli-
cation porting and prevent Iago attacks [60]. OpenSGX [61] pro-
vides an open research framework for running SGX applications.
VC3 [62] provides oblivious data analytical algorithms such as
MapReduce [63]. SGX-Shield [24] performs fine-grained ASLR
within SGX environments. Some of OBFUSCURO’s design
schemes, particularly how OBFUSCURO breaks a program
into smaller ORAM-compatible blocks, have been inspired by
SGX-shield. Ryoan [64] provides a secure framework to port
Native Client (NaCl) [65] in Intel SGX. SCONE [66] provides
performance optimizations and ports containers within SGX.
Eleos [67] provides a framework to use non-enclave space to im-
prove enclave performance. Glamdring [68] provides automatic
partitioning within enclave programs. Other works [69–71]
consider how to efficiently deliver cryptographic primitives
such as multi-party computation and functional encryption
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using Intel SGX. These systems do not consider side-channel
issues within SGX and can be used together with OBFUSCURO.

Attacks on SGX. SGX is vulnerable to both page fault [10]
and page table [11] attacks. Recent works [12–14] have shown
that cache-based attacks are possible with an SGX enclave.
SGX has also been found to be vulnerable against the branch-
prediction attack [15, 72]. Wang et. al [73] provide an overview
of the attack vectors against SGX and the limitations of current
defense solutions.

SGX-compatible Defenses. There have been various de-
fenses [74, 75] proposed against the page table attacks. T-
SGX [74] uses Transactional Memory (TSX) to run a program.
However, T-SGX is vulnerable to the improved controlled
channel attack [11]. Cloak [76] also utilizes TSX as a defense
primitive, but it only considers cache side channel attacks.
Another work [75], provides a way to prevent page faults from
the OS-level attacker by periodically modifying the program’s
memory access patterns. Ohrimenko et al. [77] show how to re-
adapt ML-algorithms to exhibit data-oblivious memory access
patterns. For cache-based attacks, the previous solutions [78–
80], for non-SGX environments, are not directly applicable
since most of them require OS support. Compared to these
defenses, OBFUSCURO proposes a generic security framework
against all memory-based side-channel attacks. Obliviate [16]
and ZeroTrace [17] provide access to files and data structures
respectively using secure ORAM implementations. Compared
to OBFUSCURO, their scope of protection is limited, i.e., files
and data arrays respectively.

Hardware and Software-based Oblivious Systems. Previous
work has alluded to the concept of creating oblivious sys-
tems based on custom hardware [8, 29, 31], software-level
defenses [18, 32] or hybrid [30]. All aforementioned systems
use variants of ORAM [9] to achieve oblivious execution. Out of
all these works, HOP [8] and Phantom [29] are the most similar.
However, both Phantom and HOP use RISC-V processors to
implement secure ORAM controllers while OBFUSCURO runs
on commodity trusted hardware.

XI. CONCLUSION

This paper presents OBFUSCURO, the first system which
provides program obfuscation using commodity trusted hard-
ware. OBFUSCURO systematically protects the SGX enclave
against information leakage through all side-channels, thereby
neutralizing all memory and timing footprints to create a virtual
black box for obfuscated program execution. Our evaluation
shows that OBFUSCURO can provide strong obfuscation guar-
antees within Intel SGX while performing much faster than
existing cryptographic schemes and being more deployment-
friendly than existing system-based solutions.
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