
Synthesis of Optimal Interfaces for Hierarchical Scheduling with Resources ∗

Insik Shin
Dept. of Computer Science, KAIST

Daejeon, South Korea 305-701

Moris Behnam, Thomas Nolte, Mikael Nolin
Mälardalen Real-Time Research Centre (MRTC)
Mälardalen University, 721 23 Västerås, Sweden

Abstract

This paper presents algorithms that (1) facilitate system-
independent synthesis of timing-interfaces for subsystems
and (2) system-level selection of interfaces to minimize
CPU load. The results presented are developed for hier-
archical fixed-priority scheduling of subsystems that may
share logical recourses (i.e., semaphores). We show that the
use of shared resources results in a tradeoff problem, where
resource locking times can be traded for CPU allocation,
complicating the problem of finding the optimal interface
configuration subject to scheduability.

This paper presents a methodology where such a tradeoff
can be effectively explored. It first synthesizes a bounded set
of interface-candidates for each subsystem, independently
of the final system, such that the set contains the interface
that minimizes system load for any given system. Then, inte-
grating subsystems into a system, it finds the optimal selec-
tion of interfaces. Our algorithms have linear complexity
to the number of tasks involved. Thus, our approach is also
suitable for adaptable and reconfigurable systems.

1 Introduction

Hierarchical scheduling has emerged as a promising ve-
hicle for simplifying the development of complex real-
time software systems. Hierarchical scheduling frameworks
(HSFs) provide an effective mechanism for achieving tem-
poral partitioning, making it easier to enforce the principle
of separation of concerns in the design and analysis of real-
time systems. HSFs allow hierarchical CPU sharing among
subsystems (applications). The whole CPU is available and
shared among subsystems. Subsequently, each subsystem’s
allocated CPU-share is divided among its internal tasks by
the usage of an internal scheduler.

Substantial studies [1, 5, 7, 8, 9, 10, 12, 14, 15, 17, 21,
22, 24] have been introduced for the schedulability analysis

∗The work in this paper is supported by the Swedish Foundation for
Strategic Research (SSF), via the research programme PROGRESS. This
has been done while I. Shin was a postdoc research fellow at MRTC. Con-
tact: insik.shin@cs.kaist.ac.kr.

of HSFs, where subsystems are independent. For dependent
subsystems, synchronization protocols [3, 6, 11] have been
proposed for arbitrating accesses to logical resources (i.e.,
semaphore) across subsystems in HSFs. There have been a
few studies [21, 9] on the system load minimization prob-
lem, which finds the minimum collective CPU requirement
(i.e., system load) necessary to guarantee the schedulability
of an entire HSF. However, this problem has not been ad-
dressed taking into account global (logical) resource shar-
ing (across subsystems).

The difficulty of finding the minimum system load sub-
stantially grows with the presence of global sharing of log-
ical resources, in comparison to without it. Without it, it
is a straightforward bottom-up process; individual subsys-
tems develop their timing-interfaces [21, 23], describing
their minimum CPU requirements needed to ensure schedu-
lability, and individual subsystem interfaces can easily be
combined to determine the minimum system load that guar-
antees the schedulability of an entire HSF. However, global
resource sharing produces interference among subsystems,
complicating the process of finding subsystem interfaces
that impose the minimum CPU requirements into the sys-
tem load.

An inherent feature with global resource sharing is that
a subsystem can be blocked in accessing a global shared re-
source, if there is another subsystem locking the resource at
the moment. Such blocking imposes more CPU demands,
resulting in an increase of the system load. Therefore, sub-
systems can reduce their resource locking time, for exam-
ple, using the mechanism presented in [4], in order to po-
tentially reduce the blocking of other subsystems towards
decrease of the system load. However, in doing so, we
present in this paper an unexpected consequence of reduc-
ing resource locking time; it can increase the CPU demands
of the subsystem itself (locking the resource), subsequently
increasing the system load. Hence, this paper introduces a
potentially contradicting effect of reducing resource lock-
ing time on the system load, and it entails methods that can
effectively explore such a tradeoff.

In this paper, we consider a two-step approach towards
the system load minimization problem. In the first step,
each subsystem generates its own interface candidates in

1

2008 Real-Time Systems Symposium

1052-8725/08 $25.00 © 2008 IEEE

DOI 10.1109/RTSS.2008.34

209

2008 Real-Time Systems Symposium

1052-8725/08 $25.00 © 2008 IEEE

DOI 10.1109/RTSS.2008.34

209

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on September 16, 2009 at 01:26 from IEEE Xplore.  Restrictions apply. 



isolation, investigating the intra-subsystem aspect of the
tradeoff. In the second step, putting all subsystems together
on system-level, interfaces of all subsystems are selected
from their own candidates to find the minimum resulting
system load, examining the inter-subsystem aspect of the
tradeoff. For the first step, we present an algorithm that
derives a bounded number of interface candidates for each
subsystem such that it is guaranteed to carry an interface
candidate that constitutes the minimum system load no mat-
ter which other subsystems it will be later integrated with.
The first step allows the interface candidates of subsystems
to be developed independently, making it also suitable for
open environments [7], requiring no knowledge of other
subsystems. For the second step, we present another al-
gorithm that determines optimal interface selection to find
the minimum system load. The complexity of both algo-
rithms is very low (O(n)), making the approach good for
execution during run-time, e.g., suitable for adaptable and
reconfigurable systems.

In the remainder of the paper , Section 2 presents re-
lated work, followed by system model and background in
Section 3. Section 4 presents schedulability analysis in our
HSF, followed by problem formulation and solution outline
in Section 5. Section 6 addresses the first step of the two-
step approach; efficiently generating interface candidates,
and Section 7 resolves the second step finding an optimal
solution out of the candidates. Finally, Section 8 concludes.

2 Related work

This section presents related work in the areas of HSFs
as well as synchronization protocols.

Hierarchical scheduling. The HSF for real-time sys-
tems, originating in open systems [7] in the late 1990’s, has
been receiving an increasing research attention. Since Deng
and Liu [7] introduced a two-level HSF, its schedulabil-
ity has been analyzed under fixed-priority global schedul-
ing [12] and under Earliest Deadline First (EDF) based
global scheduling [14]. Mok et al. [17] proposed the
bounded-delay virtual processor model to achieve a clean
separation in a multi-level HSF, and schedulability analysis
techniques [10, 22] have been introduced for this resource
model. In addition, Shin and Lee [21, 23] introduced the pe-
riodic virtual processor model (to characterize the periodic
CPU allocation behaviour), and many studies have been
proposed on schedulability analysis with this model under
fixed-priority scheduling [1, 15, 5] and under EDF schedul-
ing [21, 24]. More recently, Easwaran et al. [8] introduced
Explicit Deadline Periodic (EDP) virtual processor model.
However, a common assumption shared by all above studies
is that tasks are independent.

Synchronization. Many synchronization protocols have
been introduced for arbitrating accesses to shared logical
resources addressing the priority inversion problem, in-

cluding Priority Inheritance Protocol (PIP) [19], Priority
Ceiling Protocol (PCP) [18], and Stack Resource Policy
(SRP) [2]. There have been studies on supporting resource
sharing within subsystems [1, 12] in HSFs. For supporting
global resource sharing across subsystems, two protocols
have been proposed for periodic virtual processor model
(or periodic server) based HSFs on the basis of an over-
run mechanism [6] and skipping [3], and another proto-
col [11] for bounded-delay virtual processor model based
HSFs. Bertogna et al. [4] addressed the problem of mini-
mizing the resource holding time under SRP. In summary,
compared to the work in this paper, none of the above ap-
proaches have addressed the tradeoff between how long
subsystems can lock shared resources and the resulting CPU
requirement required in guaranteeing schedulability.

3 System model and background

A Hierarchical Scheduling Framework (HSF) is intro-
duced to support CPU resource sharing among applica-
tions (subsystems) under different scheduling services. In
this paper, we are considering a two-level HSF, where the
system-level global scheduler allocates CPU resources to
subsystems, and the subsystem-level local schedulers sub-
sequently schedule CPU resources to their internal tasks.
This framework also allows logical resource sharing be-
tween tasks in a mutually exclusive manner.

3.1 Virtual processor models

The notion of real-time virtual processor model was first
introduced by Mok et al. [17] to characterize the CPU al-
locations that a parent node provides to a child node in a
HSF. The CPU supply refers to the amounts of CPU alloca-
tions that a virtual processor can provide. Shin and Lee [21]
proposed the periodic processor model Γ(P, Q) to specify
periodic CPU allocations, where P is a period (P > 0) and
Q is a periodic allocation time (0 < Q ≤ P ). The sup-
ply bound function sbfΓ(t) of Γ(P, Q) was given in [21]
that computes the minimum possible CPU supply for every
interval length t as follows:

sbfΓ(t) =

{
t − (k + 1)(P − Q) if t ∈ [(k + 1)P − 2Q,

(k + 1)P − Q],
(k − 1)Q otherwise,

where k = max
(⌈(

t − (P − Q)
)
/P

⌉
, 1

)
.

3.2 System model

We consider a deadline-constrained sporadic task model
τi(Ti, Ci, Di, {ci,j}) where Ti is a minimum separation
time between its successive jobs, Ci is a worst-case exe-
cution time requirement, Di is a relative deadline (Ci ≤

2210210

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on September 16, 2009 at 01:26 from IEEE Xplore.  Restrictions apply. 



Di ≤ Ti), and each element ci,j in {ci,j} is a critical
section execution time that represents a worst-case execu-
tion time requirement within a critical section of a global
shared resource Rj . We assume that all tasks, that belong
to same subsystem, are assigned unique static priorities and
are sorted according to their priorities in the order of in-
creasing priority. Without loss of generality, we assume
that the priority of a task is equal to the task ID number
after sorting, and the greater a task ID number is, the higher
its priority is. Let HP(i) returns the set of tasks with higher
priorities than that of τi.

A subsystem Ss ∈ S, where S is the set representing the
whole system of subsystems, is characterized by 〈Ts,RCs〉,
where Ts is a task set and RCs is a set of internal resource
ceilings of the global shared logical resources. We will ex-
plain the resource ceilings in Section 3.3. We assume that
each subsystem has a unique static priority and subsystems
are sorted in an increasing order of priority, as is the case
with tasks. We also assume that each subsystem Ss has a
local Fixed-Priority Scheduler (FPS) and the system has a
global FPS. Let HPS(s) returns the set of subsystems with
higher priority than that of Ss.

Let us define a timing-interface of a subsystem Ss such
that it specifies the collective real-time requirements of Ss.
The subsystem interface is defined as (Ps, Qs, Xs), where
Ps is a period, Qs is a budget that represents an execu-
tion time requirement, and Xs is a maximum critical sec-
tion execution time of all global logical resources accessed
by Ss. We note that Xs is similar to the concept of re-
source holding time (RHT) in [4], however, developed for a
different virtual-processor model. RHT in [4] is developed
for a dedicated processor model1 (or a fractional processor
model [17]), where subsystems do not preempt each other.
However, our HSF is based on a time-shared (partitioned)
processor model [21], where subsystem-level preemptions
can take place. Therefore, Xs does not represent RHT in
our HSF2, but indicates the worst-case execution time re-
quirement that Ss demands inside a critical section. We will
explain later how to derive the values of Ps, Qs and Xs for
a given subsystem Ss.

3.3 Stack Resource Policy (SRP)

In this paper, we consider the SRP protocol [2] for ar-
bitrating accesses to shared logical resources. Considering
that the protocol was developed without taking hierarchical
scheduling into account, we generalize its terminologies for
hierarchical scheduling.
• Resource ceiling. Each global shared resource Rj is as-
sociated with two types of resource ceilings; an internal

1A processor is said to be dedicated to a subsystem, if the subsystem
exclusively utilizes the processor with no other subsystems.

2As the computation of RHT is not main focus of this paper, we refer
to our technical report [20] for its computation in our HSF.

resource ceiling (rcj ) for local scheduling and an exter-
nal resource ceiling (RXs) for global scheduling. They
are defined as rcj = max{i|τi ∈ Ts accesses Rj} and
RXs = max{s|Ss accesses Rj}.
• System/subsystem ceiling. The system/subsystem ceil-
ings are dynamic parameters that change during execution.
The system/subsystem ceiling is equal to the highest exter-
nal/internal resource ceiling of a currently locked resource
in the system/subsystem.

Under SRP, a task τk can preempt the currently execut-
ing task τi (even inside a critical section) within the same
subsystem, only if the priority of τk is greater than its cor-
responding subsystem ceiling. The same reasoning can
be made for subsystems from a global scheduling point of
view.

Given a subsystem Ss, let us consider how to derive the
value of its critical section execution time (Xs). Basically,
Xs represents a worst-case CPU demand that internal tasks
of Ss may collectively request inside any critical section.
Note that any task τi accessing a resource Rj can be pre-
empted by tasks with priority higher than the internal ceiling
of Rj . From the viewpoint of Ss, let wj denote the maxi-
mum collective CPU demand necessary to complete an ac-
cess of any internal task to Rj . Then, wj can be computed
through iterative process as follows (similarly to [4]):

w
(m+1)
j = cxj +

n∑
k=rcj+1

�
w

(m)
j

Tk
� · Ck, (1)

where cxj = max{ci,j} for all tasks τi accessing resource
Rj and n is the number of tasks within the subsystem. The

recurrence relation given by Eq. (1) starts with w
(0)
j = cxj

and ends when w
(m+1)
j = w

(m)
j or when w

(m+1)
j > D∗

i ,
where D∗

i is the smallest deadline of tasks τi accessing Rj .

If w
(m+1)
j > D∗

i , no task τi is guaranteed to be schedulable,
and subsequently neither is its subsystem Ss.

Then, Xs = max{wj | for all Rj ∈ Rs}, where Rs is a
set of global shared resources accessed by Ss.

4 Resource sharing in the HSF

4.1 Overrun mechanism

This section explains overrun mechanisms that can be
used to handle budget expiry during a critical section in a
HSF. Consider a global scheduler that schedules subsystems
according to their periodic interfaces (Ps, Qs, Xs). The
subsystem budget Qs is said to expire at the point when
one or more internal (to the subsystem) tasks have executed
a total of Qs time units within the subsystem period Ps.
Once the budget is expired, no new tasks within the same
subsystem can initiate execution until the subsystem’s bud-
get is replenished. This replenishment takes place in the

3211211

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on September 16, 2009 at 01:26 from IEEE Xplore.  Restrictions apply. 



beginning of each subsystem period, where the budget is
replenished to a value of Qs.

Budget expiration can cause a problem, if it happens
while a task τi of a subsystem Ss is executing within the
critical section of a global shared resource Rj . If another
task τk, belonging to another subsystem, is waiting for the
same resource Rj , this task must wait until Ss is replen-
ished so τi can continue to execute and finally release the
lock on resource Rj . This waiting time exposed to τk can
be potentially very long, causing τk to miss its deadline.

In this paper, we consider a mechanism based on over-
run [6] that works as follows; when the budget of the sub-
system Ss expires and Ss has a task τi that is still locking
a global shared resource, the task τi continues its execution
until it releases the locked resource. The extra time that τi

needs to execute after the budget of Ss expires is denoted
as overrun time θs. The maximum θs occurs when τi locks
a resource such that Ss requests a maximum critical section
execution time (Xs) just before its budget (Qs) expires.

4.2 Schedulability analysis

In this paper, we use HSRP [6] for resource synchroniza-
tion in HSF. Schedulability analysis under global and local
FPS with the overrun mechanism is presented in [6]. How-
ever, the presented approach is not suitable for open envi-
ronments because the schedulability analysis of an internal
task within a subsystem requires information of all the other
subsystems. Hence, this section presents the schedulability
analysis of local and global FPS using subsystem interfaces,
which is suitable for open environments.

Local schedulability analysis. Let rbfFP(i, t) denote
the request bound function of a task τi under FPS [13], i.e.,

rbfFP(i, t) = Ci +
∑

τk∈HP(i)

⌈ t

Tk

⌉
· Ck, (2)

The local schedulability analysis under FPS can be then
easily extended from the results of [2, 21] as follows:

∀τi, 0 < ∃t ≤ Di rbfFP(i, t) + bi ≤ sbf(t), (3)

where bi is the maximum blocking (i.e., extra CPU demand)
imposed to a task τi when τi is blocked by lower priority
tasks that are accessing resources with ceiling greater than
or equal to the priority of τi, and sbf(t) is the supply bound
function. Note that t ca be selected within a finite set of
scheduling points [16].

Subsystem interface. We now explain how to derive
the budget Qs of the subsystem interface. Given Ss, RCs,
and Ps, let calculateBudget(Ss, Ps,RCs) denote a func-
tion that calculates the smallest subsystem budget that sat-
isfies Eq. (3) depending on the local scheduler of Ss. Such

a function is similar to the one in [21]. Then, Qs =
calculateBudget(Ss, Ps,RCs).

Global schedulability analysis. Under global FPS
scheduling, we present the subsystem load bound function
as follows (on the basis of a similar reasoning of Eq. (2)):

LBFs(t) = RBFs(t) + Bs , where (4)

RBFs(t) = (Qs + Os(t)) +
∑

Sk∈HPS(s)

⌈
t

Pk

⌉
(Qk + Ok(t)), (5)

where Ok(t) = Xk and Os(t) = Xs for t ≥ 0. Let Bs

denote the maximum blocking (i.e., extra CPU demand)
imposed to a subsystem Ss, when it is blocked by lower-
priority subsystems,

Bs = max{Xj| Sj ∈ LPS(Ss)}, (6)

where LPS(Ss) = {Sj|j < s}.
A global schedulability condition under FPS is then

∀Ss, 0 < ∃t ≤ Ps LBFs(t) ≤ t (7)

System load. As a quantitative measure to represent
the minimum amount of processor allocations necessary to
guarantee the schedulability of a subsystem Ss, let us define
processor request bound (αs) as

αs = min
0<t≤Ps

{LBFs(t)
t

| LBFs(t) ≤ t}. (8)

In addition, let us define the system load loadsys of the sys-
tem under global FPS as follows:

loadsys = max
∀Ss∈S

{αs}. (9)

Note that αs is the smallest fraction of the CPU re-
sources that is required to schedule a subsystem Ss (satisfy-
ing Eq. (7)) assuming that the global resource supply func-
tion is αt. For example, consider a system S that consists
of two subsystems; S1 that has interface (10, 1, 0.5) and S2

(48, 1, 1). To guarantee the schedulability of S1 and S2 then
α1 = 0.25 and α2 = 0.198. Then loadsys = α1 = 0.25,
which can schedule both S1 and S2.

5 Problem formulation and solution outline

In this paper, we aim at maintaining the system load as
low as possible while satisfying the real-time requirements
of all subsystems in the presence of global resource shar-
ing. To achieve this, we address the problem of developing
the interfaces (Ps, Qs, Xs) of all subsystems Ss. In partic-
ular, assuming Ps is given, we focus on determing Qs and
Xs such that a resulting system load (loadsys) is minimized

4212212

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on September 16, 2009 at 01:26 from IEEE Xplore.  Restrictions apply. 



5

6

7

8

9

10

11

12

8 10 12 14 16 18 20Xs

Q
s

Figure 1. Tradeoff between Qs and Xs.

subject to the schedulability of all subsystems. It is sug-
gested from Eqs. (4) and (9) that loadsys can be minimized
by reducing Qs and Xs for all subsystem Ss.

A recent study [4] introduced a method to reduce Xi.
According to Eq. (1), the value of Xs can decrease, when
it has less interference (i.e., the summation part of Eq. (1))
from the tasks τk with priorities greater than the ceiling of
a resource Rj (i.e., k > rcj ). Such interference can be re-
duced by allowing fewer tasks to preempt inside the critical
section of Rj . As proposed by [4], the ceiling of Rj can be
increased to its greatest possible value in order to allow no
preemption inside the critical section. This way, Xs can be
minimized.

In this paper, we show that achieving the minimum Xs

of all subsystems Ss does not simply produce the minimum
system load, since minimizing Xs may end up with a larger
Qs. To explain why this happens, let us assume that for a
resource Rj , its ceiling rcj is i − 1. In this case, a task
τi can preempt any job that is executing inside the critical
section of Rj . Now, suppose rcj is increased to i. Then, τi

is no longer able to preempt any job that is accessing Rj ,
and it needs to be blocked. Then, the blocking (bi) of τi

can potentially increase, and, according to Eq. (3), this may
require more CPU supply (i.e., Qs). Figure 1 illustrates a
tradeoff between decreasing Xs and increasing Qs with an
example subsystem Ss, where Ss includes 7 internal tasks
and accesses 3 global resources. In the figure, each point
represents a possible pair of (Xs, Qs), and the line shows
the tradeoff.

In addition to such a tradeoff, there is another factor that
complicates the system load minimization problem further.
It is not straightforward to determine Qs and Xs of Ss such
that they contribute to loadsys in a minimal way. According
to Eq. (6), Xs can serve as the blocking of its higher-priority
subsystem Sk depending on the value of Xj of other lower-
priority subsystems Sj . Hence, it is impossible to determine
Xs and Qs in an optimal way, without knowledge of other
subsystems’ interfaces.

We consider a two-step approach to the system load min-

imization problem. In the first step, each subsystem gen-
erates a set of interface candidates independently (with no
information about other subsystems), which is suitable for
subsystems to be developed in open environments. The sec-
ond step is performed when subsystems are integrated to
form a system. During this integration of subsystems, be-
ing aware of all interface candidates of all subsystems, only
one out of all interface candidates for each subsystem is se-
lected (that will be used by the system-level scheduler later
on) such that a resulting system load can be minimized.

6 Interface candidate generation

We define the interface candidate generation problem as
follows. Given a subsystem Ss and a set of global resources,
the problem is to generate a set of interface candidates ICs

such that there must exist an element of ICs that constitutes
an optimal solution to the system load problem.

Suppose Ss contains n internal tasks that access m
global shared resources. Note that as explained in Section 5,
each global resource may have up to n different internal
resource ceilings, and one interface candidate can be gen-
erated from each combination of m resource ceilings. A
brute-force solution to the interface generation problem is
then to generate all possible mn interface candidates. How-
ever, not all of these mn candidates have the potential to
constitute the optimal solution; those that require more CPU
demand and impose greater blocking on other subsystems
can be considered as replicate candidates.

Hence, we present the ICG (Interface Candidate Genera-
tion) algorithm that is not only computationally efficient,
but also produces a bounded number of interface candi-
dates. We first provide some notions and properties on
which our algorithm is based. We then explain our algo-
rithm and illustrate it. Hereinafter, we assume that Ps is
given by the system designer and is fixed during the whole
process of generating a set of interface candidates. There-
fore an interface candidate can be denoted as (Qs,j , Xs,j)
where j indicates interface candidate index.

Definition 1 An interface candidate (Qs,k, Xs,k) is said to
be redundant if there exists (Qs,i, Xs,i) such that Xs,i ≤
Xs,k and Qs,i ≤ Qs,k, where k < i (denoted as
(Qs,i, Xs,i) ≤ (Qs,k, Xs,k)). In addition, (Qs,i, Xs,i) is
said to be non-redundant if it is not redundant.

Suppose (Q′
s, X

′
s) ≤ (Q∗

s, X
∗
s ). Then, the former can-

didate will never yield a larger RBFs(t) than the latter does.
This immediately follows from Eqs. (4) and (5). That is,
a subsystem Ss will never impose more CPU requirement
to the system load with (Q′

s, X
′
s) than with (Q∗

s, X
∗
s ). The

following lemma records this property.

Lemma 1 If (Q′
s, X

′
s) ≤ (Q∗

s , X
∗
s ), (Q′

s, X
′
s) will never

contribute more to loadsys than (Q∗
s, X

∗
s ) does.

5213213

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on September 16, 2009 at 01:26 from IEEE Xplore.  Restrictions apply. 



Proof Suppose an interface candidate (Qs,a, Xs,a) is re-
dundant. By definition, there exists another candidate
(Qs,b, Xs,b) such that

• Xs,b ≤ Xs,a and Qs,b ≤ Qs,a. So (Qs,b + Xs,b) <=
(Qs,a + Xs,a). Using a redundant interface candi-
date will never decrease RBFs(t) (see Eq. (5)) and
the blocking Bs, respectively, compared to a non-
redundant candidate. It means that using a redundant
candidate can increases LBFs(t) and thereby loads

(see Eq. (8)). That is, a redundant candidate only has
a potential to increase loadsys (see Eq. (9)).

• both interfaces are equivalent then system load for both
is the same.

�

Lemma 1 suggests that redundant candidates be ex-
cluded from a solution, and it reduces the number of in-
terface candidates significantly. However, a brute-force
approach to reduce redundant candidates is still computa-
tionally intractable, since the complexity of an exhaustive
search is very high O(mn). We now present important
properties that serve as the basis for the development of a
computationally efficient algorithm.

In order to discuss some subtle properties in detail, let us
further refine some of our notations with additional parame-
ters. Firstly, the maximum blocking (bi) imposed to a task τi

can vary depending on which resource τi accesses. Hence,
let bi,j denote the maximum blocking that a task with prior-
ity higher than i can experience in accessing a resource Rj ,
i.e., bi,j = max{ck,j} for all τk ≤ τi. Secondly, the max-
imum CPU demand (wj) imposed to any task accessing a
resource Rj can also be different depending on the internal
ceiling (rcj ) of Rj . So let wj,k particularly represent wj

when rcj = k.
The following two lemmas show the properties of redun-

dant interfaces, suggesting insights for how to effectively
exclude them.

Lemma 2 Let Ri denote a set of resources whose resource
ceilings are i. Suppose a resource Rk ∈ Ri yields the great-
est blocking among all the elements of Ri. Then, it is the
resource Rk that requires the greatest CPU demand to com-
plete any task’s execution inside a critical section among all
elements of Ri, i.e.,(

bi,k = max
∀Rj∈Ri

{bi,j}
)
→

(
wk,i = max

∀Rj∈Ri
{wj,i}

)
. (10)

Proof The wj,i depends on two parameters (see Eq. (1));
cxj , which is equal to (bi,j) since rcj = i, and the interfer-
ence from tasks with higher priority (the summation part de-
noted as I). Note that I in invariant to difference resources
Rj ∈ Ri, since it considers only the tasks with priority
greater than i in the summation. Then, it is clear that wj,i

depends only on bi,j , and it follows that the resource with
the maximum bi,j , will be consequently associated with the
maximum wi,j . �

Using Lemma 2, the following lemma particularly shows
how we can effectively exclude redundant candidates.

Lemma 3 Consider a resource Ry of a ceiling k (rcy = k)
and another resource Rz of a ceiling i (rcz = i), where k <
i. Suppose bk,y < bk,z and rcy < rcz . Then, an interface
candidate generated by having the ceiling rcy = k + 1, .., i
is redundant. Hence it is possible to increase the ceiling of
Ry to that of Rz directly (i.e., rcy = rcz = i).

Proof Let (Q′, X ′) denote an interface candidate generated
when rcy = k and rcz = i, where k < i. Let (Q∗, X∗)
denote another interface candidate generated when rcy =
rcz = i. We wish to show that (Q∗, X∗) ≤ (Q′, X ′), i.e.,
Q∗ ≤ Q′ and X∗ ≤ X ′.

Given bi,y < bi,z , it follows from Lemma 2 that wy,i <
wz,i. This means that even though the ceiling of Ry in-
creases to i, it does not change the maximum blocking (bi)
of tasks τi. Therefore, it does not change the request bound
function either. As a result, Q∗ = Q′.

We wish to show that X∗ ≤ X ′. When the ceiling
of Ry increases to i from k, its resulting wy,i becomes
smaller than wk

y because there will be less interference from
higher priority tasks, (i.e., wy,i < wy,k). In fact, this is
the only change that occurs to the subsystem critical section
execution time of all shared resources when rcy increases.
Hence, the maximum subsystem critical section execution
time X can remain the same (if wy,k < X ′) or decrease (if
wy,k = X ′) after rcy increases. That is, X∗ ≤ X ′. �

6.1 ICG algorithm

Description. Using Lemmas 1, 2, and 3, we can re-
duce the complexity of a search algorithm. The algorithm
shown in Figure 2 is based on these lemmas. In the be-
ginning (at line 1), each resource ceiling rcj is set to its
initial ceiling value according to SRP (without applying the
technique in [4]). The algorithm then generates an interface
candidate (Q∗, X∗) based on the current resource ceilings
(line 4 and 5). This new interface candidate is added into
a list (line 6). Such addition can make some candidate re-
dundant according to Lemma 1, and those redundant can-
didates are removed (line 7). Let R∗ denote the resource
that determines X∗ in line 5, and v∗ denote the value of the
ceiling (rc∗) of R∗ at that moment. In line 8, the algorithm
1) increases the ceiling rc∗ by one 2) checks the conditions
given in Lemma 3 to further increase rc∗ if possible, and
3) increases the ceiling of all other resources that have the
same ceiling as v∗+1, to the current value of rc∗. This way,
we can further reduce redundant interface candidates.

6214214

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on September 16, 2009 at 01:26 from IEEE Xplore.  Restrictions apply. 



- calculateBudget(Ss, Ps,RCs) returns the smallest subsy-
stem budget that satisfies Eq. (2).

- increaseCeilingX∗(RCs) returns whether or not the ceil-
ing of the resource associated with X∗ can be increased
by one. If so, it increases the ceiling of the selected
resource as well as the ceiling of all resources that have
the same ceiling as the selected resource (Lemma 3).

- Interface is an array of interface candidates; each candidate
is (Q, X , RC).

- addInterface(Interface, Q∗, X∗,RCs) adds new
interface in the interface list array.

- removeRedundant(Interface) removes all redundant
interfaces from the interface list.

1: RCs = {rc1, · · · , rcm} // rcj=initial ceiling of Rj using SRP
2: num = 0
3: do
4: Q∗ = calculateBudget(Ss, Ps,RCs)
5: X∗ = max{w1,rc1 , · · · , wm,rcm)}
6: addInterface(Interface, Q∗, X∗,RCs)
7: num=removeRedundant(Interface)
8: while (increaseCeilingX∗(RCs))
9: return (Interface, num)

Figure 2. The ICG algorithm.

T Ci Ti Rj ci,j T Ci Ti Rj ci,j

τ1 8 750 R2 4 τ2 50 650 R1 5
τ3 10 600 - 0 τ4 35 500 R1 10
τ5 1 160 - 0 τ6 2 150 - 0

Table 1. Example task set parameters

Example. We illustrate the ICG algorithm with the fol-
lowing example. Consider a subsystem Ss that has six tasks
as shown in Table 1. The local scheduler for the subsys-
tem Ss is Rate-Monotonic (RM) and we choose subsystem
period Ps = 125. The algorithm works as shown in Ta-
ble 2. The results from step 1 are (Qs,1 = 51, Xs,1 = 102),
at step 2 (Qs,1, Xs,1) > (Qs,2, Xs,2). So (Qs,1, Xs,1) is
redundant (see Definition 1). That is, this interface can
be removed according to Lemma 1. For the same reason,
(Qs,2, Xs,2) can be removed after step 3. At step 3, the
rc2 is increased directly to 4 according to Lemma 3 since
rc1 > rc2 and b2,1 > b2,2. At both steps 4 and 5, the ceiling
rc1 is increased by one since Xs,i = w1 but we increase the
ceiling of rc2 according to Lemma 3. The algorithm selects
the interface candidates from steps 3, 4 and 5.

Correctness. The following lemma proves the correct-
ness of the ICG algorithm.

Step rc1 rc2 w1 w2 Qs,i Xs,i

1 4 1 13 102 51 102
2 4 2 13 52 51 52
3 4 4 13 7 51 13
4 5 5 12 6 52.5 12
5 6 6 10 4 56 10

Table 2. Example algorithm

Lemma 4 Let IC denote a set of up to n interface can-
didates that are generated by the ICG algorithm of Fig-
ure 2. There exists no non-redundant interface candidate
(Qs,y, Xs,y) such that (Qs,y, Xs,y) ∈ IC.

Proof Assume that (Qs,y, Xs,y) is a non-redundant inter-
face candidate and that Xs,y = wk,i, i.e., the subsystem
critical section execution time of Rk is the maximum among
all global shared resources when rck = i. Then we shall
prove that

1. There is no Rj such that bi,j > bi,k for all rcj > i.
Otherwise we could change the ceiling rck = rcj ac-
cording to Lemma 3, and by this wk,i = Xs,y .

2. There is no Rj such that bt,j > bi,k for all rcj < i, t <
i. Otherwise wj,t > wk,i because when we compute
the wk and wj , the interference from higher priority
tasks as well as blocking is higher for Rj , and then
wk,i = Xs,y . If we increase the ceiling rcj = i, it will
not give other non-redundant interface candidates (see
Lemma 2 and 3).

We can conclude that there is only one resource Rk that
may generate a non-redundant interface at resource ceiling
i, and this is the one that imposes the highest blocking at
that level. The initial ceiling of Rk is v, where v ∈ [1, i].
From Lemma 2, bf,k (where f ∈ [v, i]) is the maximum
blocking at resource ceiling rck ∈ [v, i]. Since the pre-
sented algorithm increases the ceiling of the global resource
that generate the maximum subsystem critical section exe-
cution time, it will increase the ceiling of Rk when rck = v
up to i. Hence, we can guarantee that the algorithm will
include the interface when Xs,y = wk,i. �

The proof of the previous property also shows that the
complexity of the proposed algorithm is O(n) since we
have n tasks (which equals to the number of possible re-
source ceilings) and there is either 0 or 1 non-redundant in-
terface for each resource ceiling level, and the algorithm
will only traverse these non-redundant interfaces. More-
over, the proposed algorithm thereby produce at most n in-
terface candidates.

Post-processing. The ICG algorithm generates non-
redundant interface candidates on the basis of Lemma 1.
The notion of redundant candidate is so general that the
ICG algorithm can be applicable to many synchronization

7215215

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on September 16, 2009 at 01:26 from IEEE Xplore.  Restrictions apply. 



protocols. In some cases, however, a set of interface candi-
dates can be further refined, for instance, when the overrun
mechanism described in Section 4.1 is used. Consider two
candidates (Q′

s, X
′
s) and (Q∗

s, X
∗
s ) such that Q′

s + X ′
s <=

Q∗
s + X∗

s and X ′
s <= X∗

s . Then, (Q′
s, X

′
s) will never pro-

duce not only a larger RBFs(t) for the subsystem Ss itself,
but also a larger blocking Bj for other subsystems Sj , than
(Q∗

s, X
∗
s ) does. This immediately follows from Eqs. (4)-

(6). Then, the following lemma directly follows:

Lemma 5 Consider two candidates (Q′
s, X

′
s) and

(Q∗
s, X

∗
s ) such that Q′

s + X ′
s <= Q∗

s + X∗
s and

X ′
s <= X∗

s . Then, (Q′
s, X

′
s) will never impose more CPU

requirement to loadsys in any way than (Q∗
s, X

∗
s ) does.

Proof Looking at Eq. (4), we can decrease LBFs(t) to de-
crease the system load by decreasing the blocking Bs and/or
RBFs(t). For the blocking, using the interface Qs,i, Xs,i

may increase the blocking on the higher priority subsystems
because Xs,i > Xs,j . For RBFs(t), it will be increased if we
use Qs,i, Xs,i because (Qs,i + Xs,i) > (Qs,j + Xs,j) see
Eq. (5). For this we can conclude that we can remove the
interface (Qs,i, Xs,i) since it will not reduce the system load
compared with the other interfaces. �

According to Lemma 5, a set of interface candidates
generated by the ICG algorithm goes through its post-
processing for further refinement, and this is very useful for
the second step of our approach.

7 Interface selection

In this section, we consider a problem, called the optimal
interface selection problem, that selects a system configu-
ration consisting of a set of subsystem interfaces, one from
each subsystem that together minimize the system load sub-
ject to the schedulability of system. We present the ICS (In-
terface Candidate Selection) algorithm, an algorithm that
finds an optimal solution to this problem through a finite
number of iterative steps.

7.1 Description of the ICS algorithm

The ICS algorithm assumes that each set of interface
candidates (Qs, Xs) is sorted in a decreasing order of Xs.
In other words, each set is sorted in an increasing order of
collective demands (Qs + Xs) (see Lemma 5). Then, the
first candidate (Qs,1, Xs,1) has the largest critical section
execution time but the smallest collective demands.

The ICS algorithm generates a finite number of system
configurations through iteration steps. Each configuration
is a set of individual interface candidates of all subsys-
tems. Let CFi denote a configuration that ICS generates
at an i-th iteration step. For notational convenience, we

1, 1, 1

1, 1, 21, 2, 12, 1, 1

2, 1, 21, 2, 22, 2, 13, 1, 1

2, 2, 23, 2, 13, 1, 2

3, 2, 2

1, 1, 1

1, 1, 21, 2, 12, 1, 1

2, 1, 21, 2, 22, 2, 13, 1, 1

2, 2, 23, 2, 13, 1, 2

3, 2, 2

Figure 3. Search space for a system consist-
ing of 3 subsystems.

introduce a variable f i
k to denote an element of CFi, i.e.,

CFi = {f i
1, . . . , f

i
N}. The variable f i

k represents the inter-
face candidate index of a subsystem Sk, indicating that the
configuration in the i-th step includes (Qk,f i

k
, Xk,f i

k
).

Figure 3 shows an example to illustrate the ICS algo-
rithm, where the system contains 3 subsystems such that
subsystem S1 has 3 interface candidates, and two other sub-
systems S2 and S3 have 2 candidates, respectively. Each
node in the graph represents a possible configuration, and
each number in the node corresponds to an interface candi-
date index in the order of S1, S2, and S3. The arrows show
the possible transitions between nodes at i-th iteration step,
by increasing f i

k by 1 for each subsystem Sk one by one.
We describe the ICS algorithm with this example.

Initialization. In the beginning, this algorithm generates
an initial configuration CF0 such that it consists of the first
interface candidates of all subsystems. In Figure 3, CF0 =
{1, 1, 1} (see line 2 of Figure 4).

Iteration step. The ICS algorithm transits from (i − 1)-
th step to i-th step, increasing only one element of CFi−1

in value by one. In Figure 3, the arrows with bold lines il-
lustrate the path that ICS can take. For instance, ICS moves
from the initialization step (CF0 = {1, 1, 1}) to the first
step (CF1 = {2, 1, 1}). Then, the ICS algorithm excludes
the two sibling nodes of CF1 in the figure (i.e., {1, 2, 1} and
{1, 1, 2}) from the remaining search space; the algorithm
will never visit those nodes from this step on. This way,
ICS can efficiently explore the search space. Let us describe
how ICS behaves at each iteration step more formally.

Firstly, let δi denote the only single element whose value
increases by one between CFi−1 and CFi, i.e.,

f i
k =

{
f i−1

k + 1 if k = δi,

f i−1
k otherwise.

(11)

8216216

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on September 16, 2009 at 01:26 from IEEE Xplore.  Restrictions apply. 



In the example shown in Figure 3, δ1 = 1.
Let us explain how to determine δi at an i-th step. We can

potentially increase every elements of CFi−1, and thereby
we have at most N candidates for the value of δi. Here, we
choose one out of at most N candidates such that a resulting
CFi can cause the system load to be minimized.

Let loadsys(i) denote the value of loadsys when a config-
uration CFi is used as a system interface. We are now inter-
ested in reducing the value of loadsys(i − 1). Let s∗ denote
the subsystem Ss∗ that has the largest processor request
bound among all subsystems. That is, loadsys(i − 1) = αs∗

(see Eq. (9)). We can find such Ss∗ by evaluating the pro-
cessor request bound’s of all subsystems (in line 5 of Fig-
ure 4).

By the definition of s∗, we can reduce the value of
loadsys(i− 1) by reducing the value of LBFs∗(t). There are
two potential ways to reduce the value of LBFs∗(t). From
the definition of LBFs(t) in Eq. (4), one is to reduce its max-
imum blocking Bs∗ and the other is to reduce the subsystem
CPU demands (RBFs∗(t)). A key aspect of this algorithm is
that it always reduces the blocking part, but does not reduce
the request bound function part. An intuition behind is as
follows: this algorithm starts from the interface candidates
that have the smallest demands but the largest subsystem
critical section execution times, respectively. Hence, for
each interface candidate, there is no room to further reduce
its demand. However, there is a chance to reduce the maxi-
mum blocking Bs∗ of Ss∗ . It can be reduced by decreasing
the Xk∗ of a subsystem Sk∗ that imposes the largest block-
ing to the subsystem Ss∗ . We define k∗ in a more detail.

Let k∗ denote the subsystem sk∗ that imposes the largest
blocking to the subsystem Ss∗ , i.e., Bs∗ = Xk∗ =
max{Xj | for allXs ∈ LPS(s∗)}3, where LPS(i) is a set
of lower-priority subsystems of Ss∗ . We can find such Sk∗

easily by looking at the subsystem critical section execu-
tion times of all lower-priority subsystems of Ss∗ (in line 6
of Figure 4).

When such Sk∗ is found, it then checks whether the Xk∗

can be further reduced (in line 7 of Figure 4). If so, it is
reduced (in line 8), and CFi−1 becomes to CFi (in line 9).
That is, δi = k∗.

Iteration termination. The above iteration process ter-
minates when the blocking Bs∗ of subsystem Ss∗ cannot be
reduced further. The algorithm then finds the smallest value
of loadsys out of the values saved during the iteration, and
it returns a set of interfaces corresponding to the smallest
value.

Complexity of the algorithm. During an i-th iteration,
the algorithm only increases the interface candidate index of
a subsystem Sδi . Then, it can repeat O(N ∗ m′) iterations,
where N is the number of subsystems and m′ is the greatest
number of interface candidates of a subsystem among all.

3If more than one lower priority subsystem impose the same maximum
blocking on Ss∗, then we select the one with lowest priority.

- ICs is an array of interface candidates of subsystem Ss,
sorted in a decreasing order of Xs.

- icis is an index to ICs of subsystem Ss.
- I is a set of interfaces {Is}, each of which indicated by icis.
- subsystemWithMaxLoad() returns the subsystem Ss∗

that has the greatest processor request bound among
all subsystems, i.e., loadsys = αs∗ .

- maxBlockingSubsystemToSysload(s∗) returns a subsystem
Sk∗ that produces the greatest blocking to a subsystem Ss∗ .
Note that Ss∗ determines the system load.

1: for all Ss ∈ S
2: icis = 1; Is = ICs[icis]
3: load∗sys = 1.0; I∗ = I
4: do
5: s∗ = subsystemWithMaxLoad()
6: k∗ = maxBlockingSubsystemToSysload(s∗)
7: if (icik∗ can increase by one)
8: icik∗ = icik∗ + 1
9: Ik∗ = ICk∗ [icik∗ ]
10: compute loadsys according to Eq. (9)
11: if (loadsys < load∗sys)
12: load∗sys = loadsys

13: I∗ = I
14: else
15: return I∗ (that determines load∗sys)
16: until (true)

Figure 4. The ICS algorithm.

7.2 Correctness of the ICS algorithm

In this section, we show that the ICS algorithm produces
a set of system configurations that contains an optimal so-
lution. We first present notations that are useful to prove the
correctness of the algorithm.

• AS We consider the entire search space of the optimal
interface selection problem. It contains all possible subsys-
tem interfaces comprising a system configuration, and let
AS denote it, i.e.,

AS = IC1 × · · · × ICn. (12)

In the example shown in Figure 3, the entire solution space
(AS) has 12 elements.

We present some notations to denote the properties of the
ICS algorithm at an arbitrary i-th iteration step.

• ÎC
i

k In the beginning, the ICS algorithm has the en-
tire search space (AS) to explore. Basically, this algorithm
gradually reduces a remaining search space to explore dur-

9217217

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on September 16, 2009 at 01:26 from IEEE Xplore.  Restrictions apply. 



ing iteration. For notation convenience, we introduce a vari-

able (ÎC
i

k) to indicate the remaining interface candidates
of a subsystem Sk to explore. By definition, f i

k indicates
which interface candidate of a subsystem Sk is selected by
CFi. This algorithm continues exploration from the inter-
face candidate indicated by f i

k from the end of an i-th step.

Then, ÎC
i

k is defined as

ÎC
i

k = {f i
k, . . . , maxk} for all k = 1, . . . , n, (13)

where maxk is the number of interface. In the example

shown in Figure 3, ÎC
1

1 = {2, 3}.
• XPi Let us define XPi to denote the search space re-

maining to explore after the end of an i-th iteration step.
Note that such a remaining search space does not have to
include the solution candidate CFi chosen at the i-th step.
Then, XPi is defined as

XPi = (ÎC
i

1 × · · · × ÎC
i

n) \ CFi. (14)

• RMi In essence, the ICS algorithm gradually decreases
a remaining search space during iteration. That is, at an i-th
step, it keeps reducing XPi−1 to XPi, where XPi ⊂ XPi−1.
Let RMi denote a set of interface settings that is excluded
from XPi−1 at the i-th step. Note that at the i-th step, the
interface candidate of a subsystem Sδi changes from f i−1

δi

to f i
δi

. Then, a subset of XPi that contains the value of f i−1
δi

,
is excluded at the i-th step. RMi is defined as

RMi = (ÎC
(i−1)∗
1 × · · · × ÎC

(i−1)∗
n ) \ {CFi−1}, where (15)

ÎC
(i−1)∗
k =

{
{f i−1

k } if k = δi,

ÎC
i

k otherwise.
(16)

In the example shown in Figure 3, RM1 =
{{1, 2, 1}, {1, 2, 2}, {1, 1, 2}}.

• AHi Let AHi represent a set of system configurations
that the ICS algorithm selects from the first step through to
an i-th step, i.e.,

AHi = {CF1, . . . , CFi}. (17)

• ARi Let ARi represent a set of interface candidates that
the ICS algorithm excludes from the first step through to an
i-th step, i.e.,

ARi = RM(i−1) ∪ RMi, where AR0 = φ. (18)

We define partial ordering between interface candidates
as follows:

Definition 2 A interface candidate sc = {c1, . . . , cn} is
said to be strictly precedent of another interface candidate
sc′ = {c′1, . . . , c′n} (denoted as sc ≺ sc′) if cj < c′j for
some j and ck ≤ c′k for all k, where 1 ≤ (j, k) ≤ n.

As an example, {1, 1, 1} ≺ {1, 2, 1}.
The following lemma states that when the algorithm ex-

cludes a set of interface candidates from further exploration
at an arbitrary i-th step, a set of such excluded interface
candidates does not contain an optimal solution.

Lemma 6 At an arbitrary i-th iteration step, the ICS al-
gorithm excludes a set of interface candidates (RMi), and
any excluded solution candidate r ∈ RMi does not yield a
smaller system load than that by CFi−1.

Proof As explained in Section 7.1, there are two potential
ways to reduce the value of loadsys(CFi−1) at the i-th step.
One is to reduce the CPU resource demand of the subsystem
Ss∗

i
(i.e., RBFs∗i (t)), and the other is to reduce its maximum

blocking Bs∗
i
.

Firstly, we wish to show that RBFs∗i (t) does not de-
crease when we transform CFi−1 to any interface candidate
r ∈ RMi. Note that each interface candidate set is sorted
in an increasing order of resource requirement budget (Q).
One can easily see that CFi−1 ≺ r. Then, it follows that
RBFs∗i (t) never decreases when CFi−1 changes to r.

Secondly, we wish to show that when we change CFi−1

to any interface candidate r ∈ RMi, Bs∗
i

does not decrease.
As shown in line 6 in Figure 4, the ICS algorithm finds the
subsystem Sδi that generates the maximum blocking to for
subsystem Ss∗

i
. Then, the algorithm increases f i−1

δi
by one,

if possible, to decrease Bs∗
i
. However, by definition, for all

elements r of RMi, the element for the subsystem Sδi has
the value of f i−1

δi
, rather than the value of f i

δi
. This means

that Bs∗
i

never decreases when we change CFi−1 to r. �

The following lemma states that when the algorithm ter-
minates at an arbitrary f -th step, a set of remaining interface
candidates does not contain an optimal solution.

Lemma 7 When the ICS algorithm terminates at an arbi-
trary f -th step, any remaining interface candidate (xp ∈
XPf ) does not yield a smaller system load than CFf does.

Proof As explained in the proof of lemma 6, there are two
ways to reduce loadsys (i.e., LBFs∗f (t)).

One is to reduce RBFs∗f (t) in Eq. (5) . However, it does
not decrease, since CFf ≺ xp for all xp ∈ XPf .

The other is to reduce the maximum blocking (Bs∗
f
). In

fact, the ICS algorithm terminates at the f -th step because
there is no way to decrease Bs∗

f
. That is, Bf does not de-

crease when CFf changes to any xp. �

The following lemma states that at i-th step, the remain-
ing search space to explore decreases by (RMi ∪ {CFi}).

Lemma 8 At an arbitrary i-th iteration step,

XPi = XPi−1 \ (RMi ∪ {CFi}). (19)

10218218

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on September 16, 2009 at 01:26 from IEEE Xplore.  Restrictions apply. 



Proof The ICS algorithm transforms CFi−1 to CFi at an i-
th step by increasing the value of its δi-th element. Then,
we have

ÎC
i

k =

{
ÎC

i−1

k \ {f i−1
k } if k = δi,

ÎC
i−1

k otherwise.
(20)

Without loss of generality, we assume that δi = 1. For
notational convenience, let XP∗

i = XPi ∪ {CFi}, and
RM∗

i = RMi ∪ {CFi}. Then, we have

XP∗
i = ÎC

i

1 × ÎC
i

2 × · · · × ÎC
i

n

=
(
ÎC

i−1

1 \ {f i−1
1 }

)
× ÎC

i

2 × · · · × ÎC
i

n

=
(
ÎC

i−1

1 × ÎC
i−1

2 × · · · × ÎC
i−1

n

)
\(

{f i−1
1 } × ÎC

i

2 × · · · × ÎC
i

n

)
= XP∗

i−1 \ RM∗
i

=
(
XPi−1 ∪ {CFi−1}

)
\

(
RMi ∪ {CFi−1}

)
= XPi−1 \ RMi . (21)

That is, considering XP ∗
i = XPi ∪ {CFi}, it follows

XPi = XPi−1 \ (RMi ∪ {CFi}) . (22)

�

The following lemma states that at any i-th iteration step,
the entire search space can be divided into a set of explored
candidates (AHi), a set of excluded candidates (ARi), and a
set of remaining candidates to explore (XPi).

Lemma 9 At an arbitrary i-th step, the sets of ARi, AHi,
and XPi include all possible interface candidates.

ARi ∪ AHi ∪ XPi = AS (23)

Proof We will prove this lemma by using mathematical in-
duction. As a base step, we wish to show Eq. (23) is true,
when i = 1. Note that AR0 = φ and AH0 = {CF0}. In ad-
dition, XP0 = AS \ CF0, according to Eq. (14). It follows
that AR0 ∪ AH0 ∪ XP0 = AP .

We assume that Eq. (23) is true at the i-th iteration step
of the ICS algorithm. We then wish to prove that it also
holds at the (i + 1)-th step, i.e.,

ARi ∪ AHi ∪ XPi = ARi+1 ∪ AHi+1 ∪ XPi+1. (24)

According to the definitions AHi+1, ARi+1, and XPi+1

(see Eq. (17), (18) and (19)), we can rewrite the right-hand
side of Eq. (24) as follows:

ARi+1 ∪ AHi+1 ∪ XPi+1

=
(
ARi ∪ RMi+1

)
∪

(
AHi ∪ {CFi+1}

)
∪(

XPi \ (RMi+1 ∪ {CFi+1})
)

= ARi ∪ AHi ∪ XPi .�

The following theorem states that the ICS algorithm pro-
duces a set of system configurations, which must contain
an optimal solution.

Theorem 10 When the ICS algorithm terminates at the f -
th step, a set of system configurations (AHf ) includes an
optimal solution.

Proof Let opt denote an optimal solution. We prove this
theorem by contradiction, i.e., by showing that opt ∈ ARf

and opt ∈ XPf .

Suppose opt ∈ ARf . Then, by definition, there should
exist RMi such that opt ∈ RMi for an arbitrary i ≤ f . Ac-
cording to Lemma 6, loadsys(CFi−1) < loadsys(opt), which
contradicts the definition of opt. Hence, opt ∈ ARf .

Suppose opt ∈ XPf . Then, according to Lemma 7, it
should be loadsys(CFf ) < loadsys(opt), which contradicts
the definition of opt as well. Hence, opt ∈ ARf .

According to Lemma 9, it follows that opt ∈ CFf . �

8 Conclusion

When subsystems share logical resources in a hierarchi-
cal scheduling framework, they can block each other. In
particular, when a budget expiry problem exists, such block-
ing can impose extra CPU demands. However, simply re-
ducing the blocking of subsystems does not monotonically
decrease the system load, since imposing less blocking to
other subsystems can impose more CPU requirements of the
subsystems themselves. This paper introduced such a trade-
off and presented a two-step approach to explore the intra-
and inter-subsystem aspects of the tradeoff efficiently, to-
wards determining optimal subsystem interfaces constitut-
ing the minimum system load.

In this paper, we considered only fixed-priority schedul-
ing, and we plan to extend our framework to EDF schedul-
ing. Furthermore, our future work includes generalizing
our framework to other synchronization protocols. For ex-
ample, this paper considered only the overrun mechanism
without payback [6], and we are extending towards another
overrun mechanism (with-payback version) [6]. Unlike
with the former overrun mechanism, the intra- and inter-
subsystem aspects of the tradeoff are not clearly separated
with the latter mechanism. The latter mechanism changes
the way of a subsystem’s own contributing to the system
load (i.e., Eq. (5)), and this requires appropriate changes
to the post-processing part of the ICG algorithm. We re-
fer interested readers to our technical report [20] for more
details. We are investigating how to make changes to the
post-processing part in ways that require less subsequent
changes to the ICS algorithm.

11219219

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on September 16, 2009 at 01:26 from IEEE Xplore.  Restrictions apply. 



References

[1] L. Almeida and P. Pedreiras. Scheduling within temporal
partitions: response-time analysis and server design. In EM-
SOFT ’04, 2004.

[2] T. P. Baker. Stack-based scheduling of realtime processes.
Real-Time Systems, 3(1):67–99, March 1991.

[3] M. Behnam, I. Shin, T. Nolte, and M. Nolin. Sirap: A
synchronization protocol for hierarchical resource sharing in
real-time open systems. In EMSOFT’07, 2007.

[4] M. Bertogna, N. Fisher, and S. Baruah. Static-priority
scheduling and resource hold times. In WPDRTS, 2007.

[5] R. I. Davis and A. Burns. Hierarchical fixed priority pre-
emptive scheduling. In RTSS, 2005.

[6] R. I. Davis and A. Burns. Resource sharing in hierarchical
fixed priority pre-emptive systems. In RTSS, 2005.

[7] Z. Deng and J. W.-S. Liu. Scheduling real-time applications
in an open environment. In RTSS ’97, 1997.

[8] A. Easwaran, M. Anand, and I. Lee. Compositional analysis
framework using edp resource models. In RTSS, 2007.

[9] A. Easwaran, I. Shin, O. Sokolsky, and I. Lee. Incremen-
tal schedulability analysis of hieararchical real-time compo-
nents. In EMSOFT’06.

[10] X. A. Feng and A. K. Mok. A model of hierarchical real-
time virtual resources. In RTSS, 2002.

[11] N. Fisher, M. Bertogna, and S. Baruah. The design of an
edf-scheduled resource-sharing open environment. In RTSS,
2007.

[12] T.-W. Kuo and C.-H. Li. A fixed-priority-driven open envi-
ronment for real-time applications. In RTSS, 1999.

[13] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: exact characterization and average
case behavior. In RTSS, 1989.

[14] G. Lipari and S. Baruah. Efficient scheduling of real-time
multi-task applications in dynamic systems. In RTAS, 2000.

[15] G. Lipari and E. Bini. Resource partitioning among real-
time applications. In ECRTS, 2003.

[16] G. Lipari and E. Bini. A methodology for designing hierar-
chical scheduling systems. J. Embedded Comput., 2005.

[17] A. Mok, X. Feng, and D. Chen. Resource partition for real-
time systems. In RTAS ’01, 2001.

[18] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchro-
nization protocols for multiprocessors. In RTSS, 1988.

[19] L. Sha, J. P. Lehoczky, and R. Rajkumar. Task scheduling in
distributed real-time systems. In IECON87, 1987.

[20] I. Shin, M. Behnam, T. Nolte, and M. Nolin. On
optimal hierarchical resource sharing in open envi-
ronments. Technical report, 2008. Available at
http://www.idt.mdh.se/∼tnt/rtss08long.pdf.

[21] I. Shin and I. Lee. Periodic resource model for composi-
tional real-time guarantees. In RTSS ’03, 2003.

[22] I. Shin and I. Lee. Compositional real-time scheduling
framework. In RTSS ’04, 2004.

[23] I. Shin and I. Lee. Compositional real-time scheduling
framework with periodic model. ACM Transactions on Em-
bedded Computing Systems, 7(3):(30)1–39, April 2008.

[24] F. Zhang and A. Burns. Analysis of hierarchical edf pre-
emptive scheduling. In RTSS, 2007.

12220220

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on September 16, 2009 at 01:26 from IEEE Xplore.  Restrictions apply. 


