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ABSTRACT
The rapid growth of the Internet of Things (IoT) in shared spaces
has led to an increasing demand for sharing IoT devices among mul-
tiple users. Yet, existing IoT platforms often fall short by offering an
all-or-nothing approach to access control, not only posing security
risks but also inhibiting the growth of the shared IoT ecosystem.
This paper introduces FLUID-IoT, a framework that enables flexible
and granular multi-user access control, even down to the User Inter-
face (UI) component level. Leveraging a multi-user UI distribution
technique, FLUID-IoT transforms existing IoT apps into centralized
hubs that selectively distribute UI components to users based on
their permission levels. Our performance evaluation, encompassing
coverage, latency, and memory consumption, affirm that FLUID-IoT
can be seamlessly integrated with existing IoT platforms and offers
adequate performance for daily IoT scenarios. An in-lab user study
further supports that the framework is intuitive and user-friendly,
requiring minimal training for efficient utilization.

CCS CONCEPTS
• Security and privacy → Domain-specific security and privacy
architectures; • Human-centered computing → User interface
management systems.
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1 INTRODUCTION
The Internet of Things (IoT) has experienced rapid growth in recent
years, with numerous devices being integrated into homes [5],
workplaces [26], and various other multi-user domains [48]. As
IoT devices become increasingly prevalent in various multi-user
settings, sharing control of these devices with others has become
a common occurrence [20, 46]. Accordingly, IoT platforms such
as Samsung SmartThings, Google Home, and Amazon Alexa have
developed features that enable users to invite others to access and
manage their IoT devices within a shared environment [21, 35, 38].

However, while such features facilitate the easy sharing of IoT
control, they lack sophisticated access control measures such as
allowing guests to control only the light bulbs in their room or re-
stricting access to the smart camera in the host’s bedroom—raising
privacy concerns [30] and making individuals hesitant to share
their IoT devices with others [24, 46]. For example, an invitation
to a Google Home setup grants guests control over all connected
devices, even allowing them to view logs and change settings.

Prior work has attempted to enhance IoT access control by al-
tering existing applications [40, 41] or creating new systems alto-
gether [7, 51]. However, as these approaches require significant
modifications to the conventional IoT stacks, most of them are
limited to proposing conceptual interfaces or simulation results.
Furthermore, previous studies generally concentrate on regulating
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Figure 1: Comparison between the conventional IoT system and FLUID-IoT system: (a) The conventional IoT system provides
All-or-nothing access control where all three users (parents, children, guest) see the same control interfaces. (b) In contrast,
FLUID-IoT provides fine-grained access control over individual functionalities of a device where each user can be allocated with
different set of control interfaces. FLUID-IoT’s advantage is in its flexibility where various arbitrary access control mechanisms
could be easily implemented on existing IoT Platforms.

access to the device as a whole, overlooking the need and potential
for finer-grained access control at the level of individual function-
alities within each IoT device (think of power control, temperature
control, fan control, and mode control of an air conditioner).

In this paper, we introduce FLUID-IoT, a framework designed to
seamlessly integrate flexible and fine-grained multi-user access
control to existing IoT platforms. FLUID-IoT introduces a novel
multi-user User Interface (UI) distribution technique that converts
an existing IoT app into a centralized control UI1 distributor that
sits between IoT devices and users to manage user permission
and distribute control UIs to users based on their access permis-
sions (Figure 1(b)). Our high-level insight put into this approach
is that since IoT devices are typically controlled through graphical
user interfaces (GUIs) as an intermediary, by regulating access to
these interfaces, we can effectively control access to the devices
themselves—if a user cannot access the control interface, they cannot
control the device.

The benefits of this approach ares two folds. First, it enables
granular control over specific device functions. Since UI is the most
granular medium for interacting with specific functionality of an
app, FLUID-IoT can control device access at its finest granularity
by distributing different sets of UIs to different users. Some users
may be distributed with one control UI, while others may receive
two or three, depending on their access permissions. For example,
1Within the context of this paper, ’control UI’ refers to User Interfaces (UI) that are
specifically designed for controlling IoT devices. E.g., volume control buttons, power
buttons, and channel switch buttons for a smart TV

in the case of a smart TV, a child might only be granted volume
control buttons to keep them from accessing inappropriate channel,
whereas parents could have full sets of control UIs, including power
button, channel switch buttons, and volume controls (Figure 1(b)).

Second, our framework simplifies the challenges of IoT access
management by eliminating the need to modify the underlying
logic of the device connection pipelines. Since FLUID-IoT is designed
to share control interfaces (e.g., power buttons, mode switch but-
tons, or fan speed sliders) rather than actual device connections
themselves, implementing access control becomes as simple as de-
termining which UI gets distributed to which user device. This way,
we can flexibly implement various access control mechanisms on
top of existing IoT platforms with minimal modifications–without
modifying their underlying behavior logic.

We demonstrate the effectiveness of FLUID-IoT by implementing
a prototype using a custom Android OS (Android Open Source
Project) and unmodified off-the-shelf Google Home mobile appli-
cation. Our coverage evaluation shows that FLUID-IoT can sup-
port the majority of prominent IoT platforms, including Samsung
SmartThings, Amazon Alexa, and LG ThinQ. Our performance
evaluation proves that FLUID-IoT provides near-instant UI response
time, and significantly reduces the synchronization latency between
user devices. We define three representative access control mecha-
nisms; i) differential access control, ii) time-based access control,
and iii) supervisory access control, and conducted an in-lab usabil-
ity study with 17 participants using Google Home retrofitted with
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FLUID-IoT. The results show that FLUID-IoT provides high usability
throughout different domains of the shared IoT environment.

To the best of our knowledge, FLUID-IoT is the first to introduce
the methodology for fine-grained access control over individual
functionality of devices and to propose a practical solution that can
retrofit existing IoT platforms with access control features. More
specifically, this paper makes the following contributions:

• We explore the need and potential for function-level fine-
grained access control in multi-user IoT environment.

• We present the design and implementation of FLUID-IoT,
which uses UI distribution technique to retrofit existing IoT
apps with flexible function-level IoT access control.

• We implement and evaluate three different types of access
control mechanism for different multi-user scenarios.

• We report results from user studies that demonstrate the ef-
fectiveness of the proposed framework frommultiple angles—
coverage, performance, and usability.

2 BACKGROUND AND RELATEDWORK
In this section, we highlight the challenge present in the current
shared IoT environment, provide a review of previous works to
address this issue, and discuss the UI distribution technique that
this work was inspired by.

2.1 Access Control Mechanisms in Existing IoT
Platforms

Prominent IoT platforms such as Google Home, Samsung Smart-
Things, and Amazon Alexa enable users to share their IoT devices
with others. A significant limitation, however, is that their access
control operates in an all-or-nothing manner, offering either com-
plete control or no control at all. For example, Google Home and
SmartThings allow users invited to the shared IoT environment to
control all connected devices without any oversight (Figure 2(a) and
Figure 2(b)). Although some vendor-specific IoT apps, like Kwikset
Kevo Smart Lock (Figure 2(c)) and August Smart Lock (Figure 2(d))
provide more rigorous access control mechanisms tailored to their
specific device type, the prevailing access control practices in the
current IoT landscape fall short of reflecting the diverse and com-
plex user demands in multi-user IoT settings.

2.2 Enhancing Access Control Policies
Growing concerns about sharing IoT with untrusted parties have
raised a range of security-related issues, including privacy leaks [11,
31], unauthorized device control [10], and user conflicts [24, 31].
Recent studies on smart home users also reveal that users clearly
express their concerns regarding the need for rigorous access con-
trol mechanisms, even in their trusted smart home environment [9,
20, 50].

In response to these concerns, numerous studies have proposed
access control policies for multi-user IoT environments [13, 20, 23,
25, 39, 46, 51]. Most notably, He et al. [20] present a large-scale user
study that reveals home IoT users desire different access control
capabilities for various situations and settings. They propose access
control policies that take into account stakeholder relationships,
individual device capabilities, and various contexts, such as time,

device location, and users’ proximity to the device. Moreover, in
a study on community-based access control involving sharing IoT
with more distantly related stakeholders like neighbors and friends,
Tabassum et al. [46] demonstrate that users expressed unmet needs
for finer-grained control. In addition, the study conveys that time-
and event-based access controls are the two most desired control
mechanisms.

Given these in-depth studies on various access control policies,
the goal of FLUID-IoT is to provide an access control framework that
can easily integrate these policies into existing IoT platforms. A
noteworthy caveat, however, is that prior studies tend to presume
that the desire for access controls only occurs at the level of the
device as a whole, either allowing or denying access to all of its
functionalities at once. This device-level all-or-nothing approach
is likely to pose similar risks as the conventional all-or-nothing
control mechanisms when it comes to devices with diverse func-
tionalities. In this regard, FLUID-IoTmore specifically aims to enable
proposed access control policies to operate at the granular level of
individual device functionalities, verifying their needs and effec-
tiveness along the way.

2.3 Multi-User Access Control Systems
Some researchers have proposed IoT systems that provide a prede-
fined set of access control mechanisms. Zeng et al. [51] presented
SmarterHome, a prototype IoT control app that uses Samsung
SmartThings API to provide four different access control mech-
anisms. However, due to its reliance on the SmartThings API and
SmartThings Cloud, it lacks the flexibility and granularity needed
to address complex user demands beyond the SmartThings API
boundaries. Sikder et al. [40, 41] proposed Kratos and Kratos+
that employ a priority-based access-policy negotiation algorithm by
modifying the open-source Samsung SmartThings App. Although
they provide a wide range of access control policies, their system
implementation requires intense modification of the existing IoT
apps, and its applicability to other closed-source IoT platforms (e.g.,
Google Home, Amazon Alexa, LG ThinQ) remains under-explored.

In other works, researchers have proposed new IoT systems by
modifying or replacing parts of IoT stacks. Boussard et al.[7] imple-
mented Future Spaces, a system equipped with access control via
Software-Defined LANs. Additionally, various studies [29, 45, 49]
presented block-chain-based access control to ensure data security
and prevent undesired access to IoT devices. However, these ap-
proaches often involve the development of new IoT platforms or
require significant modifications to existing ones, which diminishes
the practicality of the proposed solutions.

On the other hand, FLUID-IoT offers a practical and easily imple-
mentable solution for realizing various access control mechanisms
on top of existing IoT platforms. Instead of building a new system
from scratch [1, 7, 29, 37, 45, 49] or requiring existing ones to al-
ter their internal behaviors [40, 41, 51], FLUID-IoT adds an extra
access control layer on top of the established IoT stack, enabling
off-the-shelf IoT apps to provide fine-grained access control over
their connected devices.



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Lee, Jeong, et al.

(a) Google Home with all-or-nothing ac-
cess

(b) Samsung SmartThings with all-or-
nothing access

(c) Kiwikset Kevo Smart Lock with time-
based access

(d) August Smart Lock with time-
based access

Figure 2: Google Home (a) and Samsung SmartThings (b) offer all-or-nothing access control. While some vendor-specific IoT
apps like Kiwikset (c) and August Home (d) offer more rigorous access control mechanisms tailored to their specific devices,
they still fall short of reflecting the diverse and complex user demands in multi-user IoT settings.

2.4 UI Distribution Techniques
FLUID-IoT leverages UI distribution technique to selectively distrib-
ute IoT app’s control interfaces to the users. UI distribution, also
known as UI mirroring or UI casting, is a widely used technique that
enables multiple devices or users to share control over a single app.
Most renowned examples include Google Cast [18] and Apple Air-
Play [4], which transmit multimedia content from a mobile device
to other display devices. Other applications like Android Auto [16]
and Apple CarPlay [3] allow apps on a user’s mobile phone to
display some of their interfaces on an automobile’s infotainment
display. However, their underlying UI distribution techniques re-
quire apps to modify their source code, which FLUID-IoT aims to
avoid.

To support UI distribution across unmodified apps, several non-
intrusive UI distribution frameworks have been introduced. FLUID [34]
and FLUID-XP [28] presents a flexible and transparent UI distri-
bution technique that allows off-the-shelf Android mobile apps
to distribute their UI elements to another device. More distantly
related works remix the original interfaces of applications to better
support the diverse needs of users. Façades [44] and WinCuts [47]
enables users to self-adjust desktop applications’ interfaces by re-
combining existing graphical interfaces. A-Mash [27] lets users
merge interfaces of multiple mobile apps to craft their own tailor-
made all-in-one mobile app.

What sets FLUID-IoT’s UI distribution apart from these approaches
is its emphasis on multi-user interaction. Unlike previous frame-
works that are geared toward single-user scenarios (i.e., one-to-one
distribution settings or within-device UI remixing), FLUID-IoT en-
ables one-to-many distribution, in which each user receives their
own customized remix of UIs based on the distribution rules (i.e.,

access control policies). This significant enhancement necessitates
an in-depth exploration of key challenges including synchroniza-
tion, performance, and scalability, with the goal of delivering a
responsive and consistent UI experience across multiple users.

3 FLUID-IOT METHODOLOGY
This section describes key design features of FLUID-IoT. FLUID-IoT is
a multi-user UI distribution framework designed to retrofit existing
IoT platforms with more granular and flexible permissions settings
than those natively supported by their underlying platform.

3.1 Architecture Design
3.1.1 Concept. Figure 3 illustrates the system architecture of
FLUID-IoT. FLUID-IoT consists of one host device (i.e., hub device)
and multiple user devices. The host device is the only entity in
the system that operates the IoT app and communicates with the
IoT devices. Its chief role is to distribute the control UIs of the IoT
app to the connected user devices and to communicate with IoT
devices on behalf of all other user devices. Within the host device,
FLUID-IoT framework integrates into existing IoT apps (e.g., Google
Home). This requires either a minor modification to the IoT app’s
source code to include FLUID-IoT’s application-level SDK or run-
ning a custom Android OS equipped with FLUID-IoT system-level
framework. In contrast, the user devices require neither the IoT
app nor the custom Android OS. Instead, they utilize the FLUID
user application that receives and displays the control UIs from the
host device. The user interaction with the UIs is done simply by
forwarding the interaction event to the host device, where all the
computation and communication actually take place.
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Figure 3: FLUID-IoT System architecture. In FLUID-IoT system, the host device is the only entity in the system that runs the IoT
app and communicates with the IoT devices on behalf of the users. User devices run FLUID user app instead of the IoT app.
Inside the host device, FLUID-IoT framework is integrated into existing IoT apps (e.g., Google Home) to act as a centralized UI
distributor. FLUID-IoT framework extracts, renders, and streams each UI element of the IoT app to distribute UIs to FLUID user
apps based on the users’ permission level.

Overall, FLUID-IoT system mirrors the characteristics of an IoT
hub architecture, where multiple IoT devices are connected to a
single hub (i.e., a host device), and the hub communicates with
the IoT devices on behalf of users. In this respect, FLUID-IoT is a
framework that can seamlessly transform conventional IoT apps
into amulti-user IoT hub. Such design choice has several advantages
including 1) ease of integration, 2) ease of usage, and 3) ease of
synchronization.

3.1.2 Ease of integration. FLUID-IoT’s host framework is designed
to be easily integrated into conventional IoT apps. The framework
consists of three main components: 1) UI Extractor that extracts the
UIs from the IoT app, 2) UI Renderer that renders each extracted
UI on an individual frame buffer, and 3) UI Streamer that streams
rendered UIs to user devices. These components are designed to
operate on layers (i.e., UI architecture and rendering pipeline) inde-
pendent of the behavioral logic of mobile apps. Thus, they can be
easily embedded into existing IoT applications without modifying
the app’s core internal logic.

3.1.3 Ease of usage. Over the years, IoT apps have evolved to
support interaction with multiple devices through a single app [36].
FLUID-IoT takes this a step further by enabling users to interact
with multiple IoT apps using a single FLUID user application. Since
FLUID-IoT distributes the UIs in a form of the pixel, a universal,
platform-independent data format, FLUID user application is com-
patible with any mobile IoT application. Users do not need to install
multiple IoT apps on their devices; a single FLUID user app suffices
for interacting with any IoT platform, as long as its native IoT app
is running on the host device and has been properly integrated
with FLUID-IoT. (More details in subsubsection 6.4.5).

3.1.4 Ease of synchronization. In conventional GUI-based IoT sys-
tems, each user device runs its own IoT app locally. When a user
changes the state of an IoT device (e.g., turning on a bulb), the
change isn’t immediately reflected on other users’ devices. Instead,

the IoT device must first broadcast its updated state. The frequency
of these broadcasts varies across platforms and devices, but this
process inevitably causes a synchronization delay between user
devices. For instance, toggling a light bulb on and off in systems
like Google Home, Amazon Alexa, and Samsung SmartThings has
been observed to result in synchronization delays of 3∼5 seconds.
Contrarily, FLUID-IoT eliminates this delay by running the IoT app
on a host device. The visualized IoT state (i.e., UI) on all user de-
vices are live projection of this app. Since there is no need for
synchronization when there is only one entity (i.e., IoT app) that
controls the shared resources (i.e., IoT devices), the state change of
the IoT device is reflected on all user devices instantly (More details
in section 5).

3.2 Technical Challenges
To enable FLUID-IoT workflow, we address two technical challenges:
C1) How to make UIs across different activities (i.e., app page) to be
accessible and distributable for simultaneous multi-user interaction;
and C2) how to distribute UIs selectively to multiple users while main-
taining a responsive and consistent UI interaction (i.e., minimizing
performance overhead).

C1: In multi-user IoT environments, different users often want
to control different devices. However, the control UIs for differ-
ent devices are usually scattered across various activities within
the IoT app, requiring constant switch between activities to, at
best, sequentially handle each user interaction. To tackle this issue,
we employ a multi-activity execution technique. This allows UIs
across all activities to be rendered concurrently and handle user
interactions simultaneously.

C2: Another important consideration is maintaining responsive
and consistent UI interaction across all user devices. This is espe-
cially critical in the IoT landscape, where unsynchronized UIs may
lead to unintended user actions due to misinterpretation of device
states. For instance, a delay in updating the light bulb’s status could
lead a user to repeatedly pressing the power button, inadvertently
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Figure 4: Google Home launched in multi-activity mode, al-
lowing all its interfaces (i.e., activities) simultaneously avail-
able for concurrent user interactions.

turning off a bulb another user had already switched on. To ad-
dress this challenge, we introduce dynamic UI channel switching, a
method that uses multiple multicast channels to reduce synchro-
nization lag and allows different sets of UIs to be distributed to
different users based on their specific permissions.

3.3 Multi-Activity App Execution
To allow all control UIs to be simultaneously distributable and
available for multi-user interaction, we enable the IoT app to run
multiple activities on the foreground. In traditional mobile operat-
ing systems, apps are typically designed to run single activity in the
foreground at a time. To extend such design, we leverage Android
OS’s ’Launch adjacent’ feature [19]. This feature enables apps
to launch multiple activities side-by-side on the same screen, which
is originally intended for developing a multi-window app targeted
for large-screen or multi-screen devices. To integrate this feature
into an existing IoT app, we inject a single line of code indicating
that we want app’s each activity to launch in a separate window.
More specifically, we replace the following startActivity code:

Intent intent = new Intent(this, SecondActivity.class);
...
startActivity(intent);

with

Intent intent = new Intent(this, SecondActivity.class);
...
// Add flags to launch new activity in a new window.
intent.addFlags(Intent.FLAG_ACTIVITY_LAUNCH_ADJACENT |

Intent.FLAG_ACTIVITY_NEW_TASK);
startActivity(intent);

This simple code injection or code modification allows app’s all
activities (i.e., all interfaces) to be simultaneously available for
multi-user interactions.

3.4 UI Extraction and Individual Rendering
The next step in distributing UIs involves extracting the pixel data
for each individual UI element. However, modern operating systems
render collection of UIs (i.e., app screen) in a batch manner for the
sake of resource efficiency, making it difficult to obtain individual

UI elements’ pixel data, especially when it is hidden behind other
UIs (e.g., Figure 4).

For this reason, FLUID-IoT decouple the UI elements from the
conventional batch-style rendering pipeline and renders each of
them in an isolated frame buffer (Figure 5). Specifically, FLUID-IoT’s
UI Extractor first extracts the target UIs (i.e., the UI we want to
distribute) from the app’s UI Tree, a tree-shaped data structure
that groups a collection of UIs to be rendered. UI elements in the
same UI tree indicate that they should be drawn together on the
same window (i.e., a frame buffer), and therefore subject to batch
rendering. Conversely, this also implies that UIs in different UI trees
can be rendered separately on different buffers.

FLUID-IoT’s UI Renderer leverages this mechanism by creating
multiple instances of an empty UI tree and assigning each extracted
UI its own dedicated UI tree. Then, to provide UI trees with isolated
frame buffers, UI Renderer creates an independent render space
called Virtual Display [14] for each of the UI trees. The resolution
of each Virtual Display is created equal to the size of the UI it
is associated with. The operating systems’ rendering pipeline will
then automatically traverse through each UI tree independently and
draw target UIs on their own dedicated frame buffers (i.e., Virtual
Displays).

Our method of extracting the target UI from its original canvas
(i.e., UI tree) and redrawing it in a separate window offers several
advantages. Firstly, it ensures the complete visibility of the UI, even
if it was originally hidden behind other elements. Secondly, FLUID-
IoT is resistant to dark patterns, such as placing overlay ads over
essential UIs. As long as the target UI’s object exists within the
operating system’s UI tree, we can migrate it to a new window,
thereby preventing it from being obscured or affected by these dark
patterns.

3.5 Selective UI Streaming and Dynamic
Channel Switching

Once we have access to the pixel data for each UI element, UI
Streamer live-streams (i.e., distribute) the UIs to user devices. For
each Virtual Display, we also generate an H.264 encoder that en-
codes the raw pixels drawn on the Virtual Display’s frame buffer.
Each encoded output stream is then be sent to the user devices
through its dedicated network channel. The problem arises, how-
ever, because the UIs that each user device wants vary from user
to user and from time to time. For instance, when the user wants
to control the smart bulb, FLUID user app should display UIs as-
sociated with the smart bulb, and when the user wants to control
the smart speaker, FLUID user app should switch to UIs associated
with the smart speaker. In the interest of resource efficiency and
network overhead, we cannot simply stream all UIs uniformly to
every user device.

To solve this issue, UI Streamer dynamically switches the UI
streaming channels based on which UIs should be displayed on
which user devices (Figure 6). More specifically, in addition to the
control permissions of each user, we also verify which IoT device
the user is currently trying to control. Leveraging the fact that in
most IoT apps, each IoT device has its own dedicated control activ-
ity, we reasonably assume that any user interaction that causes an
activity transition is a switch in the IoT device that the user wishes
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Figure 5: FLUID-IoT extracting and rendering each UI element
in an isolated manner so that it can obtain pixel data of each
individual UI element. The figure illustrates UI extraction
and rendering of a single activity, but in the real system, the
same process occurs simultaneously for every activity.

Figure 6: FLUID-IoT streaming UIs to FLUID user apps through
channel switching. UI Streamer dynamically changes con-
nected streaming channels to selectively distribute only the
UIs that are permitted to the users.

to control. Therefore, each time the startActivity() function is
called, FLUID-IoT first checks which user device triggered the func-
tion call, and identifies the UIs that belong to that activity. Among
those UIs, UI Streamer streams only the UIs that are authorized to
the user’s device. This allows each user device to have a different
set of UIs displayed on the FLUID user app, and to be able to swap
between control activities, as though it is running a real IoT app.

This design choice makes implementing access control in FLUID-
IoT remarkably straightforward. Essentially, it boils down the access
control process to deciding which control UIs to distribute to which
user. Furthermore, the ability to switch the UI stream channels
on-the-fly allows FLUID-IoT to flexibly coordinate the control per-
missions of users. These characteristics empowers FLUID-IoT with
the potential to implement a variety of access control mechanisms
without interfering with the internals of the IoT app. (More details
in section 4)

3.6 FLUID User App
The role of the FLUID user app is to render the streams of UI pixels
and enable users to interact with these UIs. FLUID user app consists
of three components: 1) UI Renderer that receives and renders the
UI streams, 2) UI Composer that scales and layouts the UIs to fit
the screen, and 3) Input Handler that hijacks and forwards the user
interaction to the host device. As these components are not platform
specific, FLUID user app can be developed for any mobile platforms
including Android, iOS, and webApp.

The UI Renderer takes streams of UI pixels from the host device
and displays them on the user’s device. For each stream channel, it
creates an output surface, and renders its corresponding UI element
on the surface. These surfaces act as proxies for actual UI elements
running on the host device, allowing users to remotely interact
with the IoT app through their own devices.

The UI Composer adjusts the layout and scale of the displayed
UI elements to fit the user’s screen. It calculates the resolution
difference between the host and user devices to scale each UI surface
accordingly. Then, it arranges these elements based on their original

hierarchical relationships, ensuring an intuitive and consistent UI
layouts.

The Input Handler manages all touch events that occur on the
UI surfaces displayed on the user’s device. When a touch event
happens, it captures the raw data, like x and y coordinates, and
forwards this along with the UI element’s ID to the host device. The
host then injects the event directly into the targeted UI element
based on the given UI ID. If multiple users attempt to interact
with the same UI element simultaneously, the input injection is
performed in a first-come, first-served manner.

3.7 Implementation
FLUID-IoT framework can be implemented in two forms: 1) an
application-level SDK that can be easily merged into IoT apps’
source code with only a few lines of code insertion, and 2) a system-
level framework that can seamlessly extend IoT apps with FLUID-IoT
features. Integrating these FLUID-IoT frameworks into an IoT app
essentially requires two steps:1) launching the IoT app’s activities
inMulti-Activity mode and 2) providing a list of UI elements related
to IoT device control (e.g., device names, power buttons, volume
controls). The process of extracting, rendering, and streaming the
UI elements is done automatically by the FLUID-IoT framework.

3.7.1 Application-Level SDK Integration. For application-level FLUID-
IoT SDK integration, developers are required to modify their apps to
launch in Multi-Activity mode, which typically requires only a one
or two-line code modification per activity. Additionally, developers
need to manually specify which UI elements should be exposed
to the FLUID-IoT SDK. This step, while manual, gives developers
control over their apps by letting them decide which UI elements
are sharable.

3.7.2 System-Level Framework Integration. The system-level frame-
work (i.e., custom Android OS) offers a streamlined integration
process, eliminating the need to modify the app’s source code. The
host user simply selects the IoT app they want to integrate with
FLUID-IoT. The FLUID-IoT Framework then automatically launches
all activities of the selected app in multi-activity mode, making its
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UI elements available to the framework. This method is particularly
beneficial because it seamlessly accommodates existing IoT apps
without requiring any code changes.

3.7.3 Implementation Specifics for Google Home. In this study,
given that prominent mobile IoT apps are not open source, we im-
plemented the FLUID-IoT’s system-level framework inside Android
OS (Android Open Source Project v.11 [15]) and used off-the-shelf
Google Home downloaded from the Google Play Store as a target
IoT app. Although Google Home serves as our primary IoT app
example, we found that other Android IoT apps like Amazon Alexa
and Samsung SmartThings are similarity compatible (See subsec-
tion 5.1). In addition to the software integration, the FLUID-IoT
system also requires a dedicated device to function as the host de-
vice. The host device can be any smart device capable of running
IoT apps. In our implementation, we used a Google Pixel 4XL (re-
leased in 2019) as a host device and found that it can play the role
of a host device flawlessly.

4 UTILIZATION OF FLUID-IOT
FLUID-IoT, combinedwith various access control mechanisms, opens
up a broad set of applications, allowing users to configure their
IoT environments in secure, finely-tuned, and adaptable ways. This
section outlines the workflow of FLUID-IoT and introduces three dif-
ferent access control mechanisms and application areas to highlight
the capability of FLUID-IoT.

4.1 Workflow
The FLUID-IoT system involves two primary stakeholders: the host
user and the guest users. The host user, typically the owner of the
IoT devices, is responsible for configuring and managing the access
permissions within FLUID-IoT. Guest users, conversely, are those
who interact with the IoT devices through the UIs shared by the
host user.

Host user workflow. FLUID-IoT offers an intuitive interface
for the host user to configure permission settings. As illustrated
in Figure 7, FLUID-IoT displays all control UIs of the given IoT app
alongside various access control mechanisms for configuration.
Using these interfaces, the host user begins by selecting the specific
UIs they wish to share. For each selected UI, they configure the
permissions using different access control mechanisms. Once the
permissions are set, the host user saves these configurations. The
configurations are stored as an XML file, which includes a list of UI
specifications (i.e., UI id) and its corresponding policy. However, this
configuration file may become outdated if the IoT app undergoes a
major update that changes the UI specifications. In such cases, the
host user needs to re-configure the permission settings.

Guest userworkflow. Guest users start by launching the FLUID-
IoT user application on their devices, which serves as the gateway
to accessing the shared UIs. To access these UIs, the FLUID-IoT user
app needs to establish a connection with the host device. This can
be achieved through various methods such as scanning a QR code
provided by the host user or using a near-device search feature
to automatically detect and connect to the host device. Upon suc-
cessful connection, the guest user can see the UIs they have been
granted access to. They can then interact with these UIs within the
constraints of the permissions set by the host user.

4.2 Access Control Mechanisms
In this paper, we have implemented three different access con-
trol mechanisms: 1) Differential access control, 2) Time-based access
control, and 3) supervisory access control. Note that these mecha-
nisms are just a fraction of possible policies that FLUID-IoT can
support. Any access control mechanisms imaginable can be imple-
mented through FLUID-IoT framework with proper engineering. We
demonstrate each mechanisms using the off-the-shelf Google Home
application (Figure 7). Throughout the rest of the paper, we refer
to Google Home retrofitted with three access control mechanisms,
as "custom Google Home".

4.2.1 Differential access control.
Definition. Differential access control is a type of access control
mechanism that grants different levels of access to different users
or groups based on their roles, responsibilities, and privileges. In
FLUID-IoT system, user permission can be differentiated not only by
the types of devices, but also by the range of actions that users can
perform on each device. For example, while you can grant both User
A and User B access to a smart light bulb, you can also configure
the permissions so that User A can control both brightness and the
power of the light bulb, while User B can only access the power.
Implementation. To implement differential access control with
granularity down to the UI level, we developed an interface that
allows a master user (i.e., a user who owns the host device) to
configure which users or user groups are permitted with which UI
elements (Figure 7 (a)). The configuration is saved as a JSON file,
and the FLUID-IoT framework reads it to set up the UI streaming
channels between each user device and the host device.

4.2.2 Time-based access control.
Definition. Time-based access control is a type of access control
mechanism that grants access only for a limited period of time.
Time-based access control can be useful in situations where orga-
nizations need to ensure that access is automatically revoked once
the authorized time period has ended. This reduces the need for
manual intervention and potential errors or oversights in revoking
access.
Implementation. To implement time-based access control, we
added an interface that allows the master user to specify the time
period during which a user can control the IoT device (Figure 7 (c)).
The time period is saved along with the differential access control
configuration, and FLUID-IoT periodically monitors the time and
immediately disconnects the UI streaming channel when the time
period ends.

4.2.3 Supervisory access control.
Definition. Supervisory access control is a mechanism that in-
volves the active monitoring and supervision of users who are
granted access to IoT devices. In supervisory access control, au-
thorized individuals monitor the activities of other users to ensure
that they are using the IoT devices in accordance with the policies
and rules. In FLUID-IoT system, all control actions performed by
the supervised user are reported to the authorized user. The super-
vised user’s actions are executed only upon receiving consent from
the authorized user. For instance, if a child tries to switch the TV
channel to a late-night movie, a notification is sent to the parent’s
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Figure 7: FLUID-IoT access control interfaces built on top of Google Home. (a) Differential access control allows the host to grant
different levels of access to users with granularity down to the UI level. (b) Supervisory permission allows the host to configure
supervisory permission to monitor other users’ actions over the IoT device. (c) Time-based access control allows users to give
permission only for a limited period of time.
FLUID user app. Only after the parent grants consent through the
app will the channel actually change.
Implementation. To implement supervisory access control, we
designed an interface where a master-user can designate specific
user supervision relationships (Figure 7 (b)). The relationships are
saved along with other access control configurations. Based on
the established relationship, the FLUID-IoT framework directs the
supervised users’ FLUID user app to forward their input events to
the authorized users’ device rather than to the host device. When
the authorized user application receives an input event, it prompts
a consent message, informing what control action the supervised
user is trying to do. The authorized user can then approve or revoke
the action. Upon approval, the input event gets forwarded to the
host device for execution.

4.2.4 Mixing multiple mechanisms. One distinct feature of FLUID-
IoT is that it allows access control mechanisms to operate at the
granularity of the UI level, meaning that control permissions can
be applied differently not only for each IoT device but also for

each feature within the device. For instance, the system can be
configured to allow a user full-time access to the light bulb’s power
control, but temporary access to the brightness control.

In addition, control mechanisms can work in parallel to combine
multiple access control policies. For example, Time-based access
control and supervisory access control can be used in conjunction
to require the administrator’s consent when controlling an IoT
device during specified hours.

5 PERFORMANCE EVALUATION
We evaluated FLUID-IoT in terms of coverage, latency, and mem-
ory consumption to verify whether FLUID-IoT has sufficient perfor-
mance to be used in our everyday IoT settings. Across the evalua-
tion, a Pixel 4 XL (AOSP v.11) was used as the FLUID-IoT host device,
and one Pixel 4 XL (Android v.11) and one Pixel 6(Android v.13)
were used as guest devices.
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5.1 Coverage
To assess the compatibility of the FLUID-IoT framework with exist-
ing IoT platforms, we conducted a coverage test on the eight most
downloaded IoT apps available on Google Play. Utilizing the modi-
fied Android OS outlined in subsection 3.7, we examined whether
the FLUID-IoT framework could successfully distribute the UI ele-
ments for each of these off-the-shelf IoT apps. The types of UIs
utilized in these apps include device name fields, device state fields,
a range of buttons (such as power, up/down, and mute), and sliders.
Note that the type of UI does not influence the FLUID-IoT’s cover-
age, because FLUID-IoT manipulates UIs at their object level (i.e., a
code-level entity). As long as FLUID-IoT can access the target UI’s
object, it can distribute UIs to other devices.

As demonstrated in Table 1, the current implementation of FLUID-
IoT successfully supports six out of the eight IoT apps, which ac-
counts for nearly 90% of the total IoT ecosystem. In the case of LG
ThinQ, testing was not feasable due to a non-systematic issue that
prevents it from running on rooted devices (e.g., AOSP). Neverthe-
less, our static analysis of the app found no technical barriers to
supporting LG ThinQ, as it meets the requirements outlined in sub-
section 3.7. Conversely, FLUID-IoT is incompatible with Philips
Hue because it employs WebView, a third-party UI library that pre-
vents FLUID-IoT from accessing its UIs. Overall, FLUID-IoT is highly
compatible with existing IoT platforms and it can cover the majority
of the IoT ecosystem. The minute coverage hole can be addressed
through proper implementation (see subsubsection 7.1.1).

5.2 Latency
To evaluate FLUID-IoT’s performance from the users’ perspective,
we measured two representative latencies (Response time and syn-
chronization latency) that users would experience while using the
FLUID user app, and compared them to those of the original Google
Home app. The experimental setup included one smart bulb, one
FLUID-IoT host device running a custom Google Home, and two
user devices running either the FLUID-IoT user app or the original
Google Home app. We recorded the screens of the two user devices
at a 120Hz refresh rate to measure the latency. The latency mea-
surements have an error bound of ±8.3ms since each video frame
represents an 8.3ms time slot. Both the custom Google Home and
the original Google Home use Wifi protocol to communicate with
the IoT devices (e.g., smart bulb). All devices were connected to
the same Wi-Fi access point with a 140 Mbps connection and an
average round-trip time (RTT) of 35.92ms with a standard deviation
of 69.60ms. We repeated each experiment 20 times.

Response Time.We first measured the response time. Response
time is defined as the time it takes for the result of a user action
(e.g., tapping the power button) to be visually reflected back in the
app. Figure 8(a) compares the response time of FLUID-IoT and the
original Google Home.

The average response time of the original Google Home was
16.05 ms (median=17; stdev=3.818), which is one Vsync time of
smartphones (e.g., Pixel 4XL, Pixel 6) with a screen refresh rate of
60-90Hz. This low latency is achievable because most IoT apps use
client-side prediction to provide a seemingly instant reaction. In
other words, instead of waiting for the IoT device to broadcast its

Figure 8: Response Time and Synchronization Latency of the
Google Home and FLUID-IoT in milliseconds. While FLUID-IoT
exhibits a somewhat higher response time, it remains close
to the generally accepted threshold for users to perceive an
interface as "instant". More significantly, FLUID-IoT’s synchro-
nization latency is markedly lower, offering a dramatically
improved user experience in multi-user settings.

updated state, IoT apps compute and predict the outcome of the
user’s action locally and display the predicted result.

However, in multi-user settings, where predictions are made
concurrently and scattered across multiple devices, it can result in
inconsistent app behavior. For instance, we observed that when we
press the power button of the smart bulb simultaneously on two
different Google Home apps, both apps displayed that the bulb is
on, even though it is actually off. In some cases, one of the two
actions was completely ignored, and the bulb did not turn off as we
intended.

On the other hand, FLUID-IoT exhibits a higher average latency
of 128.619 ms, with a median of 101 ms and a standard deviation
of 66.025 ms. This increase in response time is due to the network
overhead of forwarding touch events to the host device and re-
trieving the outcome in the form of pixels. Yet, considering that
response times of 100 ms are generally regarded as the threshold
for users perceiving an interface as "instant" [33], the response
time of FLUID-IoT can still be considered acceptable for most use
cases. Additionally, since the state prediction only occurs within
the host device in a sequential manner, FLUID-IoT ensures consistent
behavior even in multi-user environment.

Synchronization Latency.We then evaluated the synchroniza-
tion latency under multi-user settings. We define synchronization
latency as the time duration required for all IoT apps running
on each user device to synchronize with the updated state of the
IoT device. Figure 8(b) compares the synchronization latency of
FLUID-IoT and that of the original Google Home. The figure shows
that the original Google Home took an average of 5121.45 ms (me-
dian=5070.5; stdev=559.55). This implies that when user A turns
on the smart bulb through her Google Home app, it takes about
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App Name # of Downloads FLUID-IoT Failure Causes
Smart Things 500M+ O -
Google Home 100M+ O -

Alexa 100M+ O -
LG ThinQ 50M+ △ Not testable on rooted device, but theoretically applicable
Mi Home 10M+ O -
Smart Life 10M+ O -

TP-Link Tapo 5M+ O -
Philips Hue 5M+ X Using WebView to draw UIs

Table 1: Coverage Test for eight IoT applications. ‘O’ and ‘△’ and ‘X’ indicate that FLUID-IoT is applicable, FLUID-IoT is possibly
applicable, and FLUID-IoT is non-applicable, respectively. FLUID-IoT successfully supports six out of the eight prominent IoT
apps, demonstrating that it is highly compatible with existing IoT platforms and it can cover the majority of the IoT ecosystem.

Device Types Air Conditioner Bulb Speaker Total
# of UIs 3 4 5 12
# of pixel 1,188,786 1,488,240 1,780,884 4,457,910

Memory(MB) 4.76 5.95 7.12 17.83
Table 2: FLUID-IoT’s additional memory consumption for dis-
tributing UIs of three different IoT devices. The total extra
memory consumption (17.83 MB) accounts for just 0.297% of
the average RAM in modern smartphones. This indicates a
minimal impact on device performance.

5 seconds for user B’s Google Home app to update and show that
the bulb has been turned on. This can significantly degrade the
user experience, as it may mislead users to perform unintentional
actions based on the outdated device state. This problem arises
because an an app cannot "predict" state changes triggered by other
devices. Instead, it must wait for the IoT device to broadcast its
updated state—an event that occurs approximately every 5 seconds
in the case of Google Home. It is important to note that broadcast
intervals vary between different IoT platforms. Hence, different IoT
platforms may exhibit different synchronization delay.

On the other hand, FLUID-IoT demonstrates an average synchro-
nization latency of 165 ms (median=134; stdev=85.269), which is
substantially lower than that of the original Google Home and
slightly higher than the response time. We attribute this to our
centralized architecture that shares one IoT app across multiple
user devices. Any changes to the IoT app’s UI are propagated si-
multaneously to all user devices. As a result, when user A turns on
the smart bulb, all users are instantly notified of the change.

In summary, when compared to the original behavior of the
Google Home, FLUID-IoT and its custom Google Home increases
the response time from 16.05 ms to 128.619 ms, while reducing the
synchronization latency from 5121.45 ms to 165 ms. Although there
is an increase in response time that might or might not be noticeable
to the users, the substantial reduction in synchronization latency
can bring a significant improvement to the user experience under
multi-user settings. Moreover, considering that FLUID-IoT ensures
consistent control behavior throughout the single- and multi-user
environments, we can conclude that the benefits of FLUID-IoT in
multi-user IoT environment outweigh the loss.

5.3 Memory Consumption
FLUID-IoT consumes extra memory space when creating virtual
displays (i.e., frame buffers) for the UI distribution. And FLUID-IoT

creates a new virtual display for each new UI to distribute. We
measured how much memory FLUID-IoT consumes for each addi-
tional virtual display. We used the Android Debug Bridge command
dumpsys meminfo to measure the memory usage of FLUID-IoTwhile
distributing 12 different Google Home UIs from three IoT devices—
Air conditioner, smart bulb, and smart speaker.

Table 3 outlines the average memory consumption for each UI
type. As a result, we found that the extra memory consumption for
each UI exactly matches the amount of memory required to render
the UI in the ARGB8888 format (4 bytes per pixel). This indicates
that the memory consumption of FLUID-IoT scales linearly with the
total pixel count of the UIs distributed. Furthermore, Table 2 details
the memory usage of each individual IoT device. When distributing
UIs of all three IoT devices, FLUID-IoT consumed 17.83 MB of extra
memory. This accounts for only 0.297% of the average RAM size of
modern-day smartphones, which is approximately 6 GB [42]. These
results suggest that FLUID-IoT’s memory consumption is modest and
unlikely to significantly impact the performance of most Android
smartphones, even when working with multiple UIs and multiple
IoT devices.

6 DEMONSTRATION OF USABILITY
To better understand the effectiveness and usefulness of FLUID-IoT
in terms of user experience, we conducted a lab study with our
custom Google Home. In each session, each participant acted as a
host of a multi-user IoT environment and completed permission-
setting tasks for six distinct scenarios. More specifically, the study
aimed to answer the following research questions: (1) Is FLUID-
IoT’s novel approach to implement access controls on top of existing
IoT platforms effective? and (2) Is FLUID-IoT’s unique ability to offer
granular access control over individual device functionalities useful?

6.1 Participants
We recruited 17 participants (8 females, 9 males, ages 19 to 29
with avg=24.41 and std=3.18) who were recruited through online
school communities and local community groups. Each study ses-
sion lasted 40 to 60 minutes, and we compensated each participant
$10 for their time. The recruitment and the experiments were in ac-
cordance with our institution’s IRB policies and the consent forms.

6.2 Study Procedure
At the beginning of each session, participants were given a brief
tutorial on how to use the customGoogle Home. In the tutorial, they
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UI Types Power Button Up/down Button Dual Button Device Name Device State Slider
# of pixels
(Avg) 187,152 926,100 173,040 113,787 29,580 1,238,400

Memory
(Avg) 0.75 MB 3.70 MB 0.69 MB 0.46 MB 0.12 MB 4.95 MB

Table 3: Average memory consumption depending on UI type.

were demonstrated how to use the three different access control
mechanisms: i) differential access control, ii) time-based access
control, and iii) supervisory access control. Following the tutorial,
participants were given three Google Pixel 4XL phones: One host
device with custom Google Home installed, and two user devices
with FLUID user app installed.

Then, participants received six multi-user IoT scenarios, in which
they were asked to perform given permission-setting tasks. After
completing all tasks, participants were asked to evaluate the ex-
perience using the System Usability Scale (SUS) [8] and report
the perceived usefulness of each access control mechanism in a
post-survey.

6.3 Multi-User IoT Tasks
Our study is divided into two phases: warm-up tasks (T1∼T4) and
complex tasks (C1 and C2). The warm-up tasks were designed to
familiarize participants with the multi-user IoT environment and
the FLUID-IoT. During this phase, participants were encouraged
to ask questions. On the other hand, the complex tasks aimed to
challenge participants and assess the usability of the FLUID-IoT in
more demanding situations. During the complex tasks, participants
were not allowed to ask any questions and were encouraged to keep
trying until they successfully completed the tasks by themselves.

Throughout the tasks, participants role-played as Airbnb hosts
and managed access permissions for guests within a multi-user IoT
environment. In the warm-up stage, participants explored distinct
access control mechanisms—differential access control, (T1 and
T2), time-based access control (T3), and supervisory access control
(T4)—within unique scenarios. For the complex tasks, participants
were challenged to blend these mechanisms to create a balanced
and effective access control strategy for more demanding scenarios.
The detailed scenarios and task descriptions are included in our
Appendix.

6.4 Results and Findings
6.4.1 Pre-survey. In the pre-survey, 15 out of 17 participants had
prior experience using IoT technology, and 10 of those 15 also
had experience sharing IoT devices. They had experience sharing
IoT devices mostly through a voice-assisted smart home hub or
using other user’s smartphone who has permission to access the
IoT devices. However, these IoT sharing methods poses security
risks, as they cannot adequately protect device ownership and user
privacy.

6.4.2 Evaluation on tasks performance. All participants completed
the warm-up tasks successfully. They went through each task step
by step, understanding the system by seeing how each setting was
reflected on user devices in real-time. For the subsequent complex
task, all but two participants were able to complete it without any

Figure 9: In the Adjective Rating Scale introduced by
A.Bangor et al. [6], FLUID-IoT is ranked good usability.

assistance. One participant made a minor mistake due to misreading
the instructions, while another participant made a trivial error but
promptly corrected it with slight intervention. Consistent with the
high task completion rate, the average score on the SUS question
"I would imagine that most people would learn to use this system
very quickly" was 5.94 out of 7, indicating that the access control
interface of FLUID-IoT is easy to learn.

6.4.3 System Usability Scale. Overall, participants felt FLUID-IoT
has high usability. On the 7-point System Usability Scale (SUS),
FLUID-IoT scored on average 79.08. Figure 9 shows where our av-
erage score of SUS (79.08) is ranked in user-perceived usability
ratings. It suggests that our system has a relatively high level of
usability.

We attribute this high rating to FLUID-IoT’s innovative design,
which allows for the flexible implementation of access controls
over existing IoT applications. Specifically, the system scored a
highest 6.41 on the question, "I found the various functions in this
system were well integrated," and a lowest 1.64 on the question,
"I thought there was too much inconsistency in this system." These
results indicate that FLUID-IoT effectively and seamlessly integrates
its access controls mechanisms as though they are built-in features
of existing IoT platforms

6.4.4 Feedback on the Access Control Mechanisms. Following the
overall system usability scoring, we asked participants to rate the
usefulness of three access control mechanisms on a 7-point Likert
scale. The results are as follows: Differential permission scored 6.17
on average, Time-based permission scored 6.29 on average, and
Supervisory permission scored 5.41 on average. Below, we share
some interesting comments and observations from the participants.
Differential Permission: Participants expressed great satisfac-
tion with the ability to control permissions for each fine-grained
functionality of a device. A significant number of participants (9
out of 17) gave it the top score (7) and advocated that IoT devices
should have a function-level permission settings—"at first glance, it
looks complicated, but there certainly are circumstances that need
such fine-grained level of IoT sharing (P4)."

Some notable feedback are: "It was convenient to see clearly what
is being shared and what is not (P14)", and "It is similar to the real
remote controller so it will be familiar even to the first-time users (P9)."
These comments show that our implementation of access control



FLUID-IoT CHI ’24, May 11–16, 2024, Honolulu, HI, USA

interfaces built inside the Google Home app (Figure 7) makes access
control easy and intuitive.
Time-based Permission: Among three representative access con-
trol mechanisms, time-based access control received the highest
score. Many participants agreed that granting short-term authoriza-
tion would be useful in various domains, such as accommodations,
smart homes, and many other public places. Some comments are as
follows: "It will be very useful for shared living spaces or households
with children when they want to enforce mandatory lights-out time
(P2)", "It will be useful for cases like AirBnB where guests change
frequently (P5)", and "It will be useful for any public places (P12)."
Some participants also suggested that it will be even more useful if
guests are notified of their authorized time period. P6: "I think it is
similar to making a reservation, but it would be better if guests can
know at which time period, they can access the device."
Supervisory Permission: Opinions on Supervisory Permission
were somewhat divided. Some participants thought having to re-
quest or accept authorization every time there is an action would
be cumbersome, while others felt it is a necessary feature despite
its inconvenience. P2 commented that "Seems like it would be cum-
bersome for both host and guests to have to request/accept each time.",
while P1 commented "Having to ask for permission can be a hassle,
but I think it’s useful in preventing abusive use." To address the in-
convenience, we could consider authorizing the user for a certain
period of time after obtaining permission once or using password
protection, as P16 commented "...or you can use password to lock the
permission..., so that hosts can adjust the level of security."
User preferences: Participants were also asked to choose the most
useful access control mechanism from three. Notably, while Time-
based access control had the highest average usability score, edging
out Differential access control by 0.12 points, when asked to directly
compare the three, 47.1% of participants favored Differential access
control, followed by Time-based at 29.4% and Supervisory at 23.5%.
This indicates that FLUID-IoT’s unique ability to control access to
specific functionality of a device is the most useful and desired
approach in a general day-to-day environment.

6.4.5 Implications from the User Study.
Usefulness as a guest: While we designed FLUID-IoT with a focus
on how to make access control easier and intuitive for the hosts
(i.e., owner of the devices or a shared place), many participants
commented on its usefulness for the guests as well. On the survey
question, "As a guest, is displaying only the buttons that you can
control useful?", participants scored an average score of 6 out of
7—"I do not need to think about much. If I can see it, I can control it
(P2)".

In addition, there were some interesting comments on psycho-
logical backlash when displayed with UIs that they cannot control.
P3 commented that "if there is a button that I can’t control, it is just a
waste of information, and it can incur inappropriate desire to violate
privileges." P9 and P11 also commented "People tend to desire things
that they are not allowed" and "I get annoyed when there are buttons
that I can’t use," respectively. This not only highlights the benefits
of FLUID-IoT utilizing UI distribution technique, but also exposes
the shortcomings of prior works [40, 41], which uses input blocking
to implement access control.

IoT in Airbnb: Participants found FLUID-IoT particularly useful for
short-term rentals, with 14 out of 17 participants rating FLUID-IoT as
"very useful" in the AirBnB scenarios (T1∼T4). This aligns with the
growing interest in smart devices and related policies within the
Airbnb community [2, 22]. According to a recent study on smart
home device use by Airbnb hosts [12], Airbnb hosts want special
access control settings that would allow them to share the capability
of smart home devices with their guests without compromising
their own privacy and/or security.

Furthermore, some hosts reportedly wished for IoT devices to be
able to synchronize with the Airbnb account so that guests do not
have to manually install IoT apps. FLUID-IoT can be a very useful
solution to this demand, as FLUID user app can interact with any
IoT platform, and guests do not need to install IoT apps on their
local devices. This demonstrates that our research is a relevant and
timely study that can address current challenges related to smart
device usage in short-term rentals.
Insights for future work: Many participants shared valuable
feedback on how FLUID-IoT can be improved. P4 commented, "It’s
unfortunate that the system works only within the same Wi-Fi AP.
It would be much better if I could control permissions outside of the
home." The current implementation of FLUID-IoT has not considered
the need for remote access control. To address this issue, we can
host a web server inside the host device so that users can remotely
interact with FLUID-IoT’s access control interface.

Another insightful comment by P11 was, "In some cases, people
will use physical buttons on the device. If we can’t prevent them from
physically controlling the device, we can make the system automati-
cally revert their action." When access control within a digital space
can be ineffective in some physical environments, the suggestion
by P11 could be a solution to control access permissions without
modifying the physical buttons.

7 DISCUSSION
In this section, we discuss the limitations of our current implemen-
tation and how FLUID-IoT can be improved through future research.

7.1 Limitations
7.1.1 Unsupported IoT apps. The current implementation of FLUID-
IoT operates exclusively with Android apps that use the native An-
droid UI library. It does not support IoT apps employing third-party
UI engines (e.g., Flutter [17], React Native [32], WebView) or iOS
applications (e.g., HomeKit) because FLUID-IoT’s UI distribution
mechanism requires access to an app’s UI elements, but the UIs
in these apps are encapsulated within closed-source UI engines.
Nonetheless, the overarching design of FLUID-IoT is compatible
with other mobile UI engines. FLUID-IoT is built on the principle
that UIs are organized in a hierarchical structure (i.e., UI tree) and
can be displayed on a separate frame buffer (e.g., Android’s Virtual
Display or iOS’s UIScreen). This approach aligns with the common
design paradigm of GUI-based systems. Therefore, despite its cur-
rent limitations, FLUID-IoT holds potential for broader application
in various mobile environments.

7.1.2 Potential threat models. While FLUID-IoT is effective in in-
tegrating access control into GUI-based device control, potential
threat models exist that can bypass or neutralize FLUID-IoT.
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Device control through other modalities. Users can circum-
vent FLUID-IoT by using alternative device control modalities such as
voice-activated smart assistants (e.g., Google Assistant and Alexa)
or physical buttons. Although addressing all possible modalities
falls outside this study’s scope, potential workarounds exist, such
as employing Google’s voice and face match features for voice-
operated devices or using protective covers on physical buttons. As
the landscape of IoT controls continues to diversify, embracing di-
verse modalities like voice, Near-Field Communication (NFC), and
vision, future research is needed to enhance the FLUID-IoT frame-
work to support a more inclusive and multimodal access control
system.

Malicious apps. FLUID-IoT’s design of access control is based
on the principle that users can only control the device through the
UIs that are explicitly shared with them. However, this design can
be compromised if a user employs a malicious app that simulates
"interactions" with UI elements that were not actually shared with
that user. To counteract such malicious interactions, FLUID-IoT’s
host device verifies the validity of incoming user inputs by ensuring
that the UI element targeted by the input is indeed permitted on
the guest device from which the input originated.

7.1.3 Single point of failure. FLUID-IoT system relies on a host
device to act as an intermediary between IoT devices and users,
responsible for all computation and communication within the
shared IoT environment. As a result, FLUID-IoT has a risk of a single
point of failure; if the host device experiences downtime or failure,
all FLUID user apps would cease to function as well. To mitigate
this, FLUID user app can be engineered to automatically launch the
IoT app and run it locally when the connection to the host device is
lost. While access control may not function correctly until the host
device is restored, users would still retain control over IoT devices.
Other fault handling techniques, such as implementing a backup
host device, and improving system robustness and fault tolerance
can also be explored to further mitigate the risk.

7.2 Future Works
7.2.1 More access control mechanisms. As previously highlighted,
FLUID-IoT can offer a range of access control mechanisms beyond
those implemented in this paper. Possible examples include a consensus-
based control mechanism that utilizes ballots to manage public IoT
devices, a location-based access control that adjusts control permis-
sions or priority based on the user’s proximity or position relative
to the device, and a rate-limiting access control that limits the num-
ber of actions that each user can perform within a specified time
period.

These mechanisms can be freely implemented inside the FLUID-
IoT framework by designing algorithms that determine where each
UI should be distributed and how user inputs should be handled. In
future work, to further enhance user experience, we could provide
a policy generation language or interface that allows end-users to
create their own access control mechanisms.

7.2.2 Massive user/IoT environment. Despite its low level of per-
formance overhead, FLUID-IoT may face scalability challenges as
the number of users and IoT devices grows at a massive scale. The
task of encoding and distributing a large number of UI elements

could impose significant overhead on the host device and affect its
performance. However, considering that the number of users and
IoT devices in our everyday environment has yet to reach a massive
scale [43], FLUID-IoT can sufficiently handle the majority of shared
IoT scenarios, including those found in smart homes and smart
offices. To address future scalability issues, optimization techniques
such as streaming UIs in lower resolution, destroying the frame
buffer and encoder of inactive IoT devices, or designing a dedicated
server device, are viable avenues for future research.

7.2.3 Combining UIs Across Multiple IoT apps. The current imple-
mentation of FLUID-IoT focuses on providing access control for a
single IoT app at a time, ideally suited for users who operate within
a singular IoT ecosystem. However, the fragmentation of IoT ecosys-
tems typically demands the use of multiple, vendor-specific apps
to achieve full control over all devices. While unifying protocols
like Matter [36] exist, they do not provide complete support for all
devices and functionalities, causing users to depend on multiple
IoT apps.

To mitigate this issue, FLUID-IoT could be extended to accom-
modate UIs from multiple IoT apps, providing a more a more uni-
fied and streamlined user experience. One feasible approach is
the integration of existing multi-app execution frameworks like
A-Mash [27], which specializes in UI mashups across different ap-
plications. By incorporating such functionalities, FLUID-IoT could
serve as a central hub for multi-app IoT control. This addition would
allow FLUID-IoT to bridge the gap between disparate IoT ecosys-
tems, streamlining user experience and setting the stage for a more
unified and secure multi-app IoT environment.

8 CONCLUSION
The current landscape of shared IoT environments offers naive
and simplistic access control measures. In this paper, we present
FLUID-IoT, a framework that retrofits existing IoT platforms with
fine-grained and flexible multi-user access control. FLUID-IoT uses
a novel multi-user UI distribution technique to effectively control
access to IoT devices by selectively distributing control UIs to users
based on access control policies. FLUID-IoT not only allows users to
flexibly implement access controls on top of existing IoT platforms
without modifying their underlying IoT stacks but also enables
fine-grained access control over individual device functionalities.
Our evaluation of FLUID-IoT showcases its effectiveness in terms of
performance, coverage, and usability. We believe that FLUID-IoT is a
concrete step towards a more capable and safer IoT environment.
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