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ABSTRACT

The advent of multi- and many-core processors offers enormous performance potential for parallel tasks that
exhibit sufficient intra-task thread-level parallelism. With a growth of novel parallel programming models
(e.g., OpenMP, MapReduce), scheduling parallel tasks in the real-time context has received an increasing at-
tention in the recent past. While most studies focused on schedulability analysis under some well-known
scheduling algorithms designed for sequential tasks, little work has been introduced to design new schedul-
ing policies that accommodate the features of parallel tasks, such as their multi-threaded structure. Motivated
by this, we refine real-time scheduling algorithm categories according to the basic unit of scheduling and pro-
pose a new priority assignment method for global task-wide thread-level fixed-priority scheduling of parallel
task systems. Our evaluation results show that a finer-grained, thread-level fixed-priority assignment, when
properly assigned, significantly improves schedulability, compared to a coarser-grained, task-level assign-

ment.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The trend for multicore processors is towards an increasing num-
ber of on-chip cores. Today, CPUs with 8-10 state-of-the-art cores or
10s of smaller cores AMD are commonplace. In the near future, many-
core processors with 100s of cores will be possible Comming soon.
A shift from unicore to multicore processors allows inter-task paral-
lelism, where several applications (tasks) can execute simultaneously
on multiple cores. However, in order to fully exploit multicore pro-
cessing potential, it entails support for intra-task parallelism, where a
single task consists of multiple threads that are able to execute con-
currently on multiple cores.

Two fundamental problems in real-time scheduling are (1) algo-
rithm design to derive priorities so as to satisfy all timing constrains
(i.e., deadlines) and (2) schedulability analysis to provide guarantees
of deadline satisfaction. Over decades, those two fundamental prob-
lems have been substantially studied for multiprocessor scheduling
(Davis and Burns, 2011), generally with a focus on the inter-task
parallelism of single-threaded (sequential) tasks. Recently, a grow-
ing number of studies have been introduced for supporting multi-
threaded (parallel) tasks (Bonifaci et al., 2013; Li et al., 2014; Baruah
et al,, 2012; Andersson and de Niz, 2012; Li et al.,, 2013; Chwa et al,,
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2013; Baruah, 2014; Saifullah et al., 2011; Nelissen et al., 2012a; Lak-
shmanan et al., 2010; Liu and Anderson, 2010; 2012; Ferry et al., 2013;
Axer et al., 2013; Qi Wang, 2014; Li et al., 2015; Kwon et al., 2015;
Melani et al., 2015; Sanjoy Baruah, 2015; Shen Li, 2015). Schedulabil-
ity analysis has been the main subject of much work on thread-level
parallelism (Bonifaci et al., 2013; Li et al., 2014; Baruah et al., 2012;
Andersson and de Niz, 2012; Li et al., 2013; Chwa et al., 2013; Baruah,
2014; Saifullah et al., 2011; Nelissen et al., 2012a; Lakshmanan et al.,
2010; Liu and Anderson, 2010; 2012; Ferry et al., 2013; Axer et al.,
2013; Li et al., 2015) for some traditionally well-known scheduling
policies, i.e., EDF (Earliest Deadline First) (Liu and Layland, 1973) and
DM (Deadline Monotonic) (Leung and Whitehead, 1982). However, a
relatively much less effort has been made to understand how to de-
sign good scheduling algorithms for parallel tasks.

In a sequential task, a task is a sequence of invocations, or jobs,
and the task invocation is the unit of scheduling. In general, priority-
based real-time scheduling algorithms can fall into three categories
according to when priorities change (Davis and Burns, 2011) : task-
wide fixed-priority where a task has a single static priority over all of
its invocations (e.g., DM), job-wide fixed-priority where a job has a sin-
gle fixed priority (e.g., EDF), and dynamic-priority where a single job
may have different priorities at different times (e.g., LLF Least Laxity
First Dertouzos and Mok, 1989).

A parallel task consists of multiple threads, and the invocation of
a thread is then the unit of scheduling. This brings a new dimension
to the scheduling categories. With a finer granularity of scheduling
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from task to thread, we can further subdivide each scheduling cate-
gory into two sub-categories, task-level and thread-level, according to
the unit of priority assignment. To this end, we can refine the schedul-
ing categories to a finer-grained thread level as follows:

o Task-wide thread-level fixed-priority: a single thread has a static
priority across all of its invocations.

 Job-wide thread-level fixed-priority: a single thread has a static pri-
ority over one invocation.

o Thread-level dynamic-priority: a single thread can have different
priorities at different times within one invocation.

In this paper, we aim to explore the possibility of performance
enhancement in real-time scheduling by fully exploiting both inter-
task and intra-task parallelisms. We hypothesize that a major fac-
tor in fully capitalizing on multicore processing potential is prior-
ity assignment. The key intuition behind our work is that finding
an appropriate priority ordering is as important as using an effi-
cient schedulability test, and that a finer-grained priority ordering
at the thread level is more effective than a coarser-grained, task-
level one. To this end, in this paper, we focus on priority assignment
policies for global! task-wide thread-level fixed-priority pre-emptive
scheduling.

1.1. Related work

In the recent past, supporting intra-task thread-level parallelism
in the context of real-time scheduling has received increasing atten-
tion in the recent past (Bonifaci et al., 2013; Li et al., 2014; Baruah
et al., 2012; Andersson and de Niz, 2012; Li et al., 2013; Chwa et al.,
2013; Baruah, 2014; Saifullah et al., 2011; Nelissen et al., 2012a; Lak-
shmanan et al., 2010; Liu and Anderson, 2010; 2012; Ferry et al., 2013;
Axer et al., 2013; Qi Wang, 2014; Li et al., 2015; Kwon et al., 2015;
Melani et al., 2015; Sanjoy Baruah, 2015; Shen Li, 2015). The work in
Liu and Anderson (2010); 2012) considers soft real-time scheduling
focusing on bounding tardiness upon deadline miss, while hard real-
time systems aim at ensuring all deadlines are met. In this paper, we
consider hard real-time scheduling.

Fork-join task model. The fork-join task model is one of the popu-
lar parallel task models (Lea, 2000), OpenMP, where a task consists of
an alternate sequence of sequential and parallel regions, called seg-
ments, and all the threads within each segment should synchronize
in order to proceed to the next segment. Under the assumption that
each parallel segment can have at most as many threads as the num-
ber of processors, Lakshmanan et al. (2010) introduced a task decom-
position method that transforms each synchronous parallel task into
a set of independent sequential tasks, which can be then scheduled
with traditional multiprocessor scheduling techniques. Lakshmanan
et al. (2010) presented a resource augmentation bound? of 3.42 for
partitioned thread-level DM scheduling. Lately, Qi Wang (2014) at-
tempted to implement a system, called FJOS, that supports to fork-

1 Multiprocessor scheduling approaches can broadly fall into two classes: global and
partitioned. Partitioned approaches allocate each task (or thread) to a single processor
statically, transforming the multiprocessor scheduling into uniprocessor scheduling
with task (or thread) allocation. In contrast, global approaches allow tasks (or threads)
to migrate dynamically across multiple processors.

2 Recently, Li et al. (2013) distinguished resource and capacity augmentation bounds
as follows. The resource augmentation bound r of a scheduler S has the property that if
a task set is feasible on m unit-speed processors, then the task set is schedulable under
S on m processors of speed r. For a scheduler S and its corresponding schedulability
condition X, their capacity augmentation bound c has the property that if the given
condition X is satisfied with a task set, the task set is schedulable by S on m processors
of speed c. Since the resource augmentation bound is connected to an ideal optimal
schedule, it is hard (if not impossible) to use it as a schedulability test due to the diffi-
culty of finding an optimal schedule in many multiprocessor scheduling domains. On
the other hand, the capacity augmentation bound has nothing to do with an optimal
schedule, and this allows it to serve as an easy schedulability test (see Li et al., 2013
more details).

join intra-task parallelism in a hard real-time environment. They pro-
posed the overhead-aware assignment algorithm based on the anal-
ysis presented in Axer et al. (2013).

Synchronous parallel task model. Relaxing the restriction that se-
quential and parallel segments alternate, several studies have con-
sidered a more general synchronous parallel task model that allows
each segment to have any arbitrary number of threads. Saifullah
et al. (2011) presented decomposition method for synchronous par-
allel tasks and proved a resource augmentation bound of 4 for global
thread-level EDF scheduling and 5 for partitioned thread-level DM
scheduling. Building upon this work, Ferry et al. (2013) presented a
prototype scheduling service for their RT-OpenMP concurrency plat-
form. Nelissen et al. (2012a) also introduced another decomposition
method and showed a resource augmentation bound of 2 for a cer-
tain class of global scheduling algorithms, such as PD? (Srinivasan
and Anderson, 2005), LLREF (Cho et al., 2006), DP-Wrap (Levin et al.,
2010), or U-EDF (Nelissen et al., 2012b). Some studies (Andersson and
de Niz, 2012; Chwa et al., 2013; Axer et al., 2013) developed direct
schedulability analysis without task decomposition for synchronous
parallel tasks. In this context, Andersson and de Niz (2012) showed
a resource augmentation bound of 2 — 1/m for global EDF schedul-
ing. Chwa et al. (2013) introduced an interference-based analysis for
global task-level EDF scheduling, and Axer et al. (2013) presented
a response-time analysis (RTA) for partitioned thread-level fixed-
priority scheduling.

DAG task model. Refining the granularity of synchronization from
segment-level to thread-level, a DAG (Directed Acyclic Graph) task
model is considered, where a node represents a thread and an edge
specifies a precedence dependency between nodes. Baruah et al.
(2012) showed a resource augmentation bound of 2 for a single DAG
task with arbitrary deadlines under global task-level EDF scheduling.
For a set of DAG tasks, a resource augmentation bound of 2 — 1/m
was presented for global task-level EDF scheduling in Bonifaci et al.
(2013), Li et al. (2013) and Baruah (2014). Bonifaci et al. (2013) also
derived a 3 — 1/m resource augmentation bound for global task-level
DM scheduling. In addition to those resource augmentation bounds,
Li et al. (2013) introduced capacity augmentation bounds that can
work as independent schedulability tests, and showed a 4 — 2/m ca-
pacity augmentation bound for global task-level EDF. In a further
study, Li et al. (2015) developed a prototype platform, called PGEDF,
by combining GNU-OpenMP runtime system and the LITMUSKT sys-
tem for DAG tasks, and evaluated the schedulability test presented in
Li et al. (2013). Later, Li et al. (2014) improved the capacity augmen-
tation bound up to 2.6181 and 3.7321 for global task-level EDF and
RM, respectively. Li et al. (2014) also proposed a new scheduling pol-
icy, called federated scheduling, and derived a resource augmentation
bound of 2 for the proposed approach.

Nowadays, some studies have been introduced for an extended
DAG task model, which considers more practical excution environ-
ments. Kwon et al. (2015) relaxed the assumption of a pre-defined
number of threads in the DAG task model, and exploited multiple par-
allel options (i.e., runtime selectable numbers of threads) to improve
schedulability. The work in Melani et al. (2015) and Sanjoy Baruah
(2015) also proposed the extended DAG task model which charac-
terizes the excution flow of conditional branch, and Shen Li (2015)
proposed a real-time scheduling of MapReduce workflows based on
a hierarchical scheduling scheme.

In summary, much work in the literature introduced and im-
proved schedulability analysis for different parallel task models un-
der different multiprocessor scheduling approaches and algorithms.
Table 1 summarizes the global scheduling algorithms that have been
considered in the literature, to the best of the author’s knowledge. We
have two interesting observations from the table. One is that most
existing studies considered well-known deadline-based scheduling
algorithms (EDF, DM) originally designed for sequential tasks, with a
large portion on task-level priority scheduling. Capturing the urgency
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Table 1
Global scheduling algorithms for parallel tasks.

Task-wide fixed-priority

Job-wide fixed-priority

Dynamic-priority

EDF (Bonifaci et al., 2013; Li et al., 2014; Baruah et al., 2012;
Andersson and de Niz, 2012; Li et al., 2013; Chwa et al., 2013;

Global  Task-level DM (Bonifaci et al., 2013) /
RM (Li et al., 2014)
Baruah, 2014; Li et al., 2015)
Thread-level ~ (OTPA/ PADA [this paper]) EDF (Saifullah et al., 2011)

PD? | U-EDF | LLREF | DP-Wrap
(Nelissen et al., 2012a)

of real-time workloads, deadlines are a good real-time scheduling pa-
rameter, in particular, for sequential tasks on a single processor (Liu
and Layland, 1973). However, deadlines are no longer as effective for
parallel tasks on multiprocessors, since deadlines are inappropriate
to represent the characteristics of parallel tasks, including the de-
gree of intra-task parallelism (i.e., the number of threads that can run
in parallel on multiprocessors) or precedence dependency between
threads. The other observation from Table 1 is that little work has ex-
plored the task-wide thread-level fixed-priority scheduling category.
These motivate our work to develop a new task-wide thread-level
fixed-priority assignment method that incorporates the characteris-
tics of DAG tasks.

1.2. Our approach

This work is motivated by an attempt to see how good task-wide
thread-level fixed-priority assignment, beyond task-level, can be
for global multiprocessor scheduling of parallel tasks. To this end,
this paper seeks to explore the possibility of using the OPA (Optimal
Priority Assignment) algorithm (Audsley, 1991; 2001; Davis and
Burns, 2009), which is proven to be optimal in task-wide fixed-
priority assignment for independent tasks with respect to some
given schedulability analysis. The application of OPA to thread-level
priority assignment raises several issues, including how to deal
with thread-level dependency and how to develop an efficient
thread-level OPA-compatible analysis.

A parallel task typically consists of multiple threads that come
with their own precedence dependency. With such a thread-level de-
pendency in the parallel task case, it is thereby non-trivial to make
use of OPA for thread-level priority assignment, since OPA is designed
for independent tasks. Task decomposition is one of the widely used
approaches to deal with the thread-level precedence dependency
(Saifullah et al., 2011; Nelissen et al., 2012a; Lakshmanan et al., 2010;
Ferry et al., 2013; Axer et al., 2013). Through task decomposition, each
individual thread is assigned its own offset and deadline in a way that
its execution is separated from those of its predecessors. This allows
all threads to be considered as independent as long as their thread-
level deadlines can be met. In this paper, we employ such a task de-
composition approach to develop an OPA-based thread-level priority
assignment method.

Contributions. The main results and contributions of this paper can
be summarized as follows. First, we introduce an efficient thread-
level interference-based analysis that is aware of the multi-threaded
structure of parallel tasks (in Section 3). We also show that the pro-
posed analysis is OPA-compatible (in Section 4). This allows OPA,
when using the proposed analysis, to accommodate the characteris-
tics of parallel tasks via its underlying analysis in priority assignment.

Second, we show that the OPA algorithm, originally designed for
independent sequential tasks, is applicable to parallel tasks when
thread-level precedence dependencies are resolved properly through
task decomposition. That is, the algorithm holds optimality in thread-
level priority assignment when threads are independent with their
own offsets and deadlines with respect to its underlying analysis
(in Section 4). With the use of OPA, this study separates thread
priority assignment from thread dependency resolution. While
most previous decomposition-based studies (Saifullah et al., 2011;
Lakshmanan et al., 2010; Ferry et al., 2013) share an approach that

resolves between-thread dependencies by determining the relative
deadlines of individual threads properly and makes use of thread
deadlines for priority ordering, this study decouples thread priorities
from deadlines.

Third, we propose a new OPA-based priority assignment method
that adjusts thread offsets and deadlines, called PADA (Priority As-
signment with Deadline Adjustment), taking into consideration the
properties of OPA and its underlying analysis (in Section 5). In the pre-
vious studies on fixed-priority scheduling (Saifullah et al., 2011; Lak-
shmanan et al., 2010; Ferry et al., 2013), thread deadlines are deter-
mined, from an individual task perspective, only to resolve intra-task
thread dependency. On the other hand, in this study, thread deadlines
are adjusted, from the system-wide perspective, to accommodate in-
terference between tasks for schedulability improvement.

Finally, our evaluation results show that the proposed thread-level
priority assignment is significantly more effective, in terms of the
number of task sets deemed schedulable, than task-level priority as-
signment in global task-wide fixed-priority scheduling (in Section 6).
The results also show that incorporating the features of parallel tasks
into priority assignment significantly improves schedulability, com-
pared to traditional deadline-based priority ordering, and that the
proposed approach outperforms the existing approaches.

2. System model
2.1. DAG task

We consider a set of DAG (Directed Acyclic Graph) tasks 7. A DAG
task 7; € t is represented by a directed acyclic graph as shown in
Fig. 1(a). A vertex v; , in T; represents a single thread 6; ,, and a di-
rected edge from v; , to v; 4 represents the precedence dependency
such that 0; ; cannot start execution unless 6; , has finished execu-
tion. A thread 6; , becomes ready for execution as soon as all of its
predecessors have completed their execution.

A sporadic DAG task t; invokes a series of jobs with the minimum
separation of T;, and each job should finish its execution within D;
(the relative deadline). We denote as ]l?‘ the h-th job of 7;.

2.2. Task decomposition

A DAG task can be decomposed into a set of independent sequen-
tial sub-tasks, capturing the precedence relation between threads by
separating the execution windows of the threads. That is, each thread
of the DAG task is assigned its own relative offset and deadline in a
way that the release time of the thread is no earlier than the latest
deadline among the ones of all the predecessors.

We denote t4€0m 3 set of all threads generated from 7 through
task decomposition, and the number of threads in a decomposed task
set Tdecom js denoted as n. For a decomposed task 7;, we define a pri-
mary thread of the task (denoted by 6; 1), as one of the threads in t;
that have no predecessors. Then, each thread 6; , in 7; is specified
by (T; p, G, p, D;, p, O; ), where T; ,, is the minimum separation (which
equals to T;), G; , is the worst-case execution time (which is inherited
by the original thread), D; , is the relative deadline, and O; , is the
relative offset (from 0; ; = 0). Note that D; , and O; ,, are determined
by decomposition methods (more details in Section 5). Fig. 1(b)
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(a) A DAG task 7; (b) A decomposed task T;
Fig. 1. A DAG task and its decomposed task.
illustrates a decomposed task, which corresponds to the DAG task in et al. (2005) as follows:
Fig. 1(a). . I (a.b)
For a job JI', the primary thread 6; 1 is released at r", . and has ab- liq(a,b) = (.p#kg (p)—>ka = 7 (1)

solute deadline df', =", + D, ;. Then, the next thread 6; , which has

dependency with 6; ; is released at r,,“p = r,,“1 + 0; ,, and has deadline

i,p»
d!’p = r,hp + D; . The execution window of 6; , is then defined as an
interval (rlhp, d,hp]-

2.3. Platform and scheduling algorithm

This paper focuses on a multi-core platform, consisting of m iden-
tical processors. This paper also considers global task-wide thread-
level fixed-priority scheduling, in which each single thread 6; ,, is able
to migrate dynamically across processors and assigns a static priority
P; , across all of its invocations. We denote as hp(6; ,) a set of threads
whose priorities are strictly higher than P; ,,.

3. Schedulability analysis

Once a DAG task is decomposed into individual threads, each
thread has its own relative offset and deadline without having to
consider precedence dependency any more. This allows to treat each
thread as an individual independent sequential task, and it is possi-
ble to analyze the schedulability of each thread in a sufficient manner
using the existing task-level schedulability analyzes. However, this
brings a substantial degree of pessimism since the existing task-level
analysis techniques were originally designed for sequential tasks and
are thereby oblivious of the intra-task parallelism.

Motivated by this, the goal of this section is to develop a schedu-
lability condition that helps to analyze the schedulability of a thread
more efficiently, incorporating the internal thread structures of par-
allel tasks into analysis. To this end, we consider interference-
based analysis as a basis, since interference-based analysis is OPA-
compatible (Davis and Burns, 2009).

3.1. Interference-based schedulability analysis

Extending the traditional notion of task-level interference, thread-
level interference can be defined as follows.

o Interference Iy 4(a, b): the sum of all intervals in which 6 ,
is ready for execution but cannot execute due to other higher-
priority threads in [q, b).

* Interference [; ,)_, (1, q)(@ b): the sum of all intervals in which 0; ,
is executing and 6 4 is ready to execute but not executing in [,
b).

With the above definitions, the relation between Iy 4(a, b) and
Iii, py— (k, q)(@ b) serves as an important basis for deriving a schedula-
bility analysis. Since a thread cannot be scheduled only when m other
threads execute, a relation between Iy ¢(a, b) and I; p) _, (x, ¢)(@ b) can
be derived similarly as in Lemma 3 for sequential tasks in Bertogna

m

Let J; q denote the job that receives the maximum total interfer-
ence among jobs on 0 4, and then the worst-case total interference
on 0 4 in the job (denoted by I,j_q) can be expressed as
I mhax(lk,q(r,@q, di ) =g (i oo di o)- 2)

Using the above definitions, the studies (Bertogna et al., 2005;
2009) developed the schedulability condition of global multipro-

cessor scheduling algorithms for sequential tasks, which can be ex-
tended to parallel tasks as follows:

Lemma 1 (From Bertogna et al., 2005; 2009). A set T4eco™ js schedula-
ble under any work-conserving algorithm on a multiprocessor composed
by m identical processors if and only if the following condition holds for
every thread 0, 4:

2

6; peTeom\ {0 o}

min(I;:

.p—kq Dig =Ceg + 1)

<m- (Dg—Ceg+1). (3)

Then, it is straight-forward that the schedulability of the decom-
posed task set guarantees that of the original task set, as recorded in
the following lemma.

Lemma 2 (From Saifullah et al., 2011). If r9ec™ js schedulable, then T
is also schedulable.

Since it is generally intractable to compute exact interference un-
der a given scheduling algorithm, existing approaches for the sequen-
tial task model (Bertogna et al., 2005; 2009; Baker, 2003; Guan et al.,
2009; Lee et al., 2010; 2011; Back et al., 2012; Chwa et al., 2012) have
derived upper-bounds on the interference under target algorithms,
resulting in sufficient schedulability analyzes. We also need to calcu-
late upper-bounds on the interference for decomposed tasks. Since
the structure of a decomposed task is different from that of a sequen-
tial task, the execution and release patterns that maximize interfer-
ence should be different, which will be addressed in the next section.

3.2. Workload-based schedulability analysis with offset

As we mentioned, this paper focuses on task-wide thread-level
fixed-priority scheduling with task decomposition. Therefore, we
need to check whether each thread finishes its execution within the
deadline as described in Lemma 1, and the remaining step is to calcu-
late interference of all other threads on a target thread 6, ¢, i.e., the
LHS of Eq. (3).

One simple approach is to upper-bound thread-to-thread interfer-
ence (i.e., Izi.p)ﬁ(k,q) ), by calculating the maximum amount of execu-
tion of 6; , in the execution window of 0y, 4, called workload. If we
take this approach, we can re-use existing task-level schedulability
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< Carry-in Job > < Body Job > < Carry-out Job >
Primary thread T; . Dia | Di3 {Di,B}
1 (J%a g ;Dis 1 b 1 L%‘Oi.e N
[ou ] ([ [ ]| [Ca | [0
iz mj=]
I —
8ey) | CLi(LA(x,y)) : BD;(1, 5;(x,y)) icoi(z,A,-(x,y)g;l
o x z y

Fig. 2. The maximum workload of all threads in t; in (x, y] with given A(x, y).

tests for the sequential model. However, the approach entails a sig-
nificant pessimism because it does not account for the precedence
relation among threads in the same task; in other words, if we con-
sider the precedence relation, the situations where the amount of ex-
ecution of a thread of a task is maximized and that of another thread
of the same task is maximized may not happen at the same time.

Therefore, we seek to derive an upper-bound on task-to-thread
interference, i.e., the interference of a task z; on 0 4, denoted by
ZV@i,pEfi mm(IZFi'p)_)(kvq), Dy g — Ci.q + 1). To achieve this, we first cal-
culate the amount of execution of 7; in the execution window of 6
when the alignment for the job releases of t; is given. Then, we iden-
tify the alignment that maximizes the amount of execution of 7;.

We consider two cases to calculate the maximum workload: when
i# kandi= k. This is because, i = k implies that both interfered and
interfering threads belong to the same task, meaning that the align-
ment for 7;’s job releases is automatically given.

3.2.1. The maximum workload when i # k

To simplify the presentation, we use the following terms. A job of
a task is said to be a carry-in job of an interval (x, y] if it is released
before x but has a deadline within (x, y], a body job if its release time
and deadline are both within (x, y], and a carry-out job if it is released
within (x, y] but a deadline after y. Note that a job is released before
x and has a deadline after y is regarded as a carry-in job.

Let us consider the situation in which jobs of 7; are periodically re-
leased. We define A;(x, y) that is the difference between the release
time of the primary thread of the carry-in job in (x, y] and x where
is the start point of the execution window of 6 ; as shown in Fig. 2.
For a given A;(x, y), the interval (x, y] of length [ can be partitioned
into carry-in, body, and carry-out intervals, and the length of the in-
tervals are denoted as CI;(, Ai(x, ¥)), BD;(l, Ai(x, ¥)), and CO;(l, Ai(x,
y)), respectively, and described as

CIl'(lv Ai(X:J’)) :min(Ti_Ai(X:.V)al): (4)
B, Ayt y) = | LRI | (5)
Col(lv Al(xyy)) = l - Cll(l! A1(X,Y)) - BDl(ls Al(xvy)) (6)

Then, with the given A;(x, y), the workload contribution of each
thread in (x, y] (shown in Fig. 2) is calculated as

Wi p (L. Ai(x.9)) = W+ WP + WEP, (7)

where
G
WS = [min(o,,,, +Dip A% Y) + 1) — max(Ay(x. ), oi,p)] g
0
1—CL(l, Aj(x,y))
BD i i
VVi’p - L Ti.p J ‘Ci’p’

Gip

W = cout. Aixy) -0y,

Note that [X]2 means min (max (X, a), b). Now we will prove that
WiC,’y WinD ,and Wfl? are respectively the upper-bounds on the amount

of execution of a carry-in job, body jobs, and a carry-out job of §; , in
an interval (x, y] of length [ with given A;(x, y).

For Wf’ we first find the interval in which the execution window
of the carry-in job of 8; , overlaps with (x, y]; we denote the interval
as (a, b]. Without loss of generality, we set rf’l to 0. Then, the carry-in
job of 6; , is released at 0; ,. If Aj(x, y) < O; p, the time instant a is
0; p; otherwise, a is A;(x, y), as shown in Fig. 2. Also, the deadline of
the carry-in job of 0; , is O; , + D; . If Aj(x,y) +1 > 0; , + D; . the
time instant b is O; , + D; ,; otherwise, b is A;(x, y) + |, meaning that
only the carry-in job (without body and carry-out jobs) overlaps with
(x, y]. In summary, a equals to max (A(x, ¥), O; p), and b equals to
min(0; , + D; p, Aj(x,y) +1).In(a, b], the carry-in job cannot execute
more than its execution time C; , and less than 0; therefore, we derive
ch;l) in Eq. (7).

When it comes to Wf‘?, the number of body jobs of 6; ,, is simply

calculated by {MJ Therefore, WinD equals to the number
i.p ,

multiplied by the execution time C; ,,.

The derivation of W0 is similar to that of W! We find the interval
in which the execution window of the carry-out job of 0; p overlaps
with (x, y]; we also denote the interval as (a, b]. Without loss of gen-
erality, we set 1£9 to 0, where ¢ is the release time of the carry-out
jobof 6; ,. Then, a and b are O; , and CO;(l, Ai(x, y)), respectively as
shown in Fig. 2. Since the carry-out job cannot execute more than its
execution time C; , and less than 0, we derive Wi,cz? in Eq. (7).

For the situation where t; invokes its jobs sporadically, we can
easily check that the amount of execution of ; , in (x, y] with A;(x, y)
is upper-bounded by W; (I, Aj(x, y)).

Considering all possible values of A;(x, y) of task t;, the sum of
workload of all threads that have a higher priority than thread 6 ,
is an upper bound of the maximum interference of t; on thread 0y ,.
Thus,

Wi(Dyq) = o MAX
> min(Wp(Dyg. Ai(X.¥)), Dgg —Crg+ 1) (8)

V9i,p€hp(9k.q)

3.2.2. The maximum workload when i = k

In the case of that t is interfered by the same task, the alignment
for 7,’s job releases is automatically determined (i.e, Interval (x, y|
is set to the execution window of thread 6y 4, and Ay(ry ¢, di q) is
fixed with Oy, 4). To calculate the maximum workload when i = k, we
only need to consider the threads whose execution windows are over-
lapped with thread 6, 4. The workload contribution of those threads
can be similarly calculated using Eq. (7). Thus, the maximum work-
load of all threads of  that have a higher priority than thread 6 4 is
calculated as

Wi (Dyq) = Z

VO pehp(Oy q)

min(Wk,p(Dk,tp Ok,q)s Dk.q - Ck,q + 1) (9)

Based on the upper-bound on the interference calculated in Egs.
(8)and (9), we develop the following schedulability test for task-wide
thread-level fixed-priority scheduling.

Theorem 1. A set 79" js schedulable under task-wide thread-level
fixed-priority scheduling on a multiprocessor composed by m identical
processors if for every thread 6 4, the following inequality holds:

Z VVi(Dk,q) + Vvk(Dk,q) <m- (Dk,q - Ck,q + 1) (10)
VTi#Ty

Proof. As we derived, W;(Dy, 4) (likewise Wy(Dy, 4)) is the maximum
amount of higher-priority execution of t; with i # k (likewise t) than
Py 4 in the execution window of 6 4. Since an execution A can inter-
fere with another execution B only if the priority of A is higher than
that of B under task-wide thread-level fixed-priority scheduling, the
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LHS of Eq. (3) is upper-bounded by the LHS of Eq. (10). By Lemma 1,
the theorem holds. O

4. Optimal thread-level priority assignment

This paper considers the thread-level optimal priority assignment
problem that, given a decomposed set T9e©™ determines the prior-
ity P; , of every thread 6; , € gdecom gych that the decomposed set
is deemed schedulable according to the workload-based schedulabil-
ity test given in Theorem 1. In this section, we show that the OPA
algorithm for sequential tasks is applicable to parallel tasks with de-
composition.

The OPA algorithm (Davis and Burns, 2009) aims at assigning a
priority to each individual task through iterative priority assignment
such that an entire task set is deemed schedulable by some given
OPA-compatible schedulability test X under task-wide fixed-priority
scheduling. A schedulability test is OPA-compatible if the following
conditions are satisfied for any given task t;:

Condition 1: The schedulability of task 7, is insensitive to relative
ordering of its higher (and lower) priority tasks.

Condition 2: When the priority of 7, is promoted (or demoted) by
swapping the priorities of 7} and t;, T} remains schedulable (or un-
schedulable) after the swap, if it was schedulable (or unschedulable)
before the swap.

For thread-level extension of the priority assignment, we now
present the Optimal Thread-level Priority Assignment (OTPA) algo-
rithm, applying the OPA algorithm for sequential tasks to decom-
posed threads in parallel tasks. As described in Algorithm 1, our OTPA
algorithm iteratively assigns priorities to the decomposed threads
from the lowest one. In the k-th iteration step, the decomposed set
rdecom jg divided into two disjoint subsets: A(k) and R(k), where

1. A(k) denotes a subset of threads whose priorities have been as-
signed before the k-th step, and

2. R(k) denotes a subset of remaining threads whose priorities must
be assigned from the k-th step onwards.

The OTPA algorithm in Algorithm 1 yields a correct optimal prior-
ity assignment, because the schedulability test in Theorem 1 is OTPA-
compatible, meaning that the test satisfies Conditions 1 and 2 for
thread-level schedulability (i.e., substituting 0 4 for 7 in the con-
ditions), as stated and proved in the following theorem.

Theorem 2. The proposed schedulability test given in Theorem 1 is
OTPA-compatible.

Proof. We wish to show that both Conditions 1 and 2 hold for thread-
level schedulability according to the proposed schedulability test.

In the LHS of Eq. (10), an upper bound on the interference of each
task on thread 0 ; is computed. The upper bound on the interfer-
ence of a task is calculated from the sum of workload of all threads
that have a higher priority than thread 0, 4. Computing workload of
threads having a higher priority does not depend on their relative
priority ordering. The other threads that have a lower priority than
thread 6 , are excluded in calculation. Therefore, Condition 1 holds.

Algorithm 1 OTPA (Optimal Thread-level Priority Assignment).
1: k < 0,A(1) < ¥, R(1) « gdecom
2: repeat
3 k<—k+1
4 if Assign-Priority(A(k), R(k)) = failure then
5: return unschedulable
6
7
8

end if
. until R(k) is empty
: return schedulable

Algorithm 2 Assign-Priority(A(k), R(k)).
1: for each thread ) 4 € R(k) do
2: if 0 ¢ is schedulable with priority k assuming that all remain-
ing threads in R(k), except 8; 4, have higher priorities than k, ac-
cording to the schedulability test in Theorem 1 then
assign priority k to 0 q (Pp.q < k)
R(k+1) < R(k) \ {0pq}
Ak +1) < A(k) U {6pq}
return success
end if
: end for
: return failure

© NI RW

For Condition 2, we focus on the case where the priority of 6 , is
promoted by swapping the priorities of 0 4 and 6; ;. Since the prior-
ity of 0y 4 is promoted, hp(6, 4) becomes only smaller upon the swap.
Therefore, W;(Dy, 4) and Wy (Dy, 4) in Eqgs. (8) and (9) get smaller after
the swap, resulting in a decrease in the LHS of Eq. (10). This proves the
case, and the other case (demoting the priority of 7;) can be proved
in a similar way. Hence, Condition 2 holds. O

During the k-th step, OTPA then invokes a function Assign-
Priority(A(k), R(k)) described in Algorithm 2 to find a thread deemed
schedulable according to Theorem 1 under the assumption that all
unassigned threads in R(k) have higher priorities.

Since the schedulability test in Theorem 1 is OTPA-compatible,
the OTPA algorithm has the following properties. First, the algorithm
builds a solution incrementally without back-tracking. Once a thread
is selected in an iteration step, the thread has no effect on priority
assignment in the next iteration steps. This is because the thread is
assigned a priority lower than all the unassigned tasks, imposing no
interference on them. Second, if there exists only one thread deemed
schedulable by our schedulability test at priority level k, OTPA must
find it through searching all unassigned threads, which only requires
linear time. Third, if there are multiple threads deemed schedulable
by our schedulability test at priority level k, it does not matter which
thread is selected by OTPA at priority level k. This is because all the
other threads deemed schedulable but not selected at priority level k
will remain deemed schedulable at the next higher priority level and
will be eventually selected for priority assignment at a later level.

Computational complexity. We note that the number of threads in a
decomposed task set T@c0™ s denoted by n. By the above-mentioned
three properties, the OTPA algorithm can find a priority assignment
that all threads are schedulable according to the schedulability test if
any exists, performing the schedulability test at most @ times for
n threads.

5. Priority assignment with deadline adjustment

In the previous section, thread-level priority assignment was con-
sidered under the assumption that the offset and deadline of each
thread are given statically. Relaxing this assumption, in this section,
we consider the problem of determining the offset, deadline, and
priority of each individual thread such that the parallel task system
is deemed schedulable according to the schedulability analysis in
Theorem 1.

The existing decomposition approaches (Saifullah et al., 2011;
Nelissen et al., 2012a) share in common the principle of density-
based decomposition. The density of a segment is defined as a to-
tal sum of thread execution times in the segment over the relative
deadline of the segment. Saifullah et al. (2011) categorize segments
as either heavy or light according to the number of threads in a seg-
ment and determine the relative deadline of each segment such that
each heavy segment has the same density. Nelissen et al. (2012a) de-
compose a parallel task such that the maximum density among all
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Fig. 3. An example of two tasks on a single processor illustrates situations, where (a)
thread-level priority assignment fails when the deadline of each thread in 7, is as-
signed in proportion to thread execution time and (b) thread-level priority assignment
becomes successful with the deadline of each thread in 7, properly adjusted.

segments in a parallel task is minimized. They assign the relative
deadline of an individual segment in a different way according to
upper bounds on the density of the segment. Then, those two ap-
proaches apply those density bounds to the existing density-based
schedulability analysis and derive resource augmentation bounds. In
the case of Nelissen et al. (2012a), deadline decomposition is optimal
according to a sufficient schedulability test for scheduling algorithms
such as PD2 (Srinivasan and Anderson, 2005), LLREF (Cho et al., 2006),
DP-Wrap (Levin et al., 2010), or U-EDF (Nelissen et al., 2012b).

Such a density-based decomposition is still a good principle in
thread-level fixed-priority assignment, providing a good basis for
high schedulability. However, it leaves room to improve further since
the density-based principle does not go perfectly with our case,
where the underlying analysis is not based on density. As an exam-
ple, Fig. 3 shows two tasks with three threads on a single proces-
sor>. Task 7, has two threads with their execution times of 1 and 4.
Fig. 3(a) shows the case, where the deadline D, of 7, is decomposed
into D, 1 =4 and D, ; = 16 such that the resulting densities of two
threads 0, 1 and 6, , are equal to each other, as in density-based de-
composition. This way, OTPA is able to assign the lowest priority to
05, but not able to proceed any more. Let us consider another case,
as shown in Fig. 3(b), where D, ; =6 and D, ; = 14. This situation
can be considered as, from the initial deadline decomposition, thread
05, donating its slack of 2 to thread 6, 1. Then, OTPA is able to assign
priorities to 6, 1 and then 64 1 successfully. This way, we can see that
priority assignment can be improved through deadline adjustment,
particularly, by passing the slack of one thread to another.

Motivated by this, we aim to develop an efficient method for Pri-
ority Assignment with Deadline Adjustment (PADA). In particular, we
seek to incorporate the PADA method into the inherent characteris-
tics of the underlying OTPA priority assignment and workload-based
schedulability analysis. The basic idea behind PADA is as follows. It
first seeks to assign priority through OTPA. When OTPA fails, it ad-
justs the offsets and deadlines of some threads such that there exists
a thread that can be assigned a priority successfully after the deadline
adjustment. If it finds such a deadline adjustment, it continues to use
OTPA for priority assignment. Otherwise, it is considered as failure.
See Algorithm 3.

We define the slack for thread 0 4 as the minimum distance be-
tween the thread finishing time and its deadline, and denoted as Sy .
Using our schedulability test presented in Theorem 1, we can approx-
imate the slack Sy 4 as

Z‘Vri;&rk Wi (Dy.q) + Wi(Dyg) J

- (11)

St =Dig — Ceq L

We further define the normalized slack S_k,q of thread 0 4 as Sy ¢/Dy, ¢-
When adjusting the slacks of some threads, we call the thread giving

3 For simplicity, we choose to show a case on a uniprocessor platform, but the same
phenomenon can also happen on a multiprocessor platform.

Algorithm 3 PADA (Priority Assignment with Deadline Adjustment).

1: k < 0,A(1) < @, R(1) <« gdecom

2: repeat

3 if Assign-Priority(A(k), R(k)) = failure then

4 if Adjust-Deadline(A(k), R(k)) = failure then
5: return unscheduble

6 end if

7 end if

8: until R(k) is empty
9: return schedulable

its slack to another thread a donator thread, the thread receiving the
slack from a donator thread a donee thread, and the other threads that
are not related to slack donation third-party threads. In the example
shown in Fig. 3(b), 05, 5,0, 1, and 64 ; are the donator, the donee, and
the third-party thread, respectively.

We design a deadline adjustment method based on the under-
standing of the underlying priority assignment (OTPA) and analysis
methods (see Algorithm 4). There are three key issues in the deadline
adjustment: how to determine a donee thread and donator threads,
and how to arrange donation. In order to come up with principles
to address such issues, we first seek to obtain some understanding
about priority assignment with slack donation.

The purpose of slack donation is to assign a priority to a donee
thread to make it deemed schedulable. However, the slack donation
may impose some undesirable side effect to other threads that are
deemed schedulable with their own priorities assigned already.

Observation 1. For some threads 0; , and 0; ,, when D; , decreases,

the worst-case interference imposed on 6; ; may increase.

The above observation implies that when a donator thread de-
creases its deadline in order to pass some of its slack to a donee
thread, it may impose a greater amount of worst-case interference
on some other third-party threads, which can lead to violating the
schedulability of some third-party threads with their priorities as-
signed already. This is critical, since it is against one of the most im-

Algorithm 4 Adjust-Deadline(A(k), R(k)).

1: F < R(k)

2: repeat

3: find the thread with the smallest slack donation re-
quest inF  to become deemed schedulable according to
Theorem 1 (denoted as 65, € F)

4 construct a set of donator candidates DCs(65,) such
that 6s, € DGs(0;,) can donate to 5, a slack of at most

5: 2 without violating the schedulability of every already- as-

signed thread in A(k).
6: save the current offsets and deadlines of all the threads int;
7: while DG (65, ) is not empty do
8: find the thread with the greatest normalized slack in
DCs(6¢,) (denoted as 6; € DCs(65,))
9: adjust the offsets and deadlines of all the threads in task
15  toreflect the slack donation of 2 from 49;,. to 65,
10: if thread 67, is deemed schedulable by Theorem 1 then
11: return success
12: end if
13: update the slack of 9;;.
14: end while
15: restore the offsets and deadlines of all the threads in
that were saved in Line 5.
16: remove 67, from F

17: until F is emptyreturn failure
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portant properties of OTPA, which is that assigning a priority to a
thread does not ever affect the schedulability of the already-assigned
threads. In order to preserve this important property of OTPA, the
deadline adjustment method has a principle of disallowing any slack
donation that violates the schedulability of already-assigned threads
at this step and pursuing to reduce the potential for such problematic
slack donation in the future.

How to determine a donee. The potential for problematic slack do-
nation decreases when the threads with priority assigned have slacks
enough to accommodate any potential increase in the worst-case
interference that slack donation causes. Thereby, it is important to
keep the slacks of threads with priority assigned as much as pos-
sible. According to this principle, we seek to minimize the amount
of slack donated in total. This way, we select a donee thread (de-
noted as 6;,) that requires the smallest amount of slack donation to
become deemed schedulable according to Theorem 1 (see Line 3 in
Algorithm 4).

How to determine a donator. When the donee thread is determined,
we construct a set of donator candidate threads (denoted as DC(65,))
(see Line 4 in Algorithm 4). Each candidate thread 65 ; € DC(65,) that
belongs to the same task 7s, is deemed schedulable with a priority
assigned already, and should be able to donate a slack to the donee
without violating the schedulability of all the threads with their pri-
orities assigned already.

The potential for problematic slack donation particularly in-
creases when the smallest slacks of threads with priority assigned
become even smaller. This is because we want to avoid even a sin-
gle case of violating the schedulability of a thread with a priority
assigned before. From this perspective, we select a donator thread
04", € DC(6¢,) with the greatest normalized slack among the candi-
date set (see Line 7 in Algorithm 4).

How to arrange slack donation. The intuition behind how to arrange
slack donation is given by the following lemma:

Lemma 3. For any thread 0 4, when its deadline Dy , decreases,
the worst-case interference imposed on 0, 4 (ie., ZVTi#k W;(Dy q) +
Wi (Dy 4)) monotonically decreases.

Proof. In Egs. (8) and (9), we calculate the maximum amount of ex-
ecution of 7; and 7 in an interval of length Dy 4. For some given ,
Wi p(Dy, ¢» t) and Wy, ,(Dy 4, t) (described in Eq. (7)) only monoton-
ically decreases, as Dy 4 decreases. In Eq. (8), since A;(x, y) will be
determined to maximize W;(Dy, 4), there is no case where W;(Dy )
increases as Dy, , decreases. Therefore, it is easy to see that W;(Dy )
and Wy(Dy, 4) monotonically decrease as Dy , decreases. Therefore,
the lemma holds. O

The above lemma implies that when a donator decreases its dead-
line to pass a slack to a donee, the donator may get some additional
slack after donation. From this implication, we use a reasonably small
amount (£2) of slack in each donation step in order to increase a
chance to find such additional slacks (see Line 8), and each donator
keeps updating its slack to find some additional slack after donation
(see Line 12).

Computational complexity. The PADA algorithm iteratively seeks to
assign priorities to individual threads. When it fails to assign a prior-
ity through Assign-Priority (Algorithm 2), it invokes Adjust-Deadline
(Algorithm 4). In Algorithm 4, constructing a set of donator candi-
dates (Line 4) is a critical factor to the complexity of Algorithm 4,
and it performs schedulability tests O(n?) times for n threads. The
while loop (Lines 6-13) repeats at most S} /€2 times until the donee
thread 6;, becomes deemed schedulable with slack donation, where
Sie<T. Since the outmost loop (Lines 2-16) repeats at most n times,
Algorithm 4 performs schedulability tests max {0(n3), O(n - Tmax)}
times, where Tpax represents the largest T; among all tasks t; € t.
Since PADA invokes Adjust-Deadline at most n times, it thereby per-
forms schedulability tests max {O(n?), O(n? - Tiax)} times.
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100
. -4-Our-PADA
x --Our-OTPA
; 80 ©Base-Task-OPA
b= <-Baruah-Task-EDF
; 60 +-Base-Thread-DM
8 <©CLP-Task-EDF
B 40 +BMS-Task-EDF
> ~+LCA-Task-EDF
S 20 <-BMS-Task-DM
< --LCA-Task-RM
0

1 3 5 7 9 11 13 15
System utilization (U*)

Fig. 5. U varying, Njgy = 10, m =16, p=0.5.
6. Evaluation

In this section, we present simulation results to evaluate the
proposed thread-level priority assignment algorithms. For presenta-
tional convenience, we here define terms. ; is the sum of the worst-
case execution times of all threads of 7; (£¥4C; ¢), and Usys is the
system utilization (= ZVTI,E, G;/T;). Also, L; is the worst-case execu-
tion time of 7; on infinite number of processors, called critical execu-
tion path, and LUsys is defined as the maximum L;/D; among the tasks
T;eT.

6.1. Simulation environment

We generate DAG tasks mainly based on the method used in
Cordeiro et al. (2010). For a DAG task t;, its parameters are deter-
mined as follows. The number of nodes (threads) n; is uniformly cho-
sen in [1, Nmax], where Npgx is the maximum number of threads in a
task. For each pair of nodes, an edge is generated with the probability
of p. The task t; and its individual threads 6; , are randomly assigned
one of three different types: light, medium, and heavy, in which G; ,
is determined uniformly in the range of [1, 5], (6, 10], and (11, 40],
respectively, and T; (= D;)* is determined such that G;/T; is randomly
selected in the range of [0.1, 0.3], (0.3, 0.6], or (0.6, 1.0], respectively.

In order to understand how the proposed approaches perform
with parallel DAG tasks, we designed three different types of tests us-
ing following parameters: 1) system utilization, 2) the degree of par-
allelism, and 3) the total number of nodes. Figs. 4 and 5 present the
schedulability according to Usys, these simulations (annotated as U-
test) are designed to show the overall performance with other related
methods. We also conduct the second test (annotated as p-test) in
order to evaluate our approaches across the different degree of intra-
task parallelism. The result is shown in Fig. 6. Finally, we include the

4 In this section, we only show the results of implicit deadline DAG tasks due to
space limit, but the behaviors of constrained deadline DAG tasks are similar to those of
implicit ones.



254 J. Lee et al. / The Journal of Systems and Software 113 (2016) 246-256

-4-Our-PADA -©-Our-OTPA +Base-Task-OPA  <-Baruah-Task-EDF

BMS-Task-EDF ~ =+~LCA-Task-EDF

80 | A-Base-Thread-DM ©-CLP-Task-EDF
-=LCA-Task-RM

--BMS-Task-DM

Acceptance ratio (%)

0.1 0 0.6 0.7 0.8 0.9 1

2 03 04 05
The probability of edge generation (p)

Fig. 6. p varying, Npe = 10, m = 8.

120 (4-Our-PADA “0-Our-OTPA ++Base-Task-OPA  -&-Baruah-Task-EDF
= fA-Base-Thread-DM -©-CLP-Task-EDF ~ ¢BMS-Task-EDF ~ =+LCA-Task-EDF
9},100 lo-BMS-Task-DM  -=-LCA-Task-RM
el
+—
© 80
3
c 60
©
+—

Q 40
(O]
3
< 20

0 Y
10 20 30 40 50 60 70 80 90 100
Total number of nodes in T

Fig. 7. Total number of nodes varying, m = 8, U* =4, p=0.5.

[0}

#40ur-PADA #Our-OTPA

w £l

Average computational
time (seconds)
N

10 20 30 40 50 60 70 80 90 100
Total number of nodes in T

Fig. 8. Total number of nodes varying, m = 8, U* =4, p = 0.5.

last test (annoated as node-test) to show the performance according
to the total number of nodes in 7 for further understanding of the
proposed approaches. Results are shown in Figs. 7 and 8.

6.1.1. Task sets generation for U-test (Figs. 4 and 5)

We generate 1000 task sets at each data point with Ny = 10 for
m = 8, m = 16 respectively, while p is fixed to 0.5.°

Due to the difficulty of generating exact Usys, each task set is gen-
erated with U* which falls within in the interval between U}, =
U* —0.005 and Uy, = U* +0.005. Then, task sets are generated as
following steps.

S1. Arandom task set is generated by starting with an empty task set,
and successively added to as long as U* < Uy, ..

S2. Ifataskis added such that U* > U}, we discard this seed set and
go to step S1.

S3. Ifataskis added such that Urin <U* < Uy

 ax» We include this seed
set for simulation.

5 We referred to experimental values (i.e., Nmax, m, p) in Baruah (2014).

We increase U* from 1 to 8 for m =8 and 1 to 16 for m = 16, in
the step of 0.4, which is the sufficient amount to show the tendency.
Therefore, we perform simulation with 18,000 and 38,000 task sets
in Fig. 4 and Fig. 5, respectively.

6.1.2. Task sets generation for p-test (Fig. 6)
We generate 1000 task sets with Nyqx = 10 for m = 8, yet leaving
p undetermined, as follows.

S1. We first generate a seed task set with m tasks with the parameters
determined as described above.

S2. If the Usys of the seed task set is greater than m, we discard this
seed set and go to step S1.

S3. We include this seed set for simulation. We then add one more
task into the seed set and go to Step S2 until 1000 task sets are
generated.

We now consider constructing edges between nodes (i.e., prece-
dence dependency between threads) with the probability parame-
ter 0 < p < 1. When p = 0, there is no edge and thereby no thread
has predecessors, maximizing the degree of intra-task parallelism.
In contrast, with p = 1, each node is fully connected to all the other
nodes, representing no single thread can execute in parallel with any
other threads in the same task. As p increases, the number of edges
of each DAG task t; is increasing, and this generally leads to a longer
critical execution path L;, and then a larger LUsys.

In order to run simulation for different degrees of intra-task par-
allelism, we perform simulation with 1000 task sets in 10 different
cases in terms of p, where we increase p from 0.1 to 1.0 in the step of
0.1, resulting in 10,000 simulations.

6.1.3. Task sets generation for node-test (Figs. 7 and 8)

Most of generation settings in Section 6.1.1 are used for node-test
apart from limiting total number of nodes. A task is added to as long
as sum of nodes in 7 reaches the given total number of nodes, each
task can have nodes within [1, the given total number of nodes — sum
of nodes in t] unless task set has only one task. We generate variance
to be from 10 to 100 of the total number of nodes for m = 8 when
p and U* are fixed to 0.5 and m/2, respectively. 1000 simulations are
included at each data point, resulting in 10,000 simulations.

6.2. Other approaches for the comparison

We compare our proposed OTPA and PADA approaches (annotated
as Our-OTPA and Our-PADA) with other related methods. We first
include two baseline approaches: task-level OPA and thread-level DM
(annotated as Base-Task-OPA and Base-Thread-DM), in order to
evaluate the effectiveness of OTPA and PADA in terms of thread-level
priority assignment and incorporation of the characteristics of par-
allel tasks, respectively. Base-Task-OPA assigns priorities according
to the OTPA algorithm, but it restricts that all threads belonging to
the same task have the same priority. Base-Thread-DM assigns pri-
orities to threads according to the increasing order of their relative
deadlines (i.e., the one having a smaller relative deadline is assigned
a higher priority). Both priority assignment algorithms work with our
schedulability test in Theorem 1. The above four approaches all re-
quire to resolve the precedence dependencies of individual threads
through task decomposition. Thus, we transform a DAG task into a
synchronous parallel task according to the idea presented in Saifullah
etal. (2011), and we use one of the existing task decomposition tech-
niques (Nelissen et al., 2012a) to assign offsets and deadlines to each
thread. Although, our approaches can use any decomposition tech-
niques, the technique in Nelissen et al. (2012a) is used since it is de-
signed for different thread execution times.

For the comparison with other known related methods (see
Table 1), we include six more methods. For task-level EDF scheduling,
four methods are available: pseudo-polynomial time schedulability
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tests in Bonifaci et al. (2013) (BMS-Task-EDF) and (Baruah, 2014)
(Baruah-Task-EDF),5 an interference-based test in Chwa et al. (2013)
(CLP-Task-EDF), and a capacity augmentation bound in Li et al.
(2014) (LCA-Task-EDF). For task-level DM scheduling, a pseudo-
polynomial time schedulability test in Bonifaci et al. (2013) (BMS-
Task-DM) is included. Also, we involve a capacity augmentation
bound in Li et al. (2014) (LCA-Task-RM) for task-level RM schedul-
ing. We note that the resource augmentation bounds in Baruah et al.
(2012), Andersson and de Niz (2012) and Li et al. (2013) are not
included in this comparison, because those bounds can serve as
schedulability tests only when an optimal schedule is known. How-
ever, no optimal schedule for parallel tasks has been developed so far,
and therefore, it is difficult (if not impossible) to check the feasibility
of a task set through simulation. We also omit to include a capacity
augmentation bound in Li et al. (2013) since LCA-Task-EDF is the
best known capacity augmentation bound of EDF.

For reference, Our-PADA, Baruah-Task-EDF, BMS-Task-EDF,
and BMS-Task-DM have pseudo-polynomial time complexity while
other methods have polynomial time complexity. We will discuss
more details of computational overhead in Section 6.3.

6.3. Simulation results

U-test. Figs. 4 and 5 plot simulation results in terms of the accep-
tance ratio for m = 8 and m = 16, respectively, as we varied U*. The
figures show that Our-OTPA and Our-PADA outperform the other
methods with wide margins. Showing the effectiveness of thread-
level assignment versus task-level, there are large gaps between Our-
OTPA and Base-Task-OPA in the both figures. The figures also show
that Our-OTPA outperforms Base-Thread-DM significantly as well,
indicating that it can be beneficial to incorporate the characteristics
of intra-task parallelism into priority assignment. In the figures, Our-
OTPA outperforms the other six methods which considered well-
known deadline-based scheduling algorithms such as EDF and DM.
The results indicate that there is a large room for improving schedul-
ing policies that accommodate the features of parallel tasks. In the
figures, Our-PADA is shown to find up to 23.8% (21.3% for m = 16)
more task sets deemed schedulable, compared to Our-OTPA. Those
results show the benefit of deadline adjustment.

p-test . Fig. 6 plots simulation results in terms of acceptance ra-
tio for m = 8 as we varied p. As discussed before, an increasing value
of p generates a growing number of edges in each DAG task t;, lead-
ing to a greater degree of precedence constraints between nodes but
a smaller degree of intra-task parallelism (i.e., a smaller number of
threads in the same segment).

Similar to the above results, Fig. 6 shows that Our-OTPA and Our-
PADA perform generally superior to other methods. It demonstrates
a need of thread-level priority assignment particularly with a smaller
value of p. On the contrary, Our-PADA and Our-OTPA show a com-
parable performance with Base-Task-OPA and CLP-Task-EDF when
p=1, where all the nodes in a DAG task are fully connceted, making t;
a sequential task. As a consequence, it decreases the efficiency of the
finer-grained thread-level scheduling, leading to a comparable result
with Task-level approaches.

In spite of this effect, the rest of the five other task-level ap-
proaches presented by dash line are shown to perform worse when
p increases. This is because those five methods share in common
that their schedulability tests check whether LUsys is smaller than or
equal to some threshold (i.e., m/(2m — 1) in BMS-Task-EDF, approx-
imately m/(2m — 1) in Baruah-Task-EDF, 2/(3 + +/5) in LCA-Task-

6 Baruah (2014) improves the schedulability for Global-EDF presented in Bonifaci
et al. (2013) by searching all the possible o in their schedulability test. Due to the
time limitation, we follow the same approximation as shown in experiments section
in Baruah (2014) instead of searching all the potential space of o. See the details in
Baruah (2014).

EDF, m/(3m — 1) in BMS-Task-DM, and 1/(2 + +/3) in LCA-Task-
RM), and a larger value of p generally increases LUyys for a task set
and as described above, it leads to worse schedulability.

node-test . In order to evaluate our approaches over a different
number of threads, we run simulation with different value of the
total number of nodes for m =8 when p= 0.5 and U* = 4. Fig. 7
shows that Our-OTPA and Our-PADA overwhelmingly outperform
the other eight methods particularly when task sets have larger num-
ber of nodes. Our-PADA is shown to improve schedulability com-
pared to Our-OTPA by up to 98% more. Such an improvement in-
creases with a larger value of nodes. With a fixed value of p, a larger
value of nodes ends up with a larger number of segments and this
gives a more chance for Our-PADA to adjust segment deadlines for
schedulability improvement.

However, according to achieve the improved schedulability, the
computational overhead is also increased. We additionally compare
the average computational time between Our-OTPA and Our-PADA
with the same task sets used in Fig. 7. Fig. 8 presents the increas-
ing gap of computational time between two approaches with larger
value of nodes, where Our-PADA is shown to decrease its perfor-
mance as opposed to Fig. 7. We expect that we can improve this weak-
ness by compromising the trade-off (i.e., limiting iteration numbers
in Algorithm 4) as a future study.

7. Conclusion

In the recent past, there is a growing attention to supporting par-
allel tasks in the context of real-time scheduling (Bonifaci et al., 2013;
Li et al., 2014; Baruah et al.,, 2012; Andersson and de Niz, 2012; Li
et al.,, 2013; Chwa et al.,, 2013; Baruah, 2014; Saifullah et al., 2011;
Nelissen et al., 2012a; Lakshmanan et al., 2010; Liu and Anderson,
2010; 2012; Ferry et al., 2013; Axer et al., 2013; Qi Wang, 2014, Li
et al,, 2015; Kwon et al., 2015; Melani et al., 2015; Sanjoy Baruah,
2015; Shen Li, 2015). In this paper, we extended real-time scheduling
categories, according to the unit of priority assignment, from task-
level to thread-level, and we presented, to the best of our knowl-
edge, the first approach to the problem of assigning task-wide thread-
level fixed-priorities for global parallel task scheduling on multipro-
cessors. We showed via experimental validation that the proposed
thread-level priority assignment can improve schedulability signifi-
cantly, compared to its task-level counterpart. Our experiment results
also showed that priority assignment can be more effective when in-
corporating the features of parallel tasks.

This study presented a preliminary result on task-wide thread-
level fixed-priority scheduling for parallel tasks, with many further
research questions raised. For example, would it be more effective
if there exist some new decomposition methods that incorporate the
characteristics of the underlying thread-level priority assignment and
analysis techniques? Or, would it be better to perform thread-level
priority assignment for parallel tasks without task decomposition, if
possible? We plan to do further research answering those questions.
Another direction of future work is to extend our work taking into ac-
count architectural characteristics (Ding and Zhang, 2012; Ding et al.,
2013; Ding and Zhang, 2013; Zhang and Ding, 2014; Liu and Zhang,
2015; Liu and Zhang, 2014).
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