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a b s t r a c t

The advent of multi- and many-core processors offers enormous performance potential for parallel tasks that

exhibit sufficient intra-task thread-level parallelism. With a growth of novel parallel programming models

(e.g., OpenMP, MapReduce), scheduling parallel tasks in the real-time context has received an increasing at-

tention in the recent past. While most studies focused on schedulability analysis under some well-known

scheduling algorithms designed for sequential tasks, little work has been introduced to design new schedul-

ing policies that accommodate the features of parallel tasks, such as their multi-threaded structure. Motivated

by this, we refine real-time scheduling algorithm categories according to the basic unit of scheduling and pro-

pose a new priority assignment method for global task-wide thread-level fixed-priority scheduling of parallel

task systems. Our evaluation results show that a finer-grained, thread-level fixed-priority assignment, when

properly assigned, significantly improves schedulability, compared to a coarser-grained, task-level assign-

ment.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

The trend for multicore processors is towards an increasing num-

ber of on-chip cores. Today, CPUs with 8–10 state-of-the-art cores or

10s of smaller cores AMD are commonplace. In the near future, many-

core processors with 100s of cores will be possible Comming soon.

A shift from unicore to multicore processors allows inter-task paral-

lelism, where several applications (tasks) can execute simultaneously

on multiple cores. However, in order to fully exploit multicore pro-

cessing potential, it entails support for intra-task parallelism, where a

single task consists of multiple threads that are able to execute con-

currently on multiple cores.

Two fundamental problems in real-time scheduling are (1) algo-

rithm design to derive priorities so as to satisfy all timing constrains

(i.e., deadlines) and (2) schedulability analysis to provide guarantees

of deadline satisfaction. Over decades, those two fundamental prob-

lems have been substantially studied for multiprocessor scheduling

(Davis and Burns, 2011), generally with a focus on the inter-task

parallelism of single-threaded (sequential) tasks. Recently, a grow-

ing number of studies have been introduced for supporting multi-

threaded (parallel) tasks (Bonifaci et al., 2013; Li et al., 2014; Baruah

et al., 2012; Andersson and de Niz, 2012; Li et al., 2013; Chwa et al.,
∗ Corresponding author. Tel.: +82 42 350 3524.

E-mail address: insik.shin@cs.kaist.ac.kr, insik.shin@gmail.com (I. Shin).
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013; Baruah, 2014; Saifullah et al., 2011; Nelissen et al., 2012a; Lak-

hmanan et al., 2010; Liu and Anderson, 2010; 2012; Ferry et al., 2013;

xer et al., 2013; Qi Wang, 2014; Li et al., 2015; Kwon et al., 2015;

elani et al., 2015; Sanjoy Baruah, 2015; Shen Li, 2015). Schedulabil-

ty analysis has been the main subject of much work on thread-level

arallelism (Bonifaci et al., 2013; Li et al., 2014; Baruah et al., 2012;

ndersson and de Niz, 2012; Li et al., 2013; Chwa et al., 2013; Baruah,

014; Saifullah et al., 2011; Nelissen et al., 2012a; Lakshmanan et al.,

010; Liu and Anderson, 2010; 2012; Ferry et al., 2013; Axer et al.,

013; Li et al., 2015) for some traditionally well-known scheduling

olicies, i.e., EDF (Earliest Deadline First) (Liu and Layland, 1973) and

M (Deadline Monotonic) (Leung and Whitehead, 1982). However, a

elatively much less effort has been made to understand how to de-

ign good scheduling algorithms for parallel tasks.

In a sequential task, a task is a sequence of invocations, or jobs,

nd the task invocation is the unit of scheduling. In general, priority-

ased real-time scheduling algorithms can fall into three categories

ccording to when priorities change (Davis and Burns, 2011) : task-

ide fixed-priority where a task has a single static priority over all of

ts invocations (e.g., DM), job-wide fixed-priority where a job has a sin-

le fixed priority (e.g., EDF), and dynamic-priority where a single job

ay have different priorities at different times (e.g., LLF Least Laxity

irst Dertouzos and Mok, 1989).

A parallel task consists of multiple threads, and the invocation of

thread is then the unit of scheduling. This brings a new dimension

o the scheduling categories. With a finer granularity of scheduling
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rom task to thread, we can further subdivide each scheduling cate-

ory into two sub-categories, task-level and thread-level, according to

he unit of priority assignment. To this end, we can refine the schedul-

ng categories to a finer-grained thread level as follows:

• Task-wide thread-level fixed-priority: a single thread has a static

priority across all of its invocations.
• Job-wide thread-level fixed-priority: a single thread has a static pri-

ority over one invocation.
• Thread-level dynamic-priority: a single thread can have different

priorities at different times within one invocation.

In this paper, we aim to explore the possibility of performance

nhancement in real-time scheduling by fully exploiting both inter-

ask and intra-task parallelisms. We hypothesize that a major fac-

or in fully capitalizing on multicore processing potential is prior-

ty assignment. The key intuition behind our work is that finding

n appropriate priority ordering is as important as using an effi-

ient schedulability test, and that a finer-grained priority ordering

t the thread level is more effective than a coarser-grained, task-

evel one. To this end, in this paper, we focus on priority assignment

olicies for global1 task-wide thread-level fixed-priority pre-emptive

cheduling.

.1. Related work

In the recent past, supporting intra-task thread-level parallelism

n the context of real-time scheduling has received increasing atten-

ion in the recent past (Bonifaci et al., 2013; Li et al., 2014; Baruah

t al., 2012; Andersson and de Niz, 2012; Li et al., 2013; Chwa et al.,

013; Baruah, 2014; Saifullah et al., 2011; Nelissen et al., 2012a; Lak-

hmanan et al., 2010; Liu and Anderson, 2010; 2012; Ferry et al., 2013;

xer et al., 2013; Qi Wang, 2014; Li et al., 2015; Kwon et al., 2015;

elani et al., 2015; Sanjoy Baruah, 2015; Shen Li, 2015). The work in

iu and Anderson (2010); 2012) considers soft real-time scheduling

ocusing on bounding tardiness upon deadline miss, while hard real-

ime systems aim at ensuring all deadlines are met. In this paper, we

onsider hard real-time scheduling.

Fork-join task model. The fork-join task model is one of the popu-

ar parallel task models (Lea, 2000), OpenMP, where a task consists of

n alternate sequence of sequential and parallel regions, called seg-

ents, and all the threads within each segment should synchronize

n order to proceed to the next segment. Under the assumption that

ach parallel segment can have at most as many threads as the num-

er of processors, Lakshmanan et al. (2010) introduced a task decom-

osition method that transforms each synchronous parallel task into

set of independent sequential tasks, which can be then scheduled

ith traditional multiprocessor scheduling techniques. Lakshmanan

t al. (2010) presented a resource augmentation bound2 of 3.42 for

artitioned thread-level DM scheduling. Lately, Qi Wang (2014) at-

empted to implement a system, called FJOS, that supports to fork-
1 Multiprocessor scheduling approaches can broadly fall into two classes: global and

artitioned. Partitioned approaches allocate each task (or thread) to a single processor

tatically, transforming the multiprocessor scheduling into uniprocessor scheduling

ith task (or thread) allocation. In contrast, global approaches allow tasks (or threads)

o migrate dynamically across multiple processors.
2 Recently, Li et al. (2013) distinguished resource and capacity augmentation bounds

s follows. The resource augmentation bound r of a scheduler S has the property that if

task set is feasible on m unit-speed processors, then the task set is schedulable under

on m processors of speed r. For a scheduler S and its corresponding schedulability

ondition X, their capacity augmentation bound c has the property that if the given

ondition X is satisfied with a task set, the task set is schedulable by S on m processors

f speed c. Since the resource augmentation bound is connected to an ideal optimal

chedule, it is hard (if not impossible) to use it as a schedulability test due to the diffi-

ulty of finding an optimal schedule in many multiprocessor scheduling domains. On

he other hand, the capacity augmentation bound has nothing to do with an optimal

chedule, and this allows it to serve as an easy schedulability test (see Li et al., 2013

ore details).
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oin intra-task parallelism in a hard real-time environment. They pro-

osed the overhead-aware assignment algorithm based on the anal-

sis presented in Axer et al. (2013).

Synchronous parallel task model. Relaxing the restriction that se-

uential and parallel segments alternate, several studies have con-

idered a more general synchronous parallel task model that allows

ach segment to have any arbitrary number of threads. Saifullah

t al. (2011) presented decomposition method for synchronous par-

llel tasks and proved a resource augmentation bound of 4 for global

hread-level EDF scheduling and 5 for partitioned thread-level DM

cheduling. Building upon this work, Ferry et al. (2013) presented a

rototype scheduling service for their RT-OpenMP concurrency plat-

orm. Nelissen et al. (2012a) also introduced another decomposition

ethod and showed a resource augmentation bound of 2 for a cer-

ain class of global scheduling algorithms, such as PD2 (Srinivasan

nd Anderson, 2005), LLREF (Cho et al., 2006), DP-Wrap (Levin et al.,

010), or U-EDF (Nelissen et al., 2012b). Some studies (Andersson and

e Niz, 2012; Chwa et al., 2013; Axer et al., 2013) developed direct

chedulability analysis without task decomposition for synchronous

arallel tasks. In this context, Andersson and de Niz (2012) showed

resource augmentation bound of 2 − 1/m for global EDF schedul-

ng. Chwa et al. (2013) introduced an interference-based analysis for

lobal task-level EDF scheduling, and Axer et al. (2013) presented

response-time analysis (RTA) for partitioned thread-level fixed-

riority scheduling.

DAG task model. Refining the granularity of synchronization from

egment-level to thread-level, a DAG (Directed Acyclic Graph) task

odel is considered, where a node represents a thread and an edge

pecifies a precedence dependency between nodes. Baruah et al.

2012) showed a resource augmentation bound of 2 for a single DAG

ask with arbitrary deadlines under global task-level EDF scheduling.

or a set of DAG tasks, a resource augmentation bound of 2 − 1/m

as presented for global task-level EDF scheduling in Bonifaci et al.

2013), Li et al. (2013) and Baruah (2014). Bonifaci et al. (2013) also

erived a 3 − 1/m resource augmentation bound for global task-level

M scheduling. In addition to those resource augmentation bounds,

i et al. (2013) introduced capacity augmentation bounds that can

ork as independent schedulability tests, and showed a 4 − 2/m ca-

acity augmentation bound for global task-level EDF. In a further

tudy, Li et al. (2015) developed a prototype platform, called PGEDF,

y combining GNU-OpenMP runtime system and the LITMUSRT sys-

em for DAG tasks, and evaluated the schedulability test presented in

i et al. (2013). Later, Li et al. (2014) improved the capacity augmen-

ation bound up to 2.6181 and 3.7321 for global task-level EDF and

M, respectively. Li et al. (2014) also proposed a new scheduling pol-

cy, called federated scheduling, and derived a resource augmentation

ound of 2 for the proposed approach.

Nowadays, some studies have been introduced for an extended

AG task model, which considers more practical excution environ-

ents. Kwon et al. (2015) relaxed the assumption of a pre-defined

umber of threads in the DAG task model, and exploited multiple par-

llel options (i.e., runtime selectable numbers of threads) to improve

chedulability. The work in Melani et al. (2015) and Sanjoy Baruah

2015) also proposed the extended DAG task model which charac-

erizes the excution flow of conditional branch, and Shen Li (2015)

roposed a real-time scheduling of MapReduce workflows based on

hierarchical scheduling scheme.

In summary, much work in the literature introduced and im-

roved schedulability analysis for different parallel task models un-

er different multiprocessor scheduling approaches and algorithms.

able 1 summarizes the global scheduling algorithms that have been

onsidered in the literature, to the best of the author’s knowledge. We

ave two interesting observations from the table. One is that most

xisting studies considered well-known deadline-based scheduling

lgorithms (EDF, DM) originally designed for sequential tasks, with a

arge portion on task-level priority scheduling. Capturing the urgency
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Table 1

Global scheduling algorithms for parallel tasks.

Task-wide fixed-priority Job-wide fixed-priority Dynamic-priority

Global Task-level DM (Bonifaci et al., 2013) /

RM (Li et al., 2014)

EDF (Bonifaci et al., 2013; Li et al., 2014; Baruah et al., 2012;

Andersson and de Niz, 2012; Li et al., 2013; Chwa et al., 2013;

Baruah, 2014; Li et al., 2015)

Thread-level (OTPA / PADA [this paper]) EDF (Saifullah et al., 2011) PD2 / U-EDF / LLREF / DP-Wrap

(Nelissen et al., 2012a)
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of real-time workloads, deadlines are a good real-time scheduling pa-

rameter, in particular, for sequential tasks on a single processor (Liu

and Layland, 1973). However, deadlines are no longer as effective for

parallel tasks on multiprocessors, since deadlines are inappropriate

to represent the characteristics of parallel tasks, including the de-

gree of intra-task parallelism (i.e., the number of threads that can run

in parallel on multiprocessors) or precedence dependency between

threads. The other observation from Table 1 is that little work has ex-

plored the task-wide thread-level fixed-priority scheduling category.

These motivate our work to develop a new task-wide thread-level

fixed-priority assignment method that incorporates the characteris-

tics of DAG tasks.

1.2. Our approach

This work is motivated by an attempt to see how good task-wide

thread-level fixed-priority assignment, beyond task-level, can be

for global multiprocessor scheduling of parallel tasks. To this end,

this paper seeks to explore the possibility of using the OPA (Optimal

Priority Assignment) algorithm (Audsley, 1991; 2001; Davis and

Burns, 2009), which is proven to be optimal in task-wide fixed-

priority assignment for independent tasks with respect to some

given schedulability analysis. The application of OPA to thread-level

priority assignment raises several issues, including how to deal

with thread-level dependency and how to develop an efficient

thread-level OPA-compatible analysis.

A parallel task typically consists of multiple threads that come

with their own precedence dependency. With such a thread-level de-

pendency in the parallel task case, it is thereby non-trivial to make

use of OPA for thread-level priority assignment, since OPA is designed

for independent tasks. Task decomposition is one of the widely used

approaches to deal with the thread-level precedence dependency

(Saifullah et al., 2011; Nelissen et al., 2012a; Lakshmanan et al., 2010;

Ferry et al., 2013; Axer et al., 2013). Through task decomposition, each

individual thread is assigned its own offset and deadline in a way that

its execution is separated from those of its predecessors. This allows

all threads to be considered as independent as long as their thread-

level deadlines can be met. In this paper, we employ such a task de-

composition approach to develop an OPA-based thread-level priority

assignment method.

Contributions. The main results and contributions of this paper can

be summarized as follows. First, we introduce an efficient thread-

level interference-based analysis that is aware of the multi-threaded

structure of parallel tasks (in Section 3). We also show that the pro-

posed analysis is OPA-compatible (in Section 4). This allows OPA,

when using the proposed analysis, to accommodate the characteris-

tics of parallel tasks via its underlying analysis in priority assignment.

Second, we show that the OPA algorithm, originally designed for

independent sequential tasks, is applicable to parallel tasks when

thread-level precedence dependencies are resolved properly through

task decomposition. That is, the algorithm holds optimality in thread-

level priority assignment when threads are independent with their

own offsets and deadlines with respect to its underlying analysis

(in Section 4). With the use of OPA, this study separates thread

priority assignment from thread dependency resolution. While

most previous decomposition-based studies (Saifullah et al., 2011;

Lakshmanan et al., 2010; Ferry et al., 2013) share an approach that
esolves between-thread dependencies by determining the relative

eadlines of individual threads properly and makes use of thread

eadlines for priority ordering, this study decouples thread priorities

rom deadlines.

Third, we propose a new OPA-based priority assignment method

hat adjusts thread offsets and deadlines, called PADA (Priority As-

ignment with Deadline Adjustment), taking into consideration the

roperties of OPA and its underlying analysis (in Section 5). In the pre-

ious studies on fixed-priority scheduling (Saifullah et al., 2011; Lak-

hmanan et al., 2010; Ferry et al., 2013), thread deadlines are deter-

ined, from an individual task perspective, only to resolve intra-task

hread dependency. On the other hand, in this study, thread deadlines

re adjusted, from the system-wide perspective, to accommodate in-

erference between tasks for schedulability improvement.

Finally, our evaluation results show that the proposed thread-level

riority assignment is significantly more effective, in terms of the

umber of task sets deemed schedulable, than task-level priority as-

ignment in global task-wide fixed-priority scheduling (in Section 6).

he results also show that incorporating the features of parallel tasks

nto priority assignment significantly improves schedulability, com-

ared to traditional deadline-based priority ordering, and that the

roposed approach outperforms the existing approaches.

. System model

.1. DAG task

We consider a set of DAG (Directed Acyclic Graph) tasks τ . A DAG

ask τ i ∈ τ is represented by a directed acyclic graph as shown in

ig. 1(a). A vertex vi, p in τ i represents a single thread θ i, p, and a di-

ected edge from vi, p to vi, q represents the precedence dependency

uch that θ i, q cannot start execution unless θ i, p has finished execu-

ion. A thread θ i, p becomes ready for execution as soon as all of its

redecessors have completed their execution.

A sporadic DAG task τ i invokes a series of jobs with the minimum

eparation of Ti, and each job should finish its execution within Di

the relative deadline). We denote as Jh
i

the h-th job of τ i.

.2. Task decomposition

A DAG task can be decomposed into a set of independent sequen-

ial sub-tasks, capturing the precedence relation between threads by

eparating the execution windows of the threads. That is, each thread

f the DAG task is assigned its own relative offset and deadline in a

ay that the release time of the thread is no earlier than the latest

eadline among the ones of all the predecessors.

We denote τ decom a set of all threads generated from τ through

ask decomposition, and the number of threads in a decomposed task

et τ decom is denoted as n. For a decomposed task τ i, we define a pri-

ary thread of the task (denoted by θ i, 1), as one of the threads in τ i

hat have no predecessors. Then, each thread θ i, p in τ i is specified

y (Ti, p, Ci, p, Di, p, Oi, p), where Ti, p is the minimum separation (which

quals to Ti), Ci, p is the worst-case execution time (which is inherited

y the original thread), Di, p is the relative deadline, and Oi, p is the

elative offset (from Oi,1 = 0). Note that Di, p and Oi, p are determined

y decomposition methods (more details in Section 5). Fig. 1(b)
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Fig. 1. A DAG task and its decomposed task.
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llustrates a decomposed task, which corresponds to the DAG task in

ig. 1(a).

For a job Jh
i
, the primary thread θ i, 1 is released at rh

i,1
, and has ab-

olute deadline dh
i,1

= rh
i,1

+ Di,1. Then, the next thread θ i, p which has

ependency with θ i, 1 is released at rh
i,p

= rh
i,1

+ Oi,p, and has deadline

h
i,p

= rh
i,p

+ Di,p. The execution window of θ i, p is then defined as an

nterval (rh
i,p

, dh
i,p

].

.3. Platform and scheduling algorithm

This paper focuses on a multi-core platform, consisting of m iden-

ical processors. This paper also considers global task-wide thread-

evel fixed-priority scheduling, in which each single thread θ i, p is able

o migrate dynamically across processors and assigns a static priority

i, p across all of its invocations. We denote as hp(θ i, p) a set of threads

hose priorities are strictly higher than Pi, p.

. Schedulability analysis

Once a DAG task is decomposed into individual threads, each

hread has its own relative offset and deadline without having to

onsider precedence dependency any more. This allows to treat each

hread as an individual independent sequential task, and it is possi-

le to analyze the schedulability of each thread in a sufficient manner

sing the existing task-level schedulability analyzes. However, this

rings a substantial degree of pessimism since the existing task-level

nalysis techniques were originally designed for sequential tasks and

re thereby oblivious of the intra-task parallelism.

Motivated by this, the goal of this section is to develop a schedu-

ability condition that helps to analyze the schedulability of a thread

ore efficiently, incorporating the internal thread structures of par-

llel tasks into analysis. To this end, we consider interference-

ased analysis as a basis, since interference-based analysis is OPA-

ompatible (Davis and Burns, 2009).

.1. Interference-based schedulability analysis

Extending the traditional notion of task-level interference, thread-

evel interference can be defined as follows.

• Interference Ik, q(a, b): the sum of all intervals in which θ k, q

is ready for execution but cannot execute due to other higher-

priority threads in [a, b).
• Interference I(i, p) → (k, q)(a, b): the sum of all intervals in which θ i, p

is executing and θ k, q is ready to execute but not executing in [a,

b).

With the above definitions, the relation between Ik, q(a, b) and

(i, p) → (k, q)(a, b) serves as an important basis for deriving a schedula-

ility analysis. Since a thread cannot be scheduled only when m other

hreads execute, a relation between Ik, q(a, b) and I(i, p) → (k, q)(a, b) can

e derived similarly as in Lemma 3 for sequential tasks in Bertogna
t al. (2005) as follows:

k,q(a, b) =
∑

(i,p) �=(k,q) I(i,p)→(k,q)(a, b)

m
. (1)

Let J∗
k,q

denote the job that receives the maximum total interfer-

nce among jobs on θ k, q, and then the worst-case total interference

n θ k, q in the job (denoted by I∗
k,q

) can be expressed as

∗
k,q � max

h
(Ik,q(rh

k,q, dh
k,q)) = Ik,q(r∗

k,q, d∗
k,q). (2)

Using the above definitions, the studies (Bertogna et al., 2005;

009) developed the schedulability condition of global multipro-

essor scheduling algorithms for sequential tasks, which can be ex-

ended to parallel tasks as follows:

emma 1 (From Bertogna et al., 2005; 2009). A set τ decom is schedula-

le under any work-conserving algorithm on a multiprocessor composed

y m identical processors if and only if the following condition holds for

very thread θ k, q:

∑

i,p∈τ decom\{θk,q}
min(I∗(i,p)→(k,q), Dk,q − Ck,q + 1)

< m · (Dk,q − Ck,q + 1). (3)

Then, it is straight-forward that the schedulability of the decom-

osed task set guarantees that of the original task set, as recorded in

he following lemma.

emma 2 (From Saifullah et al., 2011). If τ decom is schedulable, then τ
s also schedulable.

Since it is generally intractable to compute exact interference un-

er a given scheduling algorithm, existing approaches for the sequen-

ial task model (Bertogna et al., 2005; 2009; Baker, 2003; Guan et al.,

009; Lee et al., 2010; 2011; Back et al., 2012; Chwa et al., 2012) have

erived upper-bounds on the interference under target algorithms,

esulting in sufficient schedulability analyzes. We also need to calcu-

ate upper-bounds on the interference for decomposed tasks. Since

he structure of a decomposed task is different from that of a sequen-

ial task, the execution and release patterns that maximize interfer-

nce should be different, which will be addressed in the next section.

.2. Workload-based schedulability analysis with offset

As we mentioned, this paper focuses on task-wide thread-level

xed-priority scheduling with task decomposition. Therefore, we

eed to check whether each thread finishes its execution within the

eadline as described in Lemma 1, and the remaining step is to calcu-

ate interference of all other threads on a target thread θ k, q, i.e., the

HS of Eq. (3).

One simple approach is to upper-bound thread-to-thread interfer-

nce (i.e., I∗
(i,p)→(k,q)

), by calculating the maximum amount of execu-

ion of θ i, p in the execution window of θ k, q, called workload. If we

ake this approach, we can re-use existing task-level schedulability
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Fig. 2. The maximum workload of all threads in τ i in (x, y] with given �i(x, y).
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tests for the sequential model. However, the approach entails a sig-

nificant pessimism because it does not account for the precedence

relation among threads in the same task; in other words, if we con-

sider the precedence relation, the situations where the amount of ex-

ecution of a thread of a task is maximized and that of another thread

of the same task is maximized may not happen at the same time.

Therefore, we seek to derive an upper-bound on task-to-thread

interference, i.e., the interference of a task τ i on θ k, q, denoted by∑
∀θi,p∈τi

min(I∗
(i,p)→(k,q)

, Dk,q − Ck,q + 1). To achieve this, we first cal-

culate the amount of execution of τ i in the execution window of θ k, q

when the alignment for the job releases of τ i is given. Then, we iden-

tify the alignment that maximizes the amount of execution of τ i.

We consider two cases to calculate the maximum workload: when

i �= k and i = k. This is because, i = k implies that both interfered and

interfering threads belong to the same task, meaning that the align-

ment for τ i’s job releases is automatically given.

3.2.1. The maximum workload when i �= k

To simplify the presentation, we use the following terms. A job of

a task is said to be a carry-in job of an interval (x, y] if it is released

before x but has a deadline within (x, y], a body job if its release time

and deadline are both within (x, y], and a carry-out job if it is released

within (x, y] but a deadline after y. Note that a job is released before

x and has a deadline after y is regarded as a carry-in job.

Let us consider the situation in which jobs of τ i are periodically re-

leased. We define �i(x, y) that is the difference between the release

time of the primary thread of the carry-in job in (x, y] and x where

is the start point of the execution window of θ k, q as shown in Fig. 2.

For a given �i(x, y), the interval (x, y] of length l can be partitioned

into carry-in, body, and carry-out intervals, and the length of the in-

tervals are denoted as CIi(l, �i(x, y)), BDi(l, �i(x, y)), and COi(l, �i(x,

y)), respectively, and described as

Ii(l,�i(x, y)) = min(Ti − �i(x, y), l), (4)

BDi(l,�i(x, y)) =
⌊

l − CIi(l,�i(x, y))

Ti

⌋
· Ti, (5)

Oi(l,�i(x, y)) = l − CIi(l,�i(x, y)) − BDi(l,�i(x, y)). (6)

Then, with the given �i(x, y), the workload contribution of each

thread in (x, y] (shown in Fig. 2) is calculated as

i,p(l,�i(x, y)) = WCI
i,p + W BD

i,p + WCO
i,p , (7)

where

WCI
i,p =

[
min(Oi,p + Di,p,�i(x, y) + l) − max(�i(x, y), Oi,p)

]Ci,p

0
,

BD
i,p =

⌊
l − CIi(l,�i(x, y))

Ti,p

⌋
· Ci,p,

CO
i,p =

[
COi(l,�i(x, y)) − Oi,p

]Ci,p

0
.

Note that [X]b
a means min (max (X, a), b). Now we will prove that

CI
i,p

,W BD
i,p

, and WCO
i,p

are respectively the upper-bounds on the amount
f execution of a carry-in job, body jobs, and a carry-out job of θ i, p in

n interval (x, y] of length l with given �i(x, y).

For WCI
i,p

, we first find the interval in which the execution window

f the carry-in job of θ i, p overlaps with (x, y]; we denote the interval

s (a, b]. Without loss of generality, we set rCI
i,1

to 0. Then, the carry-in

ob of θ i, p is released at Oi, p. If �i(x, y) < Oi, p, the time instant a is

i, p; otherwise, a is �i(x, y), as shown in Fig. 2. Also, the deadline of

he carry-in job of θ i, p is Oi,p + Di,p. If �i(x, y) + l > Oi,p + Di,p, the

ime instant b is Oi,p + Di,p; otherwise, b is �i(x, y) + l, meaning that

nly the carry-in job (without body and carry-out jobs) overlaps with

x, y]. In summary, a equals to max (�i(x, y), Oi, p), and b equals to

in(Oi,p + Di,p,�i(x, y) + l). In (a, b], the carry-in job cannot execute

ore than its execution time Ci, p and less than 0; therefore, we derive
CI
i,p

in Eq. (7).

When it comes to W BD
i,p

, the number of body jobs of θ i, p is simply

alculated by

⌊
l−CIi(l,�i(x,y))

Ti,p

⌋
. Therefore, W BD

i,p
equals to the number

ultiplied by the execution time Ci, p.

The derivation of WCO
i,p

is similar to that of WCI
i,p

. We find the interval

n which the execution window of the carry-out job of θ i, p overlaps

ith (x, y]; we also denote the interval as (a, b]. Without loss of gen-

rality, we set rCO
i,1

to 0, where rCO
i,1

is the release time of the carry-out

ob of θ i, p. Then, a and b are Oi, p and COi(l, �i(x, y)), respectively as

hown in Fig. 2. Since the carry-out job cannot execute more than its

xecution time Ci, p and less than 0, we derive WCO
i,p

in Eq. (7).

For the situation where τ i invokes its jobs sporadically, we can

asily check that the amount of execution of θ i, p in (x, y] with �i(x, y)

s upper-bounded by Wi, p(l, �i(x, y)).

Considering all possible values of �i(x, y) of task τ i, the sum of

orkload of all threads that have a higher priority than thread θ k, q

s an upper bound of the maximum interference of τ i on thread θ k, q.

hus,

i(Dk,q) = max
0≤�i(x,y)<Ti∑

∀θi,p∈hp(θk,q)

min(Wi,p(Dk,q,�i(x, y)), Dk,q − Ck,q + 1). (8)

.2.2. The maximum workload when i = k

In the case of that τ k is interfered by the same task, the alignment

or τ k’s job releases is automatically determined (i.e, Interval (x, y]

s set to the execution window of thread θ k, q, and �k(rk, q, dk, q) is

xed with Ok, q). To calculate the maximum workload when i = k, we

nly need to consider the threads whose execution windows are over-

apped with thread θ k, q. The workload contribution of those threads

an be similarly calculated using Eq. (7). Thus, the maximum work-

oad of all threads of τ k that have a higher priority than thread θ k, q is

alculated as

k(Dk,q) =
∑

∀θk,p∈hp(θk,q)

min(Wk,p(Dk,q, Ok,q), Dk,q − Ck,q + 1). (9)

Based on the upper-bound on the interference calculated in Eqs.

8) and (9), we develop the following schedulability test for task-wide

hread-level fixed-priority scheduling.

heorem 1. A set τ decom is schedulable under task-wide thread-level

xed-priority scheduling on a multiprocessor composed by m identical

rocessors if for every thread θ k, q, the following inequality holds:
∑
τi �=τk

Wi(Dk,q) + Wk(Dk,q) < m · (Dk,q − Ck,q + 1). (10)

roof. As we derived, Wi(Dk, q) (likewise Wk(Dk, q)) is the maximum

mount of higher-priority execution of τ i with i �= k (likewise τ k) than

k, q in the execution window of θ k, q. Since an execution A can inter-

ere with another execution B only if the priority of A is higher than

hat of B under task-wide thread-level fixed-priority scheduling, the
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Algorithm 2 Assign-Priority(A(k), R(k)).

1: for each thread θp,q ∈ R(k) do

2: if θp,q is schedulable with priority k assuming that all remain-

ing threads in R(k), except θp,q, have higher priorities than k, ac-

cording to the schedulability test in Theorem 1 then

3: assign priority k to θp,q (Pp,q ← k)

4: R(k + 1) ← R(k) \ {θp,q}
5: A(k + 1) ← A(k) ∪ {θp,q}
6: return success

7: end if

8: end for

9: return failure
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HS of Eq. (3) is upper-bounded by the LHS of Eq. (10). By Lemma 1,

he theorem holds. �

. Optimal thread-level priority assignment

This paper considers the thread-level optimal priority assignment

roblem that, given a decomposed set τ decom, determines the prior-

ty Pi, p of every thread θ i, p ∈ τ decom such that the decomposed set

s deemed schedulable according to the workload-based schedulabil-

ty test given in Theorem 1. In this section, we show that the OPA

lgorithm for sequential tasks is applicable to parallel tasks with de-

omposition.

The OPA algorithm (Davis and Burns, 2009) aims at assigning a

riority to each individual task through iterative priority assignment

uch that an entire task set is deemed schedulable by some given

PA-compatible schedulability test X under task-wide fixed-priority

cheduling. A schedulability test is OPA-compatible if the following

onditions are satisfied for any given task τ i:

Condition 1: The schedulability of task τ k is insensitive to relative

rdering of its higher (and lower) priority tasks.

Condition 2: When the priority of τ k is promoted (or demoted) by

wapping the priorities of τ k and τ i, τ k remains schedulable (or un-

chedulable) after the swap, if it was schedulable (or unschedulable)

efore the swap.

For thread-level extension of the priority assignment, we now

resent the Optimal Thread-level Priority Assignment (OTPA) algo-

ithm, applying the OPA algorithm for sequential tasks to decom-

osed threads in parallel tasks. As described in Algorithm 1, our OTPA

lgorithm iteratively assigns priorities to the decomposed threads

rom the lowest one. In the k-th iteration step, the decomposed set
decom is divided into two disjoint subsets: A(k) and R(k), where

1. A(k) denotes a subset of threads whose priorities have been as-

signed before the k-th step, and

2. R(k) denotes a subset of remaining threads whose priorities must

be assigned from the k-th step onwards.

The OTPA algorithm in Algorithm 1 yields a correct optimal prior-

ty assignment, because the schedulability test in Theorem 1 is OTPA-

ompatible, meaning that the test satisfies Conditions 1 and 2 for

hread-level schedulability (i.e., substituting θ k, q for τ k in the con-

itions), as stated and proved in the following theorem.

heorem 2. The proposed schedulability test given in Theorem 1 is

TPA-compatible.

roof. We wish to show that both Conditions 1 and 2 hold for thread-

evel schedulability according to the proposed schedulability test.

In the LHS of Eq. (10), an upper bound on the interference of each

ask on thread θ k, q is computed. The upper bound on the interfer-

nce of a task is calculated from the sum of workload of all threads

hat have a higher priority than thread θ k, q. Computing workload of

hreads having a higher priority does not depend on their relative

riority ordering. The other threads that have a lower priority than

hread θ k, q are excluded in calculation. Therefore, Condition 1 holds.
lgorithm 1 OTPA (Optimal Thread-level Priority Assignment).

1: k ← 0, A(1) ← ∅, R(1) ← τ decom

2: repeat

3: k ← k + 1

4: if Assign-Priority(A(k), R(k)) = failure then

5: return unschedulable

6: end if

7: until R(k) is empty

8: return schedulable

p
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b

t

d
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e
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For Condition 2, we focus on the case where the priority of θ k, q is

romoted by swapping the priorities of θ k, q and θ i, p. Since the prior-

ty of θ k, q is promoted, hp(θ k, q) becomes only smaller upon the swap.

herefore, Wi(Dk, q) and Wk(Dk, q) in Eqs. (8) and (9) get smaller after

he swap, resulting in a decrease in the LHS of Eq. (10). This proves the

ase, and the other case (demoting the priority of τ i) can be proved

n a similar way. Hence, Condition 2 holds. �

During the k-th step, OTPA then invokes a function Assign-

riority(A(k), R(k)) described in Algorithm 2 to find a thread deemed

chedulable according to Theorem 1 under the assumption that all

nassigned threads in R(k) have higher priorities.

Since the schedulability test in Theorem 1 is OTPA-compatible,

he OTPA algorithm has the following properties. First, the algorithm

uilds a solution incrementally without back-tracking. Once a thread

s selected in an iteration step, the thread has no effect on priority

ssignment in the next iteration steps. This is because the thread is

ssigned a priority lower than all the unassigned tasks, imposing no

nterference on them. Second, if there exists only one thread deemed

chedulable by our schedulability test at priority level k, OTPA must

nd it through searching all unassigned threads, which only requires

inear time. Third, if there are multiple threads deemed schedulable

y our schedulability test at priority level k, it does not matter which

hread is selected by OTPA at priority level k. This is because all the

ther threads deemed schedulable but not selected at priority level k

ill remain deemed schedulable at the next higher priority level and

ill be eventually selected for priority assignment at a later level.

Computational complexity. We note that the number of threads in a

ecomposed task set τ decom is denoted by n. By the above-mentioned

hree properties, the OTPA algorithm can find a priority assignment

hat all threads are schedulable according to the schedulability test if

ny exists, performing the schedulability test at most n(n+1)
2 times for

threads.

. Priority assignment with deadline adjustment

In the previous section, thread-level priority assignment was con-

idered under the assumption that the offset and deadline of each

hread are given statically. Relaxing this assumption, in this section,

e consider the problem of determining the offset, deadline, and

riority of each individual thread such that the parallel task system

s deemed schedulable according to the schedulability analysis in

heorem 1.

The existing decomposition approaches (Saifullah et al., 2011;

elissen et al., 2012a) share in common the principle of density-

ased decomposition. The density of a segment is defined as a to-

al sum of thread execution times in the segment over the relative

eadline of the segment. Saifullah et al. (2011) categorize segments

s either heavy or light according to the number of threads in a seg-

ent and determine the relative deadline of each segment such that

ach heavy segment has the same density. Nelissen et al. (2012a) de-

ompose a parallel task such that the maximum density among all
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Fig. 3. An example of two tasks on a single processor illustrates situations, where (a)

thread-level priority assignment fails when the deadline of each thread in τ 2 is as-

signed in proportion to thread execution time and (b) thread-level priority assignment

becomes successful with the deadline of each thread in τ 2 properly adjusted.

Algorithm 3 PADA (Priority Assignment with Deadline Adjustment).

1: k ← 0, A(1) ← ∅, R(1) ← τ decom

2: repeat

3: if Assign-Priority(A(k), R(k)) = failure then

4: if Adjust-Deadline(A(k), R(k)) = failure then

5: return unscheduble

6: end if

7: end if

8: until R(k) is empty

9: return schedulable
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Algorithm 4 Adjust-Deadline(A(k), R(k)).

1: F ← R(k)

2: repeat

3: find the thread with the smallest slack donation re-

quest inF to become deemed schedulable according to

Theorem 1 (denoted as θ ∗
s,e ∈ F)

4: construct a set of donator candidates DCs(θ ∗
s,e) such

that θs,r ∈ DCs(θ ∗
s,e) can donate to θ ∗

s,e a slack of at most

5: � without violating the schedulability of every already- as-

signed thread in A(k).

6: save the current offsets and deadlines of all the threads inτs

7: while DCs(θ ∗
s,e) is not empty do

8: find the thread with the greatest normalized slack in

DCs(θ ∗
s,e) (denoted as θ+

s,i
∈ DCs(θ ∗

s,e))

9: adjust the offsets and deadlines of all the threads in task

τs to reflect the slack donation of � from θ+
s,i

to θ ∗
s,e

10: if thread θ ∗
s,e is deemed schedulable by Theorem 1 then

11: return success

12: end if

13: update the slack of θ+
s,i

14: end while

15: restore the offsets and deadlines of all the threads in τs
segments in a parallel task is minimized. They assign the relative

deadline of an individual segment in a different way according to

upper bounds on the density of the segment. Then, those two ap-

proaches apply those density bounds to the existing density-based

schedulability analysis and derive resource augmentation bounds. In

the case of Nelissen et al. (2012a), deadline decomposition is optimal

according to a sufficient schedulability test for scheduling algorithms

such as PD2 (Srinivasan and Anderson, 2005), LLREF (Cho et al., 2006),

DP-Wrap (Levin et al., 2010), or U-EDF (Nelissen et al., 2012b).

Such a density-based decomposition is still a good principle in

thread-level fixed-priority assignment, providing a good basis for

high schedulability. However, it leaves room to improve further since

the density-based principle does not go perfectly with our case,

where the underlying analysis is not based on density. As an exam-

ple, Fig. 3 shows two tasks with three threads on a single proces-

sor3. Task τ 2 has two threads with their execution times of 1 and 4.

Fig. 3(a) shows the case, where the deadline D2 of τ 2 is decomposed

into D2,1 = 4 and D2,2 = 16 such that the resulting densities of two

threads θ2, 1 and θ2, 2 are equal to each other, as in density-based de-

composition. This way, OTPA is able to assign the lowest priority to

θ2, 2 but not able to proceed any more. Let us consider another case,

as shown in Fig. 3(b), where D2,1 = 6 and D2,2 = 14. This situation

can be considered as, from the initial deadline decomposition, thread

θ2, 2 donating its slack of 2 to thread θ2, 1. Then, OTPA is able to assign

priorities to θ2, 1 and then θ1, 1 successfully. This way, we can see that

priority assignment can be improved through deadline adjustment,

particularly, by passing the slack of one thread to another.

Motivated by this, we aim to develop an efficient method for Pri-

ority Assignment with Deadline Adjustment (PADA). In particular, we

seek to incorporate the PADA method into the inherent characteris-

tics of the underlying OTPA priority assignment and workload-based

schedulability analysis. The basic idea behind PADA is as follows. It

first seeks to assign priority through OTPA. When OTPA fails, it ad-

justs the offsets and deadlines of some threads such that there exists

a thread that can be assigned a priority successfully after the deadline

adjustment. If it finds such a deadline adjustment, it continues to use

OTPA for priority assignment. Otherwise, it is considered as failure.

See Algorithm 3.

We define the slack for thread θ k, q as the minimum distance be-

tween the thread finishing time and its deadline, and denoted as Sk, q.

Using our schedulability test presented in Theorem 1, we can approx-

imate the slack Sk, q as

Sk,q = Dk,q − Ck,q −
⌊∑

∀τi �=τk
Wi(Dk,q) + Wk(Dk,q)

m

⌋
. (11)

We further define the normalized slack S̄k,q of thread θ k, q as Sk, q/Dk, q.

When adjusting the slacks of some threads, we call the thread giving
3 For simplicity, we choose to show a case on a uniprocessor platform, but the same

phenomenon can also happen on a multiprocessor platform.
ts slack to another thread a donator thread, the thread receiving the

lack from a donator thread a donee thread, and the other threads that

re not related to slack donation third-party threads. In the example

hown in Fig. 3(b), θ2, 2, θ2, 1, and θ1, 1 are the donator, the donee, and

he third-party thread, respectively.

We design a deadline adjustment method based on the under-

tanding of the underlying priority assignment (OTPA) and analysis

ethods (see Algorithm 4). There are three key issues in the deadline

djustment: how to determine a donee thread and donator threads,

nd how to arrange donation. In order to come up with principles

o address such issues, we first seek to obtain some understanding

bout priority assignment with slack donation.

The purpose of slack donation is to assign a priority to a donee

hread to make it deemed schedulable. However, the slack donation

ay impose some undesirable side effect to other threads that are

eemed schedulable with their own priorities assigned already.

bservation 1. For some threads θ i, p and θ j, q, when Di, p decreases,

he worst-case interference imposed on θ j, q may increase.

The above observation implies that when a donator thread de-

reases its deadline in order to pass some of its slack to a donee

hread, it may impose a greater amount of worst-case interference

n some other third-party threads, which can lead to violating the

chedulability of some third-party threads with their priorities as-

igned already. This is critical, since it is against one of the most im-
that were saved in Line 5.

16: remove θ ∗
s,e from F

17: until F is emptyreturn failure
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Fig. 4. U∗ varying, Nmax = 10, m = 8, p = 0.5.

Fig. 5. U∗ varying, Nmax = 10, m = 16, p = 0.5.

6

p

t

c

s

t

t

τ

6

C

m

s

t

o

o

i

r

s

w

i

a

s

t

m

o

t

4 In this section, we only show the results of implicit deadline DAG tasks due to

space limit, but the behaviors of constrained deadline DAG tasks are similar to those of

implicit ones.
ortant properties of OTPA, which is that assigning a priority to a

hread does not ever affect the schedulability of the already-assigned

hreads. In order to preserve this important property of OTPA, the

eadline adjustment method has a principle of disallowing any slack

onation that violates the schedulability of already-assigned threads

t this step and pursuing to reduce the potential for such problematic

lack donation in the future.

How to determine a donee. The potential for problematic slack do-

ation decreases when the threads with priority assigned have slacks

nough to accommodate any potential increase in the worst-case

nterference that slack donation causes. Thereby, it is important to

eep the slacks of threads with priority assigned as much as pos-

ible. According to this principle, we seek to minimize the amount

f slack donated in total. This way, we select a donee thread (de-

oted as θ ∗
s,e) that requires the smallest amount of slack donation to

ecome deemed schedulable according to Theorem 1 (see Line 3 in

lgorithm 4).

How to determine a donator. When the donee thread is determined,

e construct a set of donator candidate threads (denoted as DC(θ ∗
s,e))

see Line 4 in Algorithm 4). Each candidate thread θs,r ∈ DC(θ ∗
s,e) that

elongs to the same task τ s, is deemed schedulable with a priority

ssigned already, and should be able to donate a slack to the donee

ithout violating the schedulability of all the threads with their pri-

rities assigned already.

The potential for problematic slack donation particularly in-

reases when the smallest slacks of threads with priority assigned

ecome even smaller. This is because we want to avoid even a sin-

le case of violating the schedulability of a thread with a priority

ssigned before. From this perspective, we select a donator thread
+
s,r ∈ DC(θ ∗

s,e) with the greatest normalized slack among the candi-

ate set (see Line 7 in Algorithm 4).

How to arrange slack donation. The intuition behind how to arrange

lack donation is given by the following lemma:

emma 3. For any thread θ k, q, when its deadline Dk, q decreases,

he worst-case interference imposed on θ k, q (i.e.,
∑

∀τi �=τk
Wi(Dk,q) +

k(Dk,q)) monotonically decreases.

roof. In Eqs. (8) and (9), we calculate the maximum amount of ex-

cution of τ i and τ k in an interval of length Dk, q. For some given t,

i, p(Dk, q, t) and Wk, p(Dk, q, t) (described in Eq. (7)) only monoton-

cally decreases, as Dk, q decreases. In Eq. (8), since �i(x, y) will be

etermined to maximize Wi(Dk, q), there is no case where Wi(Dk, q)

ncreases as Dk, q decreases. Therefore, it is easy to see that Wi(Dk, q)

nd Wk(Dk, q) monotonically decrease as Dk, q decreases. Therefore,

he lemma holds. �

The above lemma implies that when a donator decreases its dead-

ine to pass a slack to a donee, the donator may get some additional

lack after donation. From this implication, we use a reasonably small

mount (�) of slack in each donation step in order to increase a

hance to find such additional slacks (see Line 8), and each donator

eeps updating its slack to find some additional slack after donation

see Line 12).

Computational complexity. The PADA algorithm iteratively seeks to

ssign priorities to individual threads. When it fails to assign a prior-

ty through Assign-Priority (Algorithm 2), it invokes Adjust-Deadline

Algorithm 4). In Algorithm 4, constructing a set of donator candi-

ates (Line 4) is a critical factor to the complexity of Algorithm 4,

nd it performs schedulability tests O(n2) times for n threads. The

hile loop (Lines 6–13) repeats at most S∗
s,e/� times until the donee

hread θ ∗
s,e becomes deemed schedulable with slack donation, where

∗
s,e < Ts. Since the outmost loop (Lines 2–16) repeats at most n times,

lgorithm 4 performs schedulability tests max {O(n3), O(n · Tmax)}

imes, where Tmax represents the largest Ti among all tasks τ i ∈ τ .

ince PADA invokes Adjust-Deadline at most n times, it thereby per-

orms schedulability tests max {O(n4), O(n2 · Tmax)} times.
. Evaluation

In this section, we present simulation results to evaluate the

roposed thread-level priority assignment algorithms. For presenta-

ional convenience, we here define terms. Ci is the sum of the worst-

ase execution times of all threads of τ i (��qCi, q), and Usys is the

ystem utilization (= ∑
∀τi∈τ Ci/Ti). Also, Li is the worst-case execu-

ion time of τ i on infinite number of processors, called critical execu-

ion path, and LUsys is defined as the maximum Li/Di among the tasks

i ∈ τ .

.1. Simulation environment

We generate DAG tasks mainly based on the method used in

ordeiro et al. (2010). For a DAG task τ i, its parameters are deter-

ined as follows. The number of nodes (threads) ni is uniformly cho-

en in [1, Nmax], where Nmax is the maximum number of threads in a

ask. For each pair of nodes, an edge is generated with the probability

f p. The task τ i and its individual threads θ i, p are randomly assigned

ne of three different types: light, medium, and heavy, in which Ci, p

s determined uniformly in the range of [1, 5], (6, 10], and (11, 40],

espectively, and Ti (= Di)
4 is determined such that Ci/Ti is randomly

elected in the range of [0.1, 0.3], (0.3, 0.6], or (0.6, 1.0], respectively.

In order to understand how the proposed approaches perform

ith parallel DAG tasks, we designed three different types of tests us-

ng following parameters: 1) system utilization, 2) the degree of par-

llelism, and 3) the total number of nodes. Figs. 4 and 5 present the

chedulability according to Usys, these simulations (annotated as U-

est) are designed to show the overall performance with other related

ethods. We also conduct the second test (annotated as p-test) in

rder to evaluate our approaches across the different degree of intra-

ask parallelism. The result is shown in Fig. 6. Finally, we include the
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Fig. 6. p varying, Nmax = 10, m = 8.

Fig. 7. Total number of nodes varying, m = 8, U∗ = 4, p = 0.5.

Fig. 8. Total number of nodes varying, m = 8, U∗ = 4, p = 0.5.
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last test (annoated as node-test) to show the performance according

to the total number of nodes in τ for further understanding of the

proposed approaches. Results are shown in Figs. 7 and 8.

6.1.1. Task sets generation for U-test (Figs. 4 and 5)

We generate 1000 task sets at each data point with Nmax = 10 for

m = 8, m = 16 respectively, while p is fixed to 0.5.5

Due to the difficulty of generating exact Usys, each task set is gen-

erated with U∗ which falls within in the interval between U∗
min

=
∗ − 0.005 and U∗

max = U∗ + 0.005. Then, task sets are generated as

following steps.

1. A random task set is generated by starting with an empty task set,

and successively added to as long as U∗ < U∗
min

.

2. If a task is added such that U∗ > U∗
max, we discard this seed set and

go to step S1.

3. If a task is added such that U∗
min

≤ U∗ ≤ U∗
max, we include this seed

set for simulation.
5 We referred to experimental values (i.e., Nmax, m, p) in Baruah (2014).

T

f

We increase U∗ from 1 to 8 for m = 8 and 1 to 16 for m = 16, in

he step of 0.4, which is the sufficient amount to show the tendency.

herefore, we perform simulation with 18,000 and 38,000 task sets

n Fig. 4 and Fig. 5, respectively.

.1.2. Task sets generation for p-test (Fig. 6)

We generate 1000 task sets with Nmax = 10 for m = 8, yet leaving

undetermined, as follows.

1. We first generate a seed task set with m tasks with the parameters

determined as described above.

2. If the Usys of the seed task set is greater than m, we discard this

seed set and go to step S1.

3. We include this seed set for simulation. We then add one more

task into the seed set and go to Step S2 until 1000 task sets are

generated.

We now consider constructing edges between nodes (i.e., prece-

ence dependency between threads) with the probability parame-

er 0 ≤ p ≤ 1. When p = 0, there is no edge and thereby no thread

as predecessors, maximizing the degree of intra-task parallelism.

n contrast, with p = 1, each node is fully connected to all the other

odes, representing no single thread can execute in parallel with any

ther threads in the same task. As p increases, the number of edges

f each DAG task τ i is increasing, and this generally leads to a longer

ritical execution path Li, and then a larger LUsys.

In order to run simulation for different degrees of intra-task par-

llelism, we perform simulation with 1000 task sets in 10 different

ases in terms of p, where we increase p from 0.1 to 1.0 in the step of

.1, resulting in 10,000 simulations.

.1.3. Task sets generation for node-test (Figs. 7 and 8)

Most of generation settings in Section 6.1.1 are used for node-test

part from limiting total number of nodes. A task is added to as long

s sum of nodes in τ reaches the given total number of nodes, each

ask can have nodes within [1, the given total number of nodes − sum

f nodes in τ ] unless task set has only one task. We generate variance

o be from 10 to 100 of the total number of nodes for m = 8 when

and U∗ are fixed to 0.5 and m/2, respectively. 1000 simulations are

ncluded at each data point, resulting in 10,000 simulations.

.2. Other approaches for the comparison

We compare our proposed OTPA and PADA approaches (annotated

s Our-OTPA and Our-PADA) with other related methods. We first

nclude two baseline approaches: task-level OPA and thread-level DM

annotated as Base-Task-OPA and Base-Thread-DM), in order to

valuate the effectiveness of OTPA and PADA in terms of thread-level

riority assignment and incorporation of the characteristics of par-

llel tasks, respectively. Base-Task-OPA assigns priorities according

o the OTPA algorithm, but it restricts that all threads belonging to

he same task have the same priority. Base-Thread-DM assigns pri-

rities to threads according to the increasing order of their relative

eadlines (i.e., the one having a smaller relative deadline is assigned

higher priority). Both priority assignment algorithms work with our

chedulability test in Theorem 1. The above four approaches all re-

uire to resolve the precedence dependencies of individual threads

hrough task decomposition. Thus, we transform a DAG task into a

ynchronous parallel task according to the idea presented in Saifullah

t al. (2011), and we use one of the existing task decomposition tech-

iques (Nelissen et al., 2012a) to assign offsets and deadlines to each

hread. Although, our approaches can use any decomposition tech-

iques, the technique in Nelissen et al. (2012a) is used since it is de-

igned for different thread execution times.

For the comparison with other known related methods (see

able 1), we include six more methods. For task-level EDF scheduling,

our methods are available: pseudo-polynomial time schedulability
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ests in Bonifaci et al. (2013) (BMS-Task-EDF) and (Baruah, 2014)

Baruah-Task-EDF),6 an interference-based test in Chwa et al. (2013)

CLP-Task-EDF), and a capacity augmentation bound in Li et al.

2014) (LCA-Task-EDF). For task-level DM scheduling, a pseudo-

olynomial time schedulability test in Bonifaci et al. (2013) (BMS-

ask-DM) is included. Also, we involve a capacity augmentation

ound in Li et al. (2014) (LCA-Task-RM) for task-level RM schedul-

ng. We note that the resource augmentation bounds in Baruah et al.

2012), Andersson and de Niz (2012) and Li et al. (2013) are not

ncluded in this comparison, because those bounds can serve as

chedulability tests only when an optimal schedule is known. How-

ver, no optimal schedule for parallel tasks has been developed so far,

nd therefore, it is difficult (if not impossible) to check the feasibility

f a task set through simulation. We also omit to include a capacity

ugmentation bound in Li et al. (2013) since LCA-Task-EDF is the

est known capacity augmentation bound of EDF.

For reference, Our-PADA, Baruah-Task-EDF, BMS-Task-EDF,

nd BMS-Task-DM have pseudo-polynomial time complexity while

ther methods have polynomial time complexity. We will discuss

ore details of computational overhead in Section 6.3.

.3. Simulation results

U-test . Figs. 4 and 5 plot simulation results in terms of the accep-

ance ratio for m = 8 and m = 16, respectively, as we varied U∗. The

gures show that Our-OTPA and Our-PADA outperform the other

ethods with wide margins. Showing the effectiveness of thread-

evel assignment versus task-level, there are large gaps between Our-

TPA and Base-Task-OPA in the both figures. The figures also show

hat Our-OTPA outperforms Base-Thread-DM significantly as well,

ndicating that it can be beneficial to incorporate the characteristics

f intra-task parallelism into priority assignment. In the figures, Our-

TPA outperforms the other six methods which considered well-

nown deadline-based scheduling algorithms such as EDF and DM.

he results indicate that there is a large room for improving schedul-

ng policies that accommodate the features of parallel tasks. In the

gures, Our-PADA is shown to find up to 23.8% (21.3% for m = 16)

ore task sets deemed schedulable, compared to Our-OTPA. Those

esults show the benefit of deadline adjustment.

p-test . Fig. 6 plots simulation results in terms of acceptance ra-

io for m = 8 as we varied p. As discussed before, an increasing value

f p generates a growing number of edges in each DAG task τ i, lead-

ng to a greater degree of precedence constraints between nodes but

smaller degree of intra-task parallelism (i.e., a smaller number of

hreads in the same segment).

Similar to the above results, Fig. 6 shows that Our-OTPA and Our-

ADA perform generally superior to other methods. It demonstrates

need of thread-level priority assignment particularly with a smaller

alue of p. On the contrary, Our-PADA and Our-OTPA show a com-

arable performance with Base-Task-OPA and CLP-Task-EDF when

=1, where all the nodes in a DAG task are fully connceted, making τ i

sequential task. As a consequence, it decreases the efficiency of the

ner-grained thread-level scheduling, leading to a comparable result

ith Task-level approaches.

In spite of this effect, the rest of the five other task-level ap-

roaches presented by dash line are shown to perform worse when

increases. This is because those five methods share in common

hat their schedulability tests check whether LUsys is smaller than or

qual to some threshold (i.e., m/(2m − 1) in BMS-Task-EDF, approx-

mately m/(2m − 1) in Baruah-Task-EDF, 2/(3 + √
5) in LCA-Task-
6 Baruah (2014) improves the schedulability for Global-EDF presented in Bonifaci

t al. (2013) by searching all the possible σ in their schedulability test. Due to the

ime limitation, we follow the same approximation as shown in experiments section

n Baruah (2014) instead of searching all the potential space of σ . See the details in

aruah (2014).

N

N

(

V

q

D

DF, m/(3m − 1) in BMS-Task-DM, and 1/(2 + √
3) in LCA-Task-

M), and a larger value of p generally increases LUsys for a task set

nd as described above, it leads to worse schedulability.

node-test . In order to evaluate our approaches over a different

umber of threads, we run simulation with different value of the

otal number of nodes for m = 8 when p = 0.5 and U∗ = 4. Fig. 7

hows that Our-OTPA and Our-PADA overwhelmingly outperform

he other eight methods particularly when task sets have larger num-

er of nodes. Our-PADA is shown to improve schedulability com-

ared to Our-OTPA by up to 98% more. Such an improvement in-

reases with a larger value of nodes. With a fixed value of p, a larger

alue of nodes ends up with a larger number of segments and this

ives a more chance for Our-PADA to adjust segment deadlines for

chedulability improvement.

However, according to achieve the improved schedulability, the

omputational overhead is also increased. We additionally compare

he average computational time between Our-OTPA and Our-PADA

ith the same task sets used in Fig. 7. Fig. 8 presents the increas-

ng gap of computational time between two approaches with larger

alue of nodes, where Our-PADA is shown to decrease its perfor-

ance as opposed to Fig. 7. We expect that we can improve this weak-

ess by compromising the trade-off (i.e., limiting iteration numbers

n Algorithm 4) as a future study.

. Conclusion

In the recent past, there is a growing attention to supporting par-

llel tasks in the context of real-time scheduling (Bonifaci et al., 2013;

i et al., 2014; Baruah et al., 2012; Andersson and de Niz, 2012; Li

t al., 2013; Chwa et al., 2013; Baruah, 2014; Saifullah et al., 2011;

elissen et al., 2012a; Lakshmanan et al., 2010; Liu and Anderson,

010; 2012; Ferry et al., 2013; Axer et al., 2013; Qi Wang, 2014; Li

t al., 2015; Kwon et al., 2015; Melani et al., 2015; Sanjoy Baruah,

015; Shen Li, 2015). In this paper, we extended real-time scheduling

ategories, according to the unit of priority assignment, from task-

evel to thread-level, and we presented, to the best of our knowl-

dge, the first approach to the problem of assigning task-wide thread-

evel fixed-priorities for global parallel task scheduling on multipro-

essors. We showed via experimental validation that the proposed

hread-level priority assignment can improve schedulability signifi-

antly, compared to its task-level counterpart. Our experiment results

lso showed that priority assignment can be more effective when in-

orporating the features of parallel tasks.

This study presented a preliminary result on task-wide thread-

evel fixed-priority scheduling for parallel tasks, with many further

esearch questions raised. For example, would it be more effective

f there exist some new decomposition methods that incorporate the

haracteristics of the underlying thread-level priority assignment and

nalysis techniques? Or, would it be better to perform thread-level

riority assignment for parallel tasks without task decomposition, if

ossible? We plan to do further research answering those questions.

nother direction of future work is to extend our work taking into ac-

ount architectural characteristics (Ding and Zhang, 2012; Ding et al.,

013; Ding and Zhang, 2013; Zhang and Ding, 2014; Liu and Zhang,

015; Liu and Zhang, 2014).
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